DUST CONTROL PLAN

Prepared by

Mead & Hunt

and

Kleinfelder

Prepared for

PacifiCorp Energy

May 27, 2009
TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 PROJECT DESCRIPTION .. 1

1.2 BACKGROUND ... 1

1.3 PROJECT REMOVAL DESCRIPTION ... 3

1.4 MANAGEMENT PLAN BACKGROUND ... 4

1.5 REGULATORY AND OTHER REQUIREMENTS .. 5

1.5.1 Southwest Clean Air Agency .. 5

1.5.2 Washington State Department of Ecology ... 5

1.5.3 Environmental Protection Agency ... 5

1.5.4 Federal Energy Regulatory Commission (FERC) ... 5

1.6 PLAN OBJECTIVES AND GOALS ... 5

1.7 RELATIONSHIP WITH OTHER MANAGEMENT PLANS .. 6

1.7.1 Erosion Control Plan ... 6

1.7.2 Revegetation and Wetlands Management Plan ... 6

2 ASSESSMENT OF SITE CONDITIONS ... 7

2.1 IDENTIFICATION OF FUGITIVE DUST SOURCES ... 7

2.1.1 Demolition ... 7

2.1.2 Trafficked Areas ... 7

2.1.3 Exposed Sediments ... 7

3 CONTROL MEASURES .. 8

3.1 REFERENCE MATERIALS FOR CONTROL MEASURES .. 8

3.1.1 Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures (EPA-450/2-92-004) .. 8

3.2 DUST CONTROL METHODS ... 8

3.2.1 Demolition ... 8

3.2.2 Trafficked Areas ... 9

3.2.3 Exposed Sediments ... 10

4 DECISION PROCESS .. 11

4.1 CONTROL METHODS FOR SOURCE AREAS ... 11

4.2 CONTROL METHODS, RATES, AND FREQUENCIES ... 12

5 MONITORING REQUIREMENTS AND CONTINGENCY PLAN 13

5.1 INSPECTION CHECKLIST .. 13

5.2 ALTERNATE CONTROL METHODS ... 13

6 REFERENCES ... 14
FIGURES
Figure 1-1 Site Location Map .. 2

TABLES
Table 4-1 Control Methods for Source Areas ... 11
Table 4-2 Control Methods, Rates, and Frequencies ... 12

APPENDICES
A. Inspection Checklists
1 INTRODUCTION

1.1 PROJECT DESCRIPTION

PacifiCorp Energy owns and operates the Condit Hydroelectric Project, which was completed in 1913 on the White Salmon River in Skamania County and Klickitat County, Washington. The project is regulated by the Federal Energy Regulatory Commission (FERC) as project number 2342. The project is located approximately 3.3-miles upstream from the confluence of the White Salmon and Columbia Rivers. Project facilities consist of a 125-foot high, 471-foot long concrete gravity diversion dam, an intake structure that directs water into a 13.5-foot diameter by 5,100-foot long wood stave flowline, and through a 40-foot diameter concrete surge tank. The flowline bifurcates inside the surge tank into two 9-foot diameter penstocks that supply water to the powerhouse. The powerhouse contains two double horizontal Francis turbines with an installed capacity of 14,700 kilowatts. The project creates a reservoir, Northwestern Lake, which extends 1.8-miles upstream of the dam and covers approximately 92 acres. The project area is shown in Figure 1-1.

1.2 BACKGROUND

In 1968, a new license was issued by the Federal Energy Regulatory Commission for a 25-year term, which expired on December 31, 1993. In 1991, PacifiCorp Energy filed an application with the FERC for a new license authorizing the continued operation and maintenance of the project. PacifiCorp Energy has since been operating the project pursuant to annual licenses, pending determination by the FERC on the status of PacifiCorp Energy’s new license issuance. In 1996, the FERC issued a Final Environmental Impact Statement (FEIS) that analyzed the environmental and economic effects of various relicensing alternatives for the project. The FEIS included a recommendation to approve licensing with mandatory conditions, including provisions for establishing fish passage facilities at the project.

PacifiCorp Energy evaluated the economic impacts of the FERC recommendations contained within the FEIS and determined that the mandatory conditions would render the project uneconomic to operate. In 1997, PacifiCorp Energy requested a temporary abeyance of the relicensing procedure in order to investigate the feasibility of various removal alternatives in collaboration with project stakeholders. PacifiCorp Energy and project stakeholders then commissioned the consulting firm of R.W. Beck, Incorporated, to evaluate removal alternatives. In 1998, R.W. Beck, Incorporated, prepared a summary report of project removal engineering considerations that identified the preferred method and schedule for project removal as well as the expected costs and associated environmental and permit issues. In 1999, the Condit Settlement Agreement was signed by PacifiCorp Energy and project stakeholders. The settlement agreement provides for project removal upon the expiration of an extended license term in accordance with the preferred method identified in the R.W. Beck, Incorporated, summary report. The settlement agreement was amended in 2005 to extend the dates for project removal.

In 2002, the FERC prepared a Final Supplemental FEIS addressing project removal, which updated the 1996 FEIS and assessed the effects associated with approval and implementation...
of the Condit Settlement Agreement. In March 2007, Ecology issued the Final SEPA Supplemental Environmental Impact Statement (FSEIS) for the project.
In September 2002, the U.S. Fish and Wildlife Service issued a Biological Opinion finding no jeopardy to bull trout for ongoing project operations and implementation of the Condit Settlement Agreement. In October 2006, the National Marine Fisheries Services issued a Biological Opinion finding that the proposed dam removal action is not likely to jeopardize the continued existence of salmon and steelhead or destroy or adversely modify designated critical habitat.

1.3 PROJECT REMOVAL DESCRIPTION

PacifiCorp Energy proposes to remove the project in accordance with the amended Condit Settlement Agreement and the Project Removal Design Report. Prior to removing the dam, the City of White Salmon’s water supply line that crosses the reservoir needs to be relocated and potential impacts to the Northwestern Lake Bridge which is owned by Klickitat County and is at the upper end of the reservoir need to be addressed.

The proposed method for dam removal involves clearing sediment and debris immediately upstream from the tunnel and then drilling and blasting a 12-foot by 18-foot drain tunnel in the base of the dam to within a few feet of the dam’s face. During the month of October, sediment and debris immediately upstream from the dam will be cleared to form a pathway and then the remainder of the tunnel will be blasted to drain the reservoir and flush impounded sediments out of the reservoir as rapidly as possible. Following the final tunnel blast, the drain tunnel will discharge at a rate of 10,000 cubic feet-per-second – approximately 25 percent of the estimated peak discharge during the February 1996 flood event on the White Salmon River. This will drain the reservoir in approximately six hours. Rapid draining of the reservoir is expected to mobilize much of the estimated 2.3-million cubic yards of sediment that have accumulated behind the dam since its construction. Previous modeling has indicated that between 1.6 million to 2.2-million cubic yards of sediment will be discharged into the White Salmon River immediately following dam removal and over a number of years as successive high flow events mobilize overbank sediments.

Once the reservoir is drained, the dam will then be excavated and removed along with the flowline, surge tank, and penstocks. Concrete from the dam will either be buried onsite or removed from the site for recycling or disposal. The powerhouse will be left intact. The upstream cofferdam in the White Salmon River present from original dam construction will be removed from the river as soon as practicable after the breach. PacifiCorp Energy expects to complete the dam removal process within one year.

Following project removal, the irrigation water supply intake for the Mount Adams Orchard to the east of the dam will be reconfigured to accommodate a new intake.

Removal of Condit dam is expected to provide the following benefits:

- Anadromous salmonids will be provided access of up to 18 miles of White Salmon River mainstem and tributary habitats that have been inaccessible since the early 1900s. Restoration of natural runs of anadromous fish upstream of the project dam is consistent with the fishery management goals.

- Dam removal offers the greatest potential for full utilization of anadromous fish habitat, including habitat inundated by Northwestern Lake and, therefore, full restoration of anadromous salmonids within the White Salmon River basin.

- Dam removal will benefit wildlife dependent upon anadromous fish in the area of the river reach upstream of river mile (RM) 3.3.

- Dam removal will provide increased whitewater recreation opportunities. Whitewater recreation is an important and popular use of the White Salmon River and provides income for the local area.

1.4 Management Plan Background

Dust consists of tiny particles carried by air currents, which are caused by a wide range of construction activities. Controlling dust emissions helps to:

- Reduce contamination of property, environment, and human health
- Reduce impacts on aquatic life, vegetation, and water quality due to turbidity and sedimentation
- Reduce vehicle and equipment damage and abrasion due to mechanical wear, road impact, and particle consumptions in the operating equipment
- Reduce accidents and injuries due to poor visibility

Most dust control methods are inexpensive, easy to install, and simple to maintain. There are many categories of dust sources. The types described in this Dust Control Plan are associated with the activities of the project removal and are as follows:

- Site preparation activities
- Demolition activities
- Vehicle movements
- Activities on paved and unpaved roads
- Hauled materials
- Stockpiles
1.5 **REGULATORY AND OTHER REQUIREMENTS**

Federal, state, and county regulations require owners and operators of fugitive dust sources to prevent fugitive dust from becoming airborne and to maintain and operate sources to minimize emissions. Furthermore, the project is under the jurisdiction of the Federal Energy Regulatory Commission (FERC). The requirements of various agencies are specified below.

1.5.1 Southwest Clean Air Agency

The Southwest Clean Air Agency is responsible for enforcing federal, state and local outdoor air quality standards and regulations in Clark, Cowlitz, Lewis, Skamania and Wahkiakum Counties of southwest Washington State. Southwest Clean Air Agency is the local air pollution agency empowered to enforce and implement the Federal Clean Air Act (42 U.S.C. 7401, et seq.) and the Clean Air Washington Act Chapter 70.94 RCW.

1.5.2 Washington State Department of Ecology

Washington State Department of Ecology assures that dust control practices comply with the federal, state, and local regulations in Chelan, Douglas, Kittitas, Klickitat, and Okanogan Counties. Washington State Department of Ecology implements Chapter 70.94 RCW Washington Clean Air Act and Chapter 173-400 WAC Washington Administrative Code regarding general pollution for air pollutant sources.

1.5.3 Environmental Protection Agency

The Clean Air Act (Title 42, Chapter 85 of the United States Code) requires the Environmental Protection Agency, as a federal agency, to set national air quality standards for particulate matter considered harmful to public health and the environment. The Environmental Protection Agency oversees state and local actions, and implements programs for toxic air pollutants, heavy-duty trucks, locomotives, ships, aircraft, off-road diesel equipment, and some types of industrial equipment. The Environmental Protection Agency also ultimately approves or disapproves all attainment plans and control measures adopted by the local and state agencies. EPA-450/2-92-004, titled “Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures,” contains information on control of fugitive dust sources. EPA 832-F-99-003, titled “Storm Water Management Fact Sheet Dust Control,” contains design criterion of different measures and methods.

1.5.4 Federal Energy Regulatory Commission (FERC)

To be determined

1.6 **PLAN OBJECTIVES AND GOALS**

The intent of this plan is to minimize particulate emissions and comply with regulations for dust control during the decommissioning of the Condit Hydroelectric Project, FERC No. 2342 (Project). The objective of this Dust Control Plan document is to identify activities involving fugitive dusts and dust control measures. The plan also describes measures to be
taken by PacifiCorp Energy and its contractors to ensure that dust control measures are implemented and maintained in accordance with federal, state, and local regulations.

This Dust Control Plan has been prepared in compliance with the local, county, and state regulations and addresses the following goals:

- Prevent or reduce dust emissions
- Minimize the duration of exposure to dust
- Reduce wind speed at ground level
- Bind dust particles together
- Capture and remove dust at its source
- Monitor management practices to ensure that measures are effective

1.7 RELATIONSHIP WITH OTHER MANAGEMENT PLANS

1.7.1 Erosion Control Plan

The Erosion Control Plan addresses the areas disturbed by the project removal activities. Dust control activities specified herein may coincide with best management practices described within the Erosion Control Plan.

1.7.2 Revegetation and Wetlands Management Plan

The Revegetation and Wetlands Management Plan addresses the revegetation of the drained lake bed after reservoir draw down and disturbed areas including temporary access roads and staging areas. Dust control activities specified herein may coincide with best management practices described within the Revegetation and Wetlands Management Plan.
2 ASSESSMENT OF SITE CONDITIONS

2.1 IDENTIFICATION OF FUGITIVE DUST SOURCES

Dust can be generated by a wide range of activities. The amount of dust emitted by these activities depends on the way tasks are managed. The following lists the activities and descriptions of tasks expected to require dust control measures for the project.

2.1.1 Demolition

Many structures in the project were built using concrete. The proposed technique to remove the concrete utilizes drilling and blasting. Material will be loaded into yarders and trucks and hauled off and disposed of at on-site disposal sites, recycled, or disposed of off-site. On-site crushing operations may be employed to reduce the size of the concrete rubble for disposal. The upstream cofferdam used in the original dam construction, other appurtenant facilities to the dam such as the flowline and penstocks, and lodged woody debris may also employ blasting techniques and utilize heavy equipment for the removal. All of these activities can generate dust emissions.

2.1.2 Trafficked Areas

Trafficked areas consist of unpaved and paved access roads. The project removal activities will require the use of existing state and county paved roads to transport equipment and haul rubble and debris to permanent disposal or recycling sites. Unpaved access roads will be constructed and used as access routes for hauling equipment needed for the project removal and for disposal of debris within the project boundaries. The majority of traffic through these roads will be haul trucks and heavy equipment; however, the traffic volume will be less than 600 average daily trips. An unpaved road itself can be a source of dust emissions. Whenever a vehicle travels over an unpaved surface, fugitive dust emissions may occur. The Erosion Control Plan has noted similar activities necessitating management.

2.1.3 Exposed Sediments

After the lake is emptied, the exposed sediments of the reservoir bed will likely desiccate. Additionally, some vegetated surfaces will be denuded during their development and use as disposal sites and construction staging areas. Exposed sediment is susceptible to dust emissions due to wind erosion. Because of frequent transfer of materials into and out of storage areas during the project, storage piles are usually left uncovered and thus can cause dust emissions due to wind erosion. In addition, the activities such as the movements of trucks and loading equipment in the storage pile areas can cause a significant amount of dust emissions. The Erosion Control Plan and the Revegetation and Wetlands Management Plan have noted similar activities necessitating management.
3 CONTROL MEASURES

3.1 REFERENCE MATERIALS FOR CONTROL MEASURES

This Dust Control Plan specifies control measures in accordance with the publications listed below.

3.1.1 Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures (EPA-450/2-92-004)

This document provides information on control of fugitive dust sources. It is a technical guidance for the development of reasonably available control measures (RACM) and best available control measures (BACM) for fugitive dust sources, focusing mainly on PM-10 reduction (PM-10 are particles with an aerodynamic diameter less than or equal to a nominal 10 micrometers). Areas that are designated as moderate or serious non-attainment for PM-10 are guided for the development of RACM or BACM in this document.

According to the U.S. Environmental Protection Agency Green Book, the project is not located in an area classified as moderate or serious non-attainment for PM-10, which means the Dust Control Plan does not have to achieve RACM or BACM for PM-10 emissions reduction as described in EPA-450/2-92-004. However, this Dust Control Plan does propose the use of appropriate measures specific to the project, based on information contained in EPA-450/2-92-004. The Environmental Protection Agency Green Book can be found at the following website: http://www.epa.gov/air/oaqps/greenbk/mappm10.html

This document was issued by the Washington Department of Ecology to provide guidance to owners and operators of areas with fugitive dust sources and to help them comply with laws pertaining to dust emissions and the use of dust suppressants. The publication describes methods, techniques, and products designed to prevent or suppress dust emissions. This Dust Control Plan proposes the use of many methods described in Publication No. 96-433.

3.2 DUST CONTROL METHODS

The best management practices listed below provide control methods for each of the fugitive dust sources.

3.2.1 Demolition

Dust control measures for demolition activities are far more limited than those for traditional construction projects. As demolition is normally an intense activity conducted over a relatively short time frame, measures to limit source extent are not usually possible. However, controlling dust generation from vehicle traffic on the site can be significant and are described under the trafficked area controls. With regard to demolition activities, several methods of dust control are appropriate. They are as follows:
- Conduct blasting on calm days. Wind direction with respect to the property line, nearby residences, and other receptors must be considered. Residential properties are primarily located north and east of the dam site at least 1,000-feet away.

- Design Blast stemming to minimize dust and control fly rock.

- Utilize wet suppression of materials storage, handling, and transfer operations.

- Install wind fence for control of windblown dust.

3.2.2 Trafficked Areas

Controlling dust emissions from trafficked areas will be significant. The controls employed for paved roads and unpaved roads are described below.

3.2.2.1 Paved Roads

Dust control measures for paved roads are designed to prevent deposition of material on the pavement or to remove deposited material. To prevent deposition of material, a construction entrance, placed at the ingress/egress entrance to paved roads, will be used to reduce the amount of dust and sediment transported onto paved roads by construction vehicles leaving the access routes. Specific locations are shown on the Erosion Control Plan. Vehicle tire/underbody wash stations can remove a substantial amount of dirt and sediment from vehicles before they leave the site and will also meet the requirements of the Revegetation and Wetlands Management Plan. Diverting runoff from vehicle washing stations into a sediment trap will help ensure that sediment removed from vehicles is kept on-site and disposed of properly. Materials deposited upon paved roadways will be promptly removed by vacuuming or wet sweeping fine dirt from paved roads as specified in the Erosion Control Plan. If these controls are ineffective, pavements may be flushed with high pressure, low volume nozzles.

3.2.2.2 Unpaved Access Roads

There are numerous dust control measures available for unpaved access roads. The access routes to the dam will have the most traffic activities, which can contribute a great amount of fugitive dust emissions; however, for all unpaved access roads, the following techniques may be employed to reduce fugitive dust:

- Vehicle speed through these routes shall not exceed 15 miles per hour to reduce the amount of dust stirred up. Speed limit signs will be posted.

- Water spray shall be applied to bind dust particles together and keep dust emissions under control, when necessary. Water for dust control will be available from temporary city supply sources and other available PacifiCorp Energy consumptive use supplies. Chemicals shall be considered if water is not effective. A discussion of these products is included below.
- Unnecessary travel on these routes will be restricted by placing warning signs to discourage vehicle trespassing and controlling access to the site.

- Vegetation will be cleared only from those areas where work will occur immediately.

- Gravel, only as needed, will be applied to road surfaces to reduce dust emissions.

Most chemical dust suppressant products designed for trafficked areas are mainly anticipated for moderately traveled, low cost roads typically surfaced with gravel. For unpaved road applications, products applied using the admix method usually work better than if simply surface applied. The admix method is the blending of the product with the top few inches of surface material. Depending on the existing conditions of the access road surface materials and stockpiles, surface treatment suppressants may be adequate. For chemical dust suppressants, Lignin derivatives are recommended. Lignin derivatives are paper-making industry by-products containing lignin and carbohydrates in solution. They act as adhesives, binding soil particles together.

3.2.3 Exposed Sediments

3.2.3.1 Former Reservoir Bed

Dust control for the exposed sediments susceptible to wind erosion will be focused on vegetating or mulching as soon as practical in accordance with the Revegetation and Wetlands Management Plan. For construction activities within the former reservoir bed, the access roads will be managed in the same fashion as unpaved access roads to minimize dust emissions.

3.2.3.2 Disposal Sites and Staging Areas

Dust control for disposal sites and staging areas will be provided by limiting areas to be cleared and stabilizing erodible soil particles. Vegetation will be cleared just prior to using staging areas in order to minimize dust emissions from these areas. These areas will be vegetated or mulched as soon as practical in accordance with the Revegetation and Wetlands Management Plan.

There will be a lot of movement of trucks due to loading and unloading and dust emissions may be significant in these areas. Access roads within these areas will be managed in the same fashion as unpaved access roads to minimize dust emissions from construction activities. To reduce these emissions, water spray will be applied to maintain a good road surface binding and to avoid dust emissions. Temporary stabilization of open storage piles will be achieved by covering with tarps, plastics, or other cover materials.
4 DECISION PROCESS

The control methods for each fugitive dust source is shown in Table 4.1. The schedules, rate of application, and other means of identifying how often, how much, and when the control method is to be used for each source is shown in Table 4.2.

4.1 CONTROL METHODS FOR SOURCE AREAS

Table 4-1 Control Methods for Source Areas

<table>
<thead>
<tr>
<th>SOURCES</th>
<th>POTENTIAL DUST-GENERATING ACTIVITIES</th>
<th>METHODS TO BE USED (PER TABLE 4.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>Dam removal</td>
<td>B, I, J</td>
</tr>
<tr>
<td></td>
<td>Sediments/woody debris removal</td>
<td>B, I, J</td>
</tr>
<tr>
<td></td>
<td>Upstream cofferdams removal</td>
<td>B, I, J</td>
</tr>
<tr>
<td></td>
<td>Appurtenant facilities removal</td>
<td>B, I, J</td>
</tr>
<tr>
<td>Trafficked areas</td>
<td>Paved access roads</td>
<td>D, H</td>
</tr>
<tr>
<td></td>
<td>Unpaved access roads</td>
<td>A, B, C, E, G</td>
</tr>
<tr>
<td>Exposed Sediments</td>
<td>Former reservoir bed</td>
<td>A, B, F</td>
</tr>
<tr>
<td></td>
<td>Disposal sites and staging areas</td>
<td>A, B, C, F</td>
</tr>
</tbody>
</table>
4.2 Control Methods, Rates, and Frequencies

Table 4-2 Control Methods, Rates, and Frequencies

<table>
<thead>
<tr>
<th>NO.</th>
<th>Method of Treatment</th>
<th>Location of Treatment</th>
<th>Frequency of Treatment</th>
<th>Amount of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Apply gravel as needed</td>
<td>Apply to access roads and to areas where planting or mulching is impractical</td>
<td>Apply just once. Need to be checked at regular intervals. May need to apply more if needed</td>
<td>Thickness of gravel depends on the existing soil materials</td>
</tr>
<tr>
<td>B</td>
<td>Apply water</td>
<td>Apply to access roads, stockpiles, and others when needed</td>
<td>Requires constant attention and apply water when needed</td>
<td>As often as needed</td>
</tr>
<tr>
<td>C</td>
<td>Limit stripping vegetation to immediate work area</td>
<td>As specified on the plans</td>
<td>Once each area to be cleared</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>Construction entrance</td>
<td>Construct at egress/ingress of paved roads to unpaved access roads</td>
<td>One entrance per unpaved access road connected to a paved road</td>
<td>Per plans</td>
</tr>
<tr>
<td>E</td>
<td>Restrict unnecessary travel/access with warning signs</td>
<td>Throughout access roads</td>
<td>Once</td>
<td>Per plans</td>
</tr>
<tr>
<td>F</td>
<td>Vegetate or mulch areas that won’t receive vehicle traffic</td>
<td>Follow recommended coverage or seeding and planting specifications</td>
<td>Once</td>
<td>As needed</td>
</tr>
<tr>
<td>G</td>
<td>Restricting vehicle speed by posting temporary 15 miles per hour signs</td>
<td>On access roads</td>
<td>Once</td>
<td>Per plans</td>
</tr>
<tr>
<td>H</td>
<td>Vacuum or wet sweep fine dirt from paved road</td>
<td>On paved roads</td>
<td>As needed</td>
<td>As needed</td>
</tr>
<tr>
<td>I</td>
<td>Consider wind direction</td>
<td>Where blasting techniques used</td>
<td>Prior to blasting</td>
<td>As needed</td>
</tr>
<tr>
<td>J</td>
<td>Design of blast stem</td>
<td>Dam appurtenant facilities</td>
<td>Once</td>
<td>Per blasting plans</td>
</tr>
</tbody>
</table>
5 MONITORING REQUIREMENTS AND CONTINGENCY PLAN

The Project Removal Plan identifies the proposed access roads, disposal sites, and staging areas which helps to avoid the unnecessary exposure of bare ground and avoid dust emissions.

5.1 INSPECTION CHECKLIST

The inspection checklists for the three main source areas: demolition areas, trafficked areas, and exposed sediment areas are included in Appendix A and will be used to monitor dust control efforts daily, or at an appropriate frequency to ensure that the measures taken are adequately controlling fugitive dust.

5.2 ALTERNATE CONTROL METHODS

The methods listed previously are proposed dust control techniques specific for the project removal under known conditions. However, depending on the climatic factors, unanticipated environmental constraints, and other unexpected changes during the construction activities, the proposed dust control techniques may require alternate measures to effectively control fugitive dust emissions.
6 REFERENCES

A. INSPECTION CHECKLISTS
INSPECTION CHECKLIST – DEMOLITION AREA

Enter Yes, No, or Not Applicable for each work day versus each dust control measure.

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
</tr>
</tbody>
</table>

DEMOLITION AREA List location (i.e., dam, flowline, surge tank, penstocks, powerhouse site):

Fugitive dust sources controlled?

Alternative methods deployed?
If yes, list.

DEMOLITION AREA List location (i.e., dam, flowline, surge tank, penstocks, powerhouse site):

Fugitive dust sources controlled?

Alternative methods deployed?
If yes, list.

DEMOLITION AREA List location (i.e., dam, flowline, surge tank, penstocks, powerhouse site):

Fugitive dust sources controlled?

Alternative methods deployed?
If yes, list.

DEMOLITION AREA List location (i.e., dam, flowline, surge tank, penstocks, powerhouse site):

Fugitive dust sources controlled?

Alternative methods deployed?
If yes, list.
INSPECTION CHECKLIST – TRAFFICKED AREA

Enter Yes, No, or Not Applicable for each work day versus each dust control measure.

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
</tr>
</tbody>
</table>

TRAFFICKED AREA List location (i.e., access road number or road name):

- Road covering?
- Fugitive dust sources controlled?
- Is pre-watering before dust generating operations occurring?
- Apply water during dust generating operations?
- Observed vehicles traveling less than 15 miles per hour?
- Are there visible areas with erodible surfaces?
- Alternative methods deployed?
 If yes, list.

TRAFFICKED AREA List location (i.e., access road number or road name):

- Road covering?
- Fugitive dust sources controlled?
- Is pre-watering before dust generating operations occurring?
- Apply water during dust generating operations?
- Observed vehicles traveling less than 15 miles per hour?
- Are there visible areas with erodible surfaces?
- Alternative methods deployed?
 If yes, list.
INSPECTION CHECKLIST – EXPOSED SEDIMENTS

Enter Yes, No, or Not Applicable for each work day versus each dust control measure.

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
<td>Y/N/NA</td>
</tr>
</tbody>
</table>

EXPOSED SEDIMENTS AREA List location (i.e., disposal site or staging area):

- Vegetation stripping limited to immediate work area?
- Fugitive dust sources controlled?
- Is pre-watering before dust generating operations occurring?
- Apply water during dust generating operations?
- Are there visible areas with erodible surfaces?
- Alternative methods deployed? If yes, list.

EXPOSED SEDIMENTS AREA List location (i.e., disposal site or staging area):

- Vegetation stripping limited to immediate work area?
- Fugitive dust sources controlled?
- Is pre-watering before dust generating operations occurring?
- Apply water during dust generating operations?
- Are there visible areas with erodible surfaces?
- Alternative methods deployed? If yes, list.