2013 Integrated Resource Plan
Core Case Portfolio Results
Revised
February 13, 2013
Overview

• Core case portfolio results presented at the January 31, 2013 public input meeting have been revised

• Revised results incorporate a correction to escalation rates applied to new resource costs in the System Optimizer Model

• Revised core case result templates in Excel format have been posted online

• The following slides have been updated consistent with the revised results and further expanded to include the results of case C-05-EG2

• The studies for C-19 EG-02 through EG-05 will be completed by the next public input meeting, scheduled February 27, 2013
Escalation Rate Correction

- Costs for supply side resource alternatives are populated into the System Optimizer model for a specific year (i.e. in 2012$)

- The new version of the System Optimizer model being used for the 2013 IRP allows for use of escalation rates and general inflation rates

- An escalation rate is populated for each supply side resource alternative (an escalation rate of 1.9% per year is assumed for most resources)*

- The System Optimizer model also has an input field for “general inflation” that can be populated separate from the escalation rates assumed for specific supply side resource options

- Company was not aware the “general inflation” parameter available in the Planning at Risk model was made available in the new version of the System Optimizer model

- Upon further review of the Core Case results, the Company discovered that the general inflation and resource specific escalation rates were being compounded (i.e. a 1.9% escalation rate was being applied on top of a 1.2% general inflation rate, yielding a compounded escalation rate of 3.12%)

- Consequently, the original core case results were developed with overstated supply side resource costs (capital, annual fixed and annual variable costs)

*Note, escalation for solar resources reflect assumed technological advancements such that annual escalation of costs is less than inflation.
Impact on Portfolio Results

• The correction lowers the cost of supply side resource alternatives with the reduced costs being largely proportionate among each alternative

• Given cost changes are largely proportionate among resource alternatives, general conclusions from the original results are largely unchanged
 – Through 2022, resource portfolios have stable levels of FOTs and DSM
 • Scenarios with early coal retirements yield incremental gas resource additions
 • Scenarios with no RPS have limited incremental renewables
 – Through 2032, incremental resource needs are met with new gas resources and more DSM
 • Scenarios with early coal retirements produce portfolios with the most incremental gas resource additions
 • Long-term growth in renewable resources is driven by RPS requirements and/or significant CO₂ costs

• Case C-18 (Clean Energy Bookend) was most impacted, with selection of over 2,000 MW of nuclear resources in 2024, increased selection of renewables, and reduced selection of natural gas resources

• The renewable resource floors developed using the RPS Scenario Maker model are not impacted

Note, escalation for solar resources reflect assumed technological advancements such that annual escalation of costs is less than inflation.
Core Case Definitions

<table>
<thead>
<tr>
<th>Case #</th>
<th>Natural Gas</th>
<th>CO₂</th>
<th>Coal Costs</th>
<th>RPS</th>
<th>Regional Haze</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-01</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>None</td>
<td>Base</td>
<td>Reference Case</td>
</tr>
<tr>
<td>C-02</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>State</td>
<td>Base</td>
<td>Reference Case</td>
</tr>
<tr>
<td>C-03</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>State & Federal</td>
<td>Base</td>
<td>Reference Case</td>
</tr>
<tr>
<td>C-04</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>None</td>
<td>Base</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-05</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>State & Federal</td>
<td>Base</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-06</td>
<td>High</td>
<td>Zero</td>
<td>Low</td>
<td>None</td>
<td>Base</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-07</td>
<td>High</td>
<td>Zero</td>
<td>Low</td>
<td>State & Federal</td>
<td>Base</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-08</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>None</td>
<td>Stringent</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-09</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>State & Federal</td>
<td>Stringent</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-10</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>None</td>
<td>Stringent</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-11</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>State & Federal</td>
<td>Stringent</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-12</td>
<td>High</td>
<td>Zero</td>
<td>Low</td>
<td>None</td>
<td>Stringent</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-13</td>
<td>High</td>
<td>Zero</td>
<td>Low</td>
<td>State & Federal</td>
<td>Stringent</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-14</td>
<td>Medium (Hard Cap)</td>
<td>Medium</td>
<td>Medium</td>
<td>State & Federal</td>
<td>Base</td>
<td>Env. Policy Case</td>
</tr>
<tr>
<td>C-15</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>State & Federal</td>
<td>Base</td>
<td>No CCCT, Acc. DSM</td>
</tr>
<tr>
<td>C-16</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>State & Federal</td>
<td>Base</td>
<td>Geothermal RPS</td>
</tr>
<tr>
<td>C-17</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>State & Federal</td>
<td>Base</td>
<td>Market Price Spike</td>
</tr>
<tr>
<td>C-18</td>
<td>High (Hard Cap)</td>
<td>U.S. Hard Cap</td>
<td>Medium</td>
<td>None</td>
<td>Base</td>
<td>2019 PTC, Acc. DSM</td>
</tr>
<tr>
<td>C-19</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>State & Federal</td>
<td>Base</td>
<td>Segment D Alt.</td>
</tr>
</tbody>
</table>
Energy Gateway Scenarios

<table>
<thead>
<tr>
<th>Five Energy Gateway Scenarios</th>
<th>Segments</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Reference</td>
<td>C, G</td>
<td>Mona-Oquirrh-Terminal, Sigurd-Red Butte</td>
</tr>
<tr>
<td>2 – System Improvement</td>
<td>C, D, and G</td>
<td>2013 - 2022 Business Plan</td>
</tr>
<tr>
<td>3 – West/East Balancing Area</td>
<td>C, D, E, G, H</td>
<td>Increase interchange between PACE and PACW</td>
</tr>
<tr>
<td>Consolidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 – Triangle</td>
<td>C, D, G, F</td>
<td>East side wind and improved reliability</td>
</tr>
<tr>
<td>5 – Full Gateway</td>
<td>C, D, E, G, H, F</td>
<td>All Energy Gateway segments</td>
</tr>
</tbody>
</table>
Revised Portfolio Snapshot: EG-1

Energy Gateway Scenario 1: 2022

Energy Gateway Scenario 1: 2032
Revised Portfolio Snapshot: EG-2

Energy Gateway Scenario 2: 2022

Energy Gateway Scenario 2: 2032
Revised Portfolio Snapshot: EG-3

Energy Gateway Scenario 3: 2022

Energy Gateway Scenario 3: 2032
Revised Portfolio Snapshot: EG-4

Energy Gateway Scenario 4: 2022

Energy Gateway Scenario 4: 2032

[Bar chart showing capacity for different years and categories such as Gas, Renewable, DSM, FOTs, Other, Early Retirement, End of Life Retirement, and Gas Conversion.]
Revised Portfolio Snapshot: EG-5

Energy Gateway Scenario 5: 2022

Energy Gateway Scenario 5: 2032
Energy Gateway Transmission

• The “net power cost” impacts of Energy Gateway can be shown by calculating the difference in system PVRR between EG-2 through EG-5 and the system PVRR from EG-1 for each Core Case

• The PVRR of transmission costs (capital and O&M) among Core Cases in EG-2 through EG-5 can be compared to costs in EG-1 to identify the incremental cost of transmission in each Energy Gateway scenario

• These results exclude potential benefits from the System Benefits Tool and potential stochastic risk benefits that will be analyzed in PaR

• RPS targets improve the economics of the incremental transmission, particularly Segment D (EG-2 vs. EG-1)
Revised Energy Gateway: EG-2 and EG-3 as Compared to EG-1

Energy Gateway Scenario 2

Energy Gateway Scenario 3

- Increase/(Decrease) in System PVRR Without RPS
- Increase/(Decrease) in System PVRR With RPS
- PVRR of Incremental Transmission Cost
Revised Energy Gateway: EG-4 and EG-5 as Compared to EG-1

Energy Gateway Scenario 4

- Increase/(Decrease) in System PVRR Without RPS
- Increase/(Decrease) in System PVRR With RPS
- PVRR of Incremental Transmission Cost

Energy Gateway Scenario 5

- Increase/(Decrease) in System PVRR Without RPS
- Increase/(Decrease) in System PVRR With RPS
- PVRR of Incremental Transmission Cost
Class 2 DSM Summary

- Class 2 DSM energy is stable among nearly all core cases

- Three Core Cases have accelerated ramp rate assumptions (Cases C-14, C-15, and C-18)

- In those cases with accelerated ramp rates, additional Class 2 DSM is selected sooner, but similar levels are chosen over the long-term (through 2032)

- As depicted in the charts that follow, “System Potential” represents achievable potential
Revised Class 2 DSM: EG-1

Energy Gateway Scenario 1: 2022

Energy Gateway Scenario 1: 2032
Revised Class 2 DSM: EG-2
Revised Class 2 DSM: EG-3

Energy Gateway Scenario 3: 2022

Energy Gateway Scenario 3: 2032
Revised Class 2 DSM: EG-4

Energy Gateway Scenario 4: 2022

Energy Gateway Scenario 4: 2032
Revised Class 2 DSM: EG-5

Energy Gateway Scenario 5: 2022

Energy Gateway Scenario 5: 2032
Revised No Thermal Base Load (Case C-15)

- **Case Characteristics**
 - No base load CCCT resources are allowed
 - Accelerated Class 2 DSM

- **Accelerated DSM assumptions contribute to a lower portfolio PVRR**
 - Resource costs may not be representative of actual costs, there was limited information available to inform the accelerated case costs (the Company adjusted incentives in Utah to 100% of incremental costs and increased administration costs, all states, from 20% to 40%).

- **Additional challenges:**
 - Hypothetical set-up in removing ramp rates and altering discretionary measure ramp rates – only enough achievable potential available to sustain 2% of retail sales for 5 years.
 - Customer participation, capital requirements and rate impacts.
 - Supporting market delivery infrastructure.

<table>
<thead>
<tr>
<th>PVRR($m)</th>
<th>EG-1</th>
<th>EG-2</th>
<th>EG-3</th>
<th>EG-4</th>
<th>EG-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-03</td>
<td>$31,605</td>
<td>$32,225</td>
<td>$32,890</td>
<td>$32,863</td>
<td>$33,521</td>
</tr>
<tr>
<td>C-15</td>
<td>$31,425</td>
<td>$32,049</td>
<td>$32,705</td>
<td>$32,671</td>
<td>$33,343</td>
</tr>
<tr>
<td>Change</td>
<td>($180)</td>
<td>($175)</td>
<td>($185)</td>
<td>($192)</td>
<td>($178)</td>
</tr>
</tbody>
</table>
Revised Geothermal RPS Strategy (Case C-16)

Case Characteristics
- Geothermal identified in the 2011 Information Request Report prepared by Black & Veatch must be used to achieve RPS requirements
 - 115 MW in the East (2026), does not qualify for WA RPS
 - 30 MW in the West (25 MW in 2016 and 5 MW in 2026)
- Geothermal priced as a PPA resource

System costs are similar with geothermal resources in the mix
- Slightly lower in EG-1 where transmission limits use of lower cost Wyoming wind
- Slightly higher when geothermal displaces lower cost resources that are more readily available with incremental transmission

<table>
<thead>
<tr>
<th>PVRR($m)</th>
<th>EG-1</th>
<th>EG-2</th>
<th>EG-3</th>
<th>EG-4</th>
<th>EG-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-03</td>
<td>$31,605</td>
<td>$32,225</td>
<td>$32,890</td>
<td>$32,863</td>
<td>$33,521</td>
</tr>
<tr>
<td>C-16</td>
<td>$31,581</td>
<td>$32,299</td>
<td>$32,959</td>
<td>$32,929</td>
<td>$33,592</td>
</tr>
<tr>
<td>Change</td>
<td>($23)</td>
<td>$75</td>
<td>$69</td>
<td>$66</td>
<td>$72</td>
</tr>
</tbody>
</table>
Revised Market Price Spike (Case C-17)

- **Case Characteristics**
 - High natural gas prices
 - Power prices spike 2017 – 2022 (50% on-peak, 30% off-peak)

- System costs increase with higher fuel costs and reduced market sales

- A spike in power prices pushes the need for a CCCT (incremental to Lake Side 2) into 2017

<table>
<thead>
<tr>
<th>PVRR($m)</th>
<th>EG-1</th>
<th>EG-2</th>
<th>EG-3</th>
<th>EG-4</th>
<th>EG-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-03</td>
<td>$31,605</td>
<td>$32,225</td>
<td>$32,890</td>
<td>$32,863</td>
<td>$33,521</td>
</tr>
<tr>
<td>C-17</td>
<td>$31,624</td>
<td>$32,267</td>
<td>$32,894</td>
<td>$32,854</td>
<td>$33,522</td>
</tr>
<tr>
<td>Change</td>
<td>$19</td>
<td>$43</td>
<td>$4</td>
<td>($9)</td>
<td>$1</td>
</tr>
</tbody>
</table>
Revised Clean Energy Bookend (Case C-18)

- Case Characteristics
 - High natural gas prices
 - Hard cap on U.S. power sector emissions beginning 2020
 - Accelerated DSM
 - PTCs/ITCs extended through 2019

- System costs increase by approximately 50%

- High gas prices mitigate early coal retirements pre-2020 and longer term resource additions are comprised of incremental nuclear and renewable and natural gas resources

<table>
<thead>
<tr>
<th>PVRR($m)</th>
<th>EG-1</th>
<th>EG-2</th>
<th>EG-3</th>
<th>EG-4</th>
<th>EG-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-03</td>
<td>$31,605</td>
<td>$32,225</td>
<td>$32,890</td>
<td>$32,863</td>
<td>$33,521</td>
</tr>
<tr>
<td>C-18</td>
<td>$48,406</td>
<td>$48,828</td>
<td>$49,013</td>
<td>$49,218</td>
<td>$49,454</td>
</tr>
<tr>
<td>Change</td>
<td>$16,801</td>
<td>$16,603</td>
<td>$16,123</td>
<td>$16,355</td>
<td>$15,934</td>
</tr>
</tbody>
</table>