
Groundwater Monitoring & Corrective Action Report CCR Landfill - Hunter Power Plant Castle Dale, Utah

January 2024

Prepared For:

Hunter Power Plant Highway 10, S of Castle Dale Castle Dale, UT 84513

PacifiCorp 1407 West North Temple, Suite 280 Salt Lake City, Utah 84116

Prepared By:

Water & Environmental Technologies 480 East Park Street Butte, Montana 59701 406.782.5220

TABLE OF CONTENTS

1.0	CUF	RRENT STATUS - § 257.90(E)(6)	1
	1.1	Summary of Previous Work	1
	1.2	Report Purpose and Organization	2
2.0	GRO	OUNDWATER MONITORING NETWORK	3
	2.1	Monitoring Well Decommissioning & Replacement in 2023	4
	2.2	Additions to the Monitoring Network in 2023	4
3.0	GRO	OUNDWATER MONITORING	4
	3.1	Continuation - Assessment / Corrective Measures Monitoring	4
4.0	SEL	ECTION OF REMEDY	5
5.0	REN	MEDY IMPLEMENTATION	6
6.0	PRO	OBLEMS & RESOLUTIONS	6
7.0		COMING YEAR	
8.0		FERENCES	
0.0	14121		•••••

LIST OF FIGURES

Figure 1. Hunter Power Plant CCR Landfill - CCR Sampling Locations

LIST OF TABLES

Table 1. Field and Laboratory Data

Table 2. Summary of Groundwater Quality Comparisons – April 2023 Event
 Table 3. Summary of Groundwater Quality Comparisons – October 2023 Event

APPENDICES

Attachment A: Field Summary Report – April 2023 Event
Attachment B: Field Summary Report – October 2023 Event
Attachment C: Remedy Selection Progress Report - October 2023

ACRONYMS

AMSL Above Mean Sea Level

bgs Below Ground Surface

CCR Coal Combustion Residuals

CFR U.S. Code of Federal Regulations

EPA U.S. Environmental Protection Agency

FGD Flue-Gas Desulfurization

SAP Sampling and Analysis Plan

SSI Statistically Significant Increase

UTL Upper Tolerance Limit

WET Water and Environmental Technologies

1.0 **CURRENT STATUS - § 257.90(e)(6)**

This Groundwater Monitoring and Corrective Action Report was prepared for PacifiCorp by Water & Environmental Technologies (WET). It was prepared to comply with the requirements detailed in *Code of Federal Regulations* § 257.90(e) (Coal Combustion Residuals (*CCR*) Rule).

The Hunter Power Plant is located in Emery County, approximately three miles south of Castle Dale, Utah. After dewatering and treatment, Flue Gas De-sulfurization (FGD) waste, fly ash and bottom ash are disposed of in the CCR Landfill. As a result, it is considered a CCR unit. The following provides the status of the groundwater monitoring and corrective action program at the end of 2023.

- (i) The CCR Landfill was undergoing assessment / corrective measures monitoring at the start of 2023.
- (ii) The CCR Landfill remained in assessment / corrective measures monitoring at the end of 2023.
- (iii) Following completion of initial detection monitoring and prior to October 17, 2017, statistically significant increases (SSIs) above site-specific background concentrations were noted for the following Appendix III constituents:
- (A) Boron, calcium, chloride, fluoride, pH, sulfate and total dissolved solids (TDS).
- (B) The CCR Landfill program transitioned to assessment monitoring on January 15, 2018. SSIs above groundwater protection standards were noted in 2018 through 2023.
- (iv) SSIs above groundwater protection standards were noted for the following Appendix IV constituents in 2023:
- (A) Cobalt, lithium, and molybdenum.
- (B) An assessment of corrective measures was initiated on January 14, 2019.
- (C) A public meeting was held July 23, 2019.
- (D) The assessment of corrective measures was completed on June 11, 2019.
- (v) A remedy was selected on November 12, 2020.
- (vi) A supplemental investigation report was completed in 2023. The CCR Landfill groundwater monitoring program was transitioned to corrective measures monitoring in November 2020.

1.1 Summary of Previous Work

Detection monitoring was initiated in September of 2015 to ensure a minimum of eight independent measurements were acquired prior to the October 17, 2017 requirement in the CCR Rule. PacifiCorp met this requirement and provided the findings of initial detection monitoring in the first Groundwater Monitoring and Corrective Action Report for the CCR Landfill (WET 2018).

The results of detection monitoring revealed all Appendix III constituents exceeded site-specific background concentrations. Based on these findings, the CCR Landfill monitoring program transitioned to assessment monitoring in 2018. Two rounds of sampling were completed in 2018, groundwater protection standards were established for the CCR Landfill, and assessment

monitoring results were compared to these standards. These comparisons revealed that Appendix IV constituents (lithium and molybdenum) exhibited SSIs above their groundwater protection standards.

Once Appendix IV constituents exhibited SSIs above groundwater protection standards, an investigation to characterize the nature and extent of the release was initiated. An assessment of corrective measures began January 14, 2019 and was completed on June 11, 2019. A public meeting was held in Huntington, Utah on July 23, 2019 to discuss the proposed alternatives and solicit public input. Based on the public input, additional sampling and investigation was conducted to delineate the nature and extent of impacts, and to support the assessment of corrective measures.

Inspections of the current condition and operation of the horizontal well capture system were completed on August 20, 2019, November 12, 2019, and November 2020. Additional groundwater samples collected in 2019 and 2020 were used to further evaluate the effectiveness of the current system and evaluate the need for any further actions.

The Nature and Extent Report was updated with the additional data from the investigations and placed in the plant operating record on August 27, 2020. The Corrective Measures Report was reviewed and based on the additional data, a remedy was selected and placed on the PacifiCorp webpage on November 12, 2020. The Corrective Measures Sampling and Analysis Plan (SAP) was completed in concert with the remedy selection report and was also placed in the Plant operating record October 12, 2020.

1.2 Report Purpose and Organization

The following sections provide a status update for activities initiated or completed at the Hunter Power Plant CCR Landfill during the 2023 monitoring period. They also summarize any issues or problems encountered and their resolutions. Each required element of the annual report is displayed below and is referenced to specific sections of the report where the required information can be found:

- Document the status of the Groundwater Monitoring and Corrective Measures Program;
- Summarize key actions completed;
- Describe any problems encountered;
- Discuss actions taken to resolve problems; and
- Define key activities for the upcoming year.

The Annual Groundwater Monitoring and Corrective Measures Report also includes the following required elements:

- A map showing the CCR unit and all CCR Monitoring Program background (or upgradient) and downgradient monitoring wells, and their identification numbers (Figure 1).
- Identifies any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required for detection or assessment monitoring.
- A narrative discussion of any transition between monitoring programs (i.e. transitioning from detection monitoring to assessment monitoring) in addition to identifying constituents detected at a statistically significant increase over background levels.
- Other information required to be included as specified in § 257.90 through § 257.98 of the *CCR Rule* not listed above, is also included in the report.

2.0 GROUNDWATER MONITORING NETWORK

The detection / assessment monitoring network for the CCR Landfill was installed using appropriate spacing, location and depth as defined by the Code of Federal Regulations, 40 CFR, Part 257 and 261, *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; CCR Rule* § 257.91 (a) (1) and § 257.91 (b) to adequately monitor groundwater both hydraulically upgradient and downgradient of the site.

When installed in 2015, the CCR detection / assessment monitoring network consisted of four upgradient / background wells spanning the extent of the CCR Landfill east to west, and include: ELF-1D, ELF-2, ELF-9, and ELF-10. Downgradient monitoring wells for the CCR Landfill include seven locations placed to capture groundwater as it passes the waste unit boundary along the groundwater flow path which generally travels from west to east as it passes under the CCR Landfill. The downgradient monitoring wells include the following: ELF-3, ELF-4, ELF-5, ELF-6, ELF-7, ELF-8, and ELF-11.

Once SSIs above groundwater protection standards were noted for the CCR Landfill in 2018, an investigation was initiated to determine the nature and extent of impacted groundwater. To augment the initial monitoring network, three new wells were installed in November of 2018 east and downgradient of the CCR Landfill at the Plant boundary. The three wells included: ELF-12, ELF-13, and ELF-14 (Figure 1). These wells were incorporated into the groundwater monitoring program in 2019 and continue to undergo semi-annual monitoring in accordance with the CCR Rule throughout remedy selection and implementation in the monitoring network throughout active operations and until attainment is reached in downgradient water.

In February of 2022, three new wells were completed downgradient of the Hunter CCR Landfill; ELF-15, ELF-16 and ELF-17 (Figure 1), at the property boundary. In addition, ELF-5 and ELF-6, which were dry, were replaced by deeper wells ELF-5R and ELF-6R. These wells were

incorporated into the groundwater monitoring network in 2022, included in the groundwater elevation maps and analytical results are included in Table 1. Statistical analysis of their analytical results will not be completed until we have a minimum of eight individual samples for validity.

2.1 Monitoring Well Decommissioning & Replacement in 2023

No wells were replaced or decommissioned for the Hunter Landfill monitoring network in 2023.

2.2 Additions to the Monitoring Network in 2023

No new wells were added to the Hunter Landfill monitoring network in 2023.

3.0 GROUNDWATER MONITORING

The CCR Landfill was transitioned to assessment monitoring in 2018. Two rounds of sampling and analysis were performed annually in 2018 and 2019 to comply with the CCR Rule. Statistical analyses were completed comparing downgradient well results with groundwater protection standards. All of the samples underwent analysis in accordance with the requirements defined in the CCR Rule. In addition, water level and field data were acquired each time the wells were sampled in accordance with the SAP.

With the implementation of the selected remedy, the CCR Landfill monitoring network was transitioned to corrective measures monitoring in November 2020. This program incorporates both the original monitoring network and the additional downgradient wells listed in Section 2.0. All of the network wells were used for the 2023 analysis of compliance with CCR requirements and will remain in the monitoring network throughout active operations and post-closure care / monitoring once the CCR Landfill is closed.

Table 1 provides assessment / corrective measures monitoring data collected for the CCR Landfill in 2023. Attachments A and B contain field summary reports for the April and October 2023 sampling events, respectively. They consist of groundwater contour maps, data validation, statistical analyses, field data sheets, and laboratory data packages for each event.

3.1 Continuation - Assessment / Corrective Measures Monitoring

In accordance with the CCR Rule, the CCR Landfill remains in assessment / corrective measures monitoring. Two rounds of groundwater monitoring were completed in 2023 to assess water quality by comparing concentrations in downgradient wells to groundwater protection standards established during assessment monitoring. The comparisons for the April and October 2023 sampling events are summarized in Tables 2 and 3.

Table 2 indicates boron (ELF-4, ELF-5R, ELF-6R, ELF-8, ELF-11), cobalt (ELF-8, and ELF-11), lithium (ELF-6R) and molybdenum (ELF-8) exhibited SSIs above their groundwater protection standards for the April 2023 event. Table 3 indicates boron (ELF-4, ELF-5R, ELF-6R,

ELF-8, ELF-11, ELF-16), cobalt (ELF-8 and ELF-11), lithium (ELF-6R, ELF-16) and molybdenum (ELF-8) exhibited SSIs above their groundwater protection standards for the October 2023 event.

Monitoring well ELF-14 is a downgradient facility bounding well. The lithium concentration in ELF-14 has varied between 3.62 to 4.79 over its 5.5-yr monitoring period. Additional investigation was conducted in 2022 and 2023 as the exceedance could represent a natural variation in background water quality, residual contamination, or other possible scenarios. A Supplemental Investigation Report was prepared in 2023. The reduction in water level elevations in the downgradient groundwater monitoring wells, combined with the decrease in Horizontal Drain discharge, suggests that the CCR corrective measure remedies have been successful in reducing the contribution of leachate from the CCR landfill to the underlying shallow aquifer. The CCR Landfill and the underlying Mancos Shale are hydraulically connected and are being dewatered as a result of the corrective measures program. The reduction in saturated thickness of the CCR Landfill waste and the corresponding groundwater elevation reductions demonstrate that the CCR Corrective Measure Remedies have been successful in reducing leachate in the waste and reducing source contamination to the underlying aquifer.

4.0 SELECTION OF REMEDY

The potential remedies for the CCR Landfill at the Hunter Power Plant were assessed in the Corrective Measures Assessment completed in 2019 utilizing the criteria in § 257.96 Assessment of Corrective Measures. A public meeting was conducted July 23, 2019 to present the findings of the Nature and Extent Investigation and Corrective Measures Assessment. Public comments were solicited during the meeting and over the ensuing 30 days. Additional site characterization was conducted in 2019 to address the public concerns and to provide supplemental information to aid in selecting a remedy. The remedy for the CCR Landfill at the Plant was selected based on the criteria and evaluation factors in 40 CFR § 257.97 - Selection of Remedy and was posted to the Plant operating record on October 12, 2020.

The primary element of the selected remedy is the capture of groundwater through operation of horizontal wells installed beneath the landfill to collect leachate and impacted groundwater. The groundwater capture system at the CCR Landfill has operated since 2015 and has proven effective in reducing groundwater impacts and will remain in place.

A supplemental investigation took place in 2021 and 2022 to determine if the existing horizontal wells require augmentation in order to meet performance criteria. A Supplemental Investigation Report was prepared in 2023. There will be continued monitoring of effluent production from the horizontal well system. Abandonment and redrilling of groundwater monitoring wells that have become dry as a result of the decreased groundwater elevations will continue.

5.0 REMEDY IMPLEMENTATION

The horizontal well collection system at the Hunter CCR Landfill has been in operation since 2015 and has continued collection of leachate and impacted groundwater through 2023. The current system will remain as the primary element of the remedy.

6.0 PROBLEMS & RESOLUTIONS

Monitoring wells ELF-1D (spring and fall), ELF-3 (spring and fall), ELF-10 (spring and fall), and ELF-17 (spring and fall) did not produce sufficient water to support sampling. No other problems were noted during the 2023 monitoring period.

7.0 UPCOMING YEAR

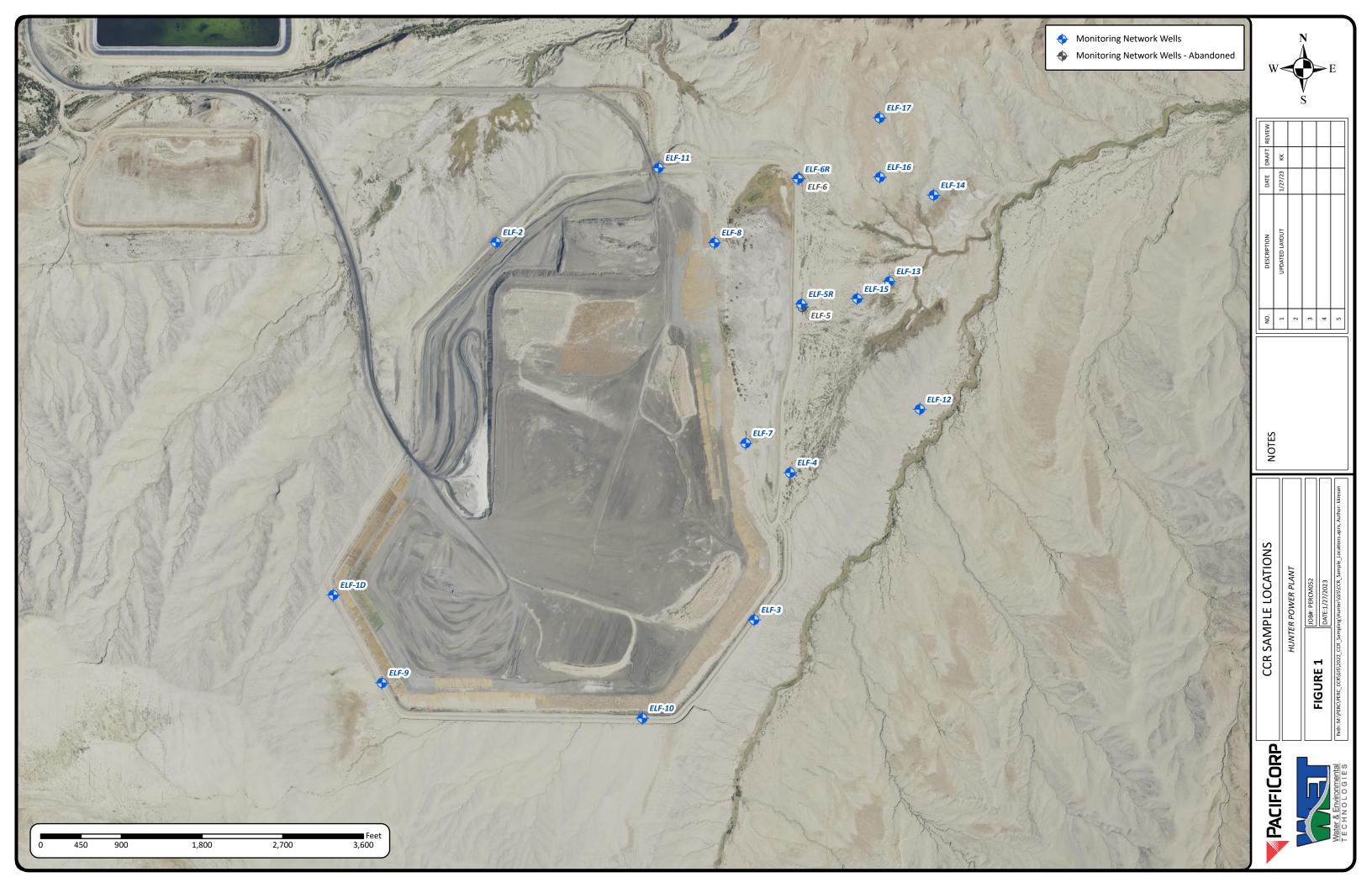
During 2024, it is anticipated PacifiCorp will complete the following activities at the CCR Landfill:

Semi-Annual Monitoring

- Conduct the first semi-annual assessment / corrective measures monitoring event;
- Perform statistical analysis of data;
- Conduct the second semi-annual assessment / corrective measures monitoring event;
- Perform statistical analysis of data; and
- Develop the Annual Groundwater Monitoring and Corrective Action Report.

Corrective Measures

- Continue operating existing horizontal wells;
- Evaluate data to determine if additional corrective measures are appropriate; and
- Implement additional corrective measures, if necessary.



8.0 REFERENCES

- EPA 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA-540-R-201 7-001, January 2017.
- EPA 2010. Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater from Monitoring Wells, EPASOP-GW 001, January 2010.
- EPA 1989. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A), EPA/540/1-89/002, December 1989.
- WET, 2019. Corrective Measures Assessment, Hunter Power Plant, Castle Dale, Utah. June 2019.
- WET, 2017. Sampling and Analysis Plan & Well Documentation, CCR Landfill Hunter Power Plant, Castle Dale, Utah, Revision 1, October 2017.

FIGURES

TABLES

Table 1. Hu	nter Power	r Plant - Ash	Landfill Assessment	t Monitorina	Results
-------------	------------	---------------	---------------------	--------------	---------

			ASN Land				<u></u>		Appendix II											App	endix IV							
							T T								T													
SAMPLE ID	WELL TYPE	COLLECTION DATE	TOC AMEL (#)	DTW (ft)	GIME ANASI (#)	, ,	Ca	CI		рH	SO ₄	TDS	Sb		As	Ba	Be	Cd	Cr	Co	Ph			Ша	Mo	Se		Radium
SAIVIPLE ID	WELLTIPE	COLLECTION DATE	TOC AIVISE (IL)	DIW (IL)	GVVE AIVISE (IL)	ή ီ	La Ca	"	ľ	l bu	304	103	30	_ '	45	Dd	De	_ Cu	"	"	Pu		LI	пв	IVIO	Je Je	"	226+228
						6 -	61.5	6 6	6.12		6 6	,	- "											, ,				
		00/40/2045	5660.55	04.43	5505.43			mg/L Q	mg/L Q	s.u Q	mg/L Q	mg/L	Q mg/L	Q mg/	L Q	mg/L Q	mg/L C	Q mg/L C) mg/L (l mg/L	Q mg/L	Q mg	g/L Q	mg/L C	l mg/L (Q mg/L	Q mg/L	Q pCi/L Q
		09/18/2015	5669.55	84.43	5585.12	NS - Not en																						
		11/10/2015		NM 94.41	NM 5585.14	NS - Not en																						
		12/01/2015 01/12/2016		84.41 84.25	5585.14	NS - Not en																						
		02/02/2016		84.25	5585.30	NS - Not en																						
		03/09/2016		NM	NM	NS - Not en																						
		04/06/2016		83.45	5586.10	NS - Not en																						
		05/04/2016		83.60	5585.95	NS - Not en	_																					
		05/09/2017		82.60	5586.95	NS - Not en																						
	ŀ	08/02/2017		82.35	5587.20	NS - Not en																						
		02/15/2018		98.82	5570.73	NA	ougn water						<0.0020	<0.002	200	0.0103	<0.00200	<0.000500	<0.00200	0.00542	<0.0020	0 2 1	.12	<0.000150	0.0165	<0.00200	<0.00200	2.63
ELF-1D	Background	05/30/2018		99.87	5569.68	NS - Not en	ough water						10.0020	1 1 10.00.	-00	0.0103	10.00200	10.000500	10.00200	0.00342	1 10.0020	0	.12	10.000130	0.0103	10.00200	10.00200	2.03
		05/08/2019		81.81	5587.74	2.23	377	6880	<0.100	7.02	7730	26800	<0.0040	<0.002	200	0.0085	<0.00200	<0.000500	0.0023	<0.00400	<0.0020	0 2.2	.20 J+	<0.000900	0.0207	<0.00200	<0.00200	1.23
		08/20/2019		83.22	5586.33	2.19	366 J+		<0.200	7.27	8640	27000	<0.0040		-	0.0084	<0.00200	<0.000500	<0.00200	<0.00400	<0.0020		-	<0.0000900 U	J 0.0161	<0.00200	<0.00200	1.09
		05/13/2020		83.89	5585.66		353		<0.100	7.30	8940	28700	J <0.0040		-	0.0103	<0.00200	<0.000500	<0.00200	<0.00400	<0.0020		-	<0.0000900	0.0153	<0.00200	<0.00200	2.20
		10/29/2020		85.48	5584.07	NS - Not en																						
		03/24/2021		83.21	5586.34	NS - Not en	ough water																					
		10/26/2021		82.66	5586.89	1.94	393	7200	0.163	7.17 J+	10700 J-	25000	< 0.00400	<0.002	200	0.0104	<0.00200	<0.000500	<0.00200	<0.00400	<0.0020	0 2.8	.89	<0.0000900 U	J 0.00866	<0.00200	<0.00200	4.4
		04/07/2022		83.49	5586.06	NS - Not en	ough water	•		•	•	•	•	• •		•		•	•		• •	•		•	•	-	-	
		10/27/2022		82.78	5586.77	NS - Not en	ough water																					
		04/06/2023		82.91	5586.64	NS - Not en	ough water																					
		10/23/2023		82.19	5587.36	NS - Not en	ough water																					
		09/18/2015	5612.02	20.20	5591.82	3.31	419	469	0.500	7.30	8150	11400	<0.001	<0.00	01	<0.05	<0.001	<0.001	<0.001	0.006	0.0010	1.5	.50	<0.0001	0.0030	0.60800	<0.0005	2.30
		11/10/2015		20.65	5591.37	3.27	419	444	<0.1	7.22	7870	11300	<0.002	<0.00)2	0.0092	<0.002	<0.0005	<0.002	<0.004	<0.002	4.9	.93	<0.00015	0.0034	0.55600	<0.002	0.80
		12/01/2015		21.02	5591.00	3.24	392	461	<0.1	7.21	8320	11500	<0.002	<0.00)2	0.0128	<0.002	<0.0005	<0.002	0.00559	<0.002	3.9	.97	<0.00015	0.0038	0.53000	<0.002	8.10 J+
		01/12/2016		21.29	5590.73	3.38	420	473	0.277	7.24	8180	12300	<0.002	<0.00)2	0.0207	<0.002	<0.0005	<0.002	0.0114	<0.002	4.0	.08	<0.00015	0.0043	0.49900	<0.002	1.99
		02/02/2016		21.43	5590.59	3.50	410	471	0.100	7.14	7350	12000	<0.002	<0.00)2	0.0119	<0.002	<0.0005	<0.002	0.00501	<0.002	3.9	.93	<0.00015	0.0031	0.45000	<0.002	1.25
		03/09/2016		21.56	5590.46	3.48	395	430	<0.1	7.21	7190	11400	<0.002	<0.00	-	0.0138	<0.002	<0.0005	<0.002	0.00767	<0.002		-	<0.00015	0.0039	0.45100	<0.002	2.87
		04/07/2016		21.67	5590.35	3.33	404	457	<0.1	7.16	8370	12400	<0.002	<0.00		0.0091	<0.002	<0.0005	0.0110	<0.004	<0.002			<0.00015	0.0051	0.46300	<0.002	0.94
		05/04/2016		21.69	5590.33	3.15	364	439	0.103	7.76	8040	11700	<0.002	<0.00		0.0095	<0.002	<0.0005	<0.002	<0.004	<0.002			<0.00015	0.0030	0.39800	<0.002	0.85
		09/08/2016		22.12	5589.90	3.25	428	446	0.299	7.30	7950	12300	<0.002	<0.00)2	0.0085	<0.002	<0.0005	<0.002	<0.004	<0.002	3.5	.50	<0.00015	0.0029	0.36600	<0.002	0.61
		05/09/2017		22.21	5589.81	NS - Not en			, , , , , , , , , , , , , , , , , , , ,								, ,				, ,				, ,			
		08/02/2017		22.14	5589.88	3.11	383	363	<0.100	7.42	7950	11600	<0.0020			0.0120	<0.00200	<0.000500	<0.00200	0.00565	<0.0020			<0.000150	0.0032	0.19800	<0.00200	1.37
ELF-2	Background	02/15/2018		22.30	5589.72	NA							<0.0020		-	0.0113	<0.00200	<0.000500	<0.00200	0.00677	<0.0020		-	<0.000150	0.0031	0.08790	<0.00200	2.29
		05/30/2018		22.24	5589.78	3.58	369 J-		0.192	7.12	6030	12000	<0.0010			0.0100	<0.00200	<0.000500	<0.00200	<0.00400	<0.0020		-	<0.000150 J-	0.0026	0.07660	<0.00200	0.99
		05/08/2019		22.53	5589.49	3.77	430	222	0.310	7.17	6950	12200	<0.0040			0.0099	<0.00200	<0.000500	0.0024	<0.00400	<0.0020			<0.0000900	0.0031	0.03190	<0.00200	0.82
		08/20/2019		22.72	5589.30	3.53	414 J+		<0.100	7.43	6780	12600	<0.0040		-	0.0084	<0.00200	<0.000500	<0.00200	<0.00400	<0.0020			<0.0000900 U	J 0.0026	0.03400	<0.00200	1.49
		05/13/2020		23.22	5588.80	3.38	398	197	<0.100	7.27	6830	12000	<0.0040			0.0104	<0.00200	<0.000500	<0.00200	0.006	<0.0020		-	<0.0000900	0.0028	0.00566	<0.00200	2.17
		10/29/2020		24.69	5587.33	3.18	356	199	<0.100 0.464	7.51 J		12200	<0.0040		-	0.0097	<0.00200	<0.000500	<0.00200	0.00438	<0.0020		-	<0.0000900 <0.0000900	<0.00200	0.00423	<0.00200	2.08
		03/24/2021		23.38	5588.64	3.32	394	213		7.34 7.46 J+	8720	11700	<0.0040		-	0.0099	<0.00200	<0.000500	<0.00200	0.00481	<0.0020		-		0.0027	0.00309	<0.00200	1.63
		10/26/2021		23.63	5588.39	3.12	400	213 J+	0.393	7.46 J+ 7.20		12200	<0.0040		-	0.0102	<0.00200	<0.000500	<0.00200	<0.00400	<0.0020		-	<0.0000900 U	J 0.0022	0.00456	<0.00200	1.10
		04/07/2022		23.91	5588.11	3.11	380	187 J	<10.0		7780 J	12400	J <0.0005	0.000		0.011	<0.0005	<0.0002	<0.005	0.0091	J <0.000		.77 J-	<0.0002	0.0029	0.0095	J <0.0002 <0.0002	0.25
		10/27/2022		23.99	5588.03	2.94	385	222 J-	<0.5 UJ	7.20 J+ 7.4 J		13100	J+ <0.0005	0.000		0.01	<0.0005 <0.0010	<0.0002	<0.005	0.0032	<0.0003		.64 .56 J	<0.00015	0.0024	0.0084		2.98
		04/06/2023		24.21	5587.81	3.24	342	212 J	<0.500			11900	<0.0005	0.003				0.0002	0.066	0.0131	0.0021			<0.00015	0.0041	0.0033	0.0002	2.241 U.
		10/23/2023		23.97	5588.05	2.95	364	218	<0.26	7.20 J	6100	12700	<0.0000	0.000	J5 J	<0.006	<0.0003	<0.00003	<0.007	0.0105	<0.000	. 1.4	.45	<0.00008	0.0025	0.003	J <0.00003	5 J

NS: Not Sampled NM: Not Measured GWE: Ground Water Elevation DTW: Depth to Water TOC: Top of Casing AMSL: Above Mean Sea Level

Q: Data Validation Qualifier
J: Estimated

J+: Overestimated

UJ: Estimated Non-Detect J-: Underestimated

Table 1. Hu	nter Power	r Plant - Ash	Landfill Assessment	t Monitorina	Results
-------------	------------	---------------	---------------------	--------------	---------

Table	i. Hunter i	Power Plant	- ASII LAIIU	IIIII ASS		VIOIIIL	Jillig K	esuits	Appendix	III									Λ	ppendix IV						
							$\overline{}$		Appendix	1111		_			_	_				ppendix iv					_	
																										Radium
SAMPLE ID	WELL TYPE	COLLECTION DATE	TOC AMSL (ft)	DTW (ft)	GWE AMSL (ft)) В	Ca	'	I F	pH	SO ₄	TD	S Sb	As	Ba	Be	Cd	Cr	Co	Pb	Li	Hg	Mo	Se	TI	226+228
						mg/L	Q mg/L	Q mg/	Q mg/L	Q s.u () mg/L (Q mg/L	Q mg/L (Q mg/L	Q mg/L (Q mg/L C) mg/L	Q mg/L	Q mg/L	Q mg/L	Q mg/L (Q mg/L	Q mg/L Q	mg/L	Q mg/L	Q pCi/L Q
		09/18/2015	5661.00	NM	NM		t enough wa																			
		11/10/2015		NM	NM		t enough wa																			
		12/01/2015		NM	NM		t enough wa																			
		01/12/2016		51.14	5609.86		t enough wa		0.276	7.06	L 6470 L	0420	1 10000	0.00400	0.0704	1 -0 002	-0.0005	0.0457	1 -0.00	1 0 00435	1 240	10,00045	0.0003	0.00424	1 .0.002	1111
		02/02/2016		36.85	5624.15	<5.00	166 84.2	284		7.86 8.05	6470	9420		0.00499	0.0794	<0.002	<0.0005 <0.0005	0.0157 0.0056	<0.004			<0.00015 <0.00015	0.0983	0.00424	<0.002	1.14
		03/09/2016		23.63 23.49	5637.37	1.61	112	469		7.86	8030 7080	11900		0.00674	0.0411 0.0946	<0.002	<0.0005		<0.004 0.0049				0.1580 0.1290	<0.002 <0.002	<0.002	1.15
		04/07/2016 05/04/2016		23.49	5637.51 5637.53	1.35	64.6	316 282		7.86	6850	10400		0.00679 0.00546	0.0946	<0.002 <0.002	<0.0005	0.0183 0.0036	<0.0049			<0.00015 <0.00015	0.1290	<0.002	<0.002 <0.002	2.60 0.64
		09/08/2016		23.47	5637.60	1.36	57.2	352		8.03	6750	10600		0.00546	0.0323	<0.002	<0.0005	<0.002	<0.002			<0.00015	0.1230	<0.002	<0.002	0.66
		05/09/2017		23.40	5637.61		t enough wa		1.03	0.03	0/30	10000	7 \(\cdot \cdot \	0.00324	0.0109	<0.002	<0.0003	\(\cdot 0.002	(0.002	0.002	1 1.00	<0.00013	0.1230	\0.002	\(\cdot 0.002 \)	0.00
		08/02/2017		31.38	5629.62	1.32	91.9	446	1.27	7.94	6900	12000	<0.00200	0.01140	0.1020	<0.00200	0.00053	0.0201	0.0052	0.00768	0.748	<0.000150	0.1410	<0.00200	<0.00200	1.84
		08/29/2017		22.01	5638.99	1.50	53.9	391		7.94	5830	10500		0.00622	0.0165	<0.00200	<0.000500	<0.00200	<0.0040			<0.000150	0.1060	<0.00200	<0.00200	2.23
		09/15/2017		23.32	5637.68	1.39	60.3	359		8.06	5600	11900		0.00762	0.0348	<0.00200	<0.000500	0.0053	<0.0040			<0.000150	0.1170	<0.00200	<0.00200	1.92
ELF-9	Background	02/15/2018		22.81	5638.19	NA	1 00.5	1 333	1 1 2.0 1	1 0.00	1 3000	1 22500	<0.00200	0.0117	0.0767	<0.00200	<0.000500	0.0137	<0.0040			<0.000150	0.1270	<0.00200	<0.00200	1.38
		05/30/2018		23.25	5637.75	1.57	52.7	J- 416	1.19	7.89	5460	11200		0.00824	0.0137	<0.00200	<0.000500	<0.00200	<0.0040			- <0.000150	J- 0.1090	<0.00200	<0.00200	0.70
		05/08/2019		23.24	5637.76	1.87	58.7	527		7.95	5750	10300		0.0096	0.0126	<0.00200	<0.000500	<0.00200	<0.0040			+ <0.0000900	0.1130	<0.00200	<0.00200	1.34
		08/20/2019		23.25	5637.75	1.91	57.7	J+ 371	<0.200	7.51	5930	10700	<0.00400	0.00663	0.0134	<0.00200	<0.000500	<0.00200	<0.0040	0 <0.00200	0.888	<0.0000900 l	UJ 0.0679	<0.00200	<0.00200	1.50
		05/13/2020		23.09	5637.91	1.49	57.1	595	0.799	7.82	7280	9900	J <0.00400	0.00725	0.0128	<0.00200	<0.000500	<0.00200	<0.0040	0 <0.00200	1.06	<0.0000900	0.0768	<0.00200	<0.00200	1.56
		10/29/2020		23.14	5637.86	1.27	48.9	442	0.708	8.05	6530	10900	<0.00400	0.00678	0.0126	<0.00200	<0.000500	<0.00200	<0.0040	0 <0.00200	0.873	<0.0000900	0.0657	<0.00200	<0.00200	1.36
		03/24/2021		23.01	5637.99	1.45	67.1	464	1.560	8.01 J	+ 7470	10800	<0.00400	0.00506	0.0122	<0.00200	<0.000500	<0.00200	<0.0040	0 <0.00200	0.944	<0.0000900	0.0569	<0.00200	<0.00200	2.26
		10/26/2021		22.93	5638.07	1.33	56.4	515	J+ 1.840	8.19 J	+ 7100 J	- 11400	<0.00400	0.00622	0.0118	<0.00200	<0.000500	<0.00200	<0.0040	0 <0.00200	1.21	<0.0000900 U	UJ 0.0571	<0.00200	<0.00200	<0.85 U
		04/07/2022		23.04	5637.96	1.17	70.7	332	J <10.0	7.90	6440	J 10400) J 0.001	0.00440	J 0.0120	<0.0005	<0.0002	<0.005	0.0005	J <0.0005	1.06	<0.0002	0.0445	0.00950	J- <0.0002	NA
		05/05/2022		22.94	5638.06		lium sample															 				1.44
		10/27/2022		22.92	5638.08	1.16	125	244			+ 6130	9560		0.0037	0.013	<0.0005	<0.0002	<0.005	0.0008			<0.00015	0.0351 J	0.0093	<0.0002	1.523
		04/06/2023		22.85	5638.15	1.31	86.8	242			5730	9540		0.0025	0.016	<0.0005	<0.0002	<0.005	0.0005			J <0.00015	0.0322	0.0012	<0.0002	1.95 UJ
		10/23/2023		22.61	5638.39	1.19		324	1.050	8.00	5470	10500	0.001	0.0047	J <0.003	<0.00007	<0.00003	<0.004	0.0005	<0.0001	1.25	<0.00008	0.0403	0.0049	J <0.00003	2.14 UJ
		09/18/2015	5620.57	50.64	5569.93	_	t enough wa																			
		11/10/2015		43.09	5577.48	1.56				7.10	19900	37200		0.00292	0.0501	<0.002	0.00056	0.0057	0.0078			<0.00015	0.1150	0.41000	<0.002	0.70
		12/01/2015		44.21	5576.36	1.68		7530		7.21	20100	40300		<0.002	0.0329	<0.002	0.00051	<0.002	0.0055			<0.00015	0.1240	0.29000	<0.002	14.20 J+
		01/12/2016		46.50	5574.07	1.62			4.36	7.41	19800	40100	0.002	<0.002	0.0353	<0.002	0.00058	<0.002	0.0049	3 <0.002	3.60	<0.00015	0.1240	0.15700	<0.002	1.14
		02/02/2016		46.09 47.82	5574.48 5572.75		t enough wa t enough wa																			
		03/09/2016 04/07/2016		47.82	5573.22	1.54			3.97	7.15	20700	38400	0.002	0.00366	0.0519	<0.002	0.00060	0.0050	0.0044	4 0.00325	0.841	<0.00015	0.1180	0.14600	<0.002	2.66
		05/04/2016		48.73	5571.84		479			8.37	19300	37800		0.00366	0.0319	<0.002	0.00000	0.0030	0.0044			<0.00015	0.1180	0.14600	<0.002	3.10
		09/08/2016		48.05	5572.52		t enough wa		3.87	0.37	19300	37800	7 \(\cdot 0.002 \)	0.00323	0.0803	\0.002	0.00110	0.0104	0.0073	5 0.01200	1.12	\\(\text{0.00013}\)	0.1070	0.10300	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.10
		05/09/2017		45.41	5575.16		t enough wa																			
		08/02/2017		46.80	5573.77	1.64	,		<0.100	7.00	17300	38600	<0.00200	<0.00200	0.0391	<0.00200	0.00056	0.0084	0.0041	1 0.00217	2.09	<0.000150	0.0871	0.00903	<0.00200	0.46
		08/29/2017		48.10	5572.47	1.84		6960		7.28	16800	38200		<0.00200	0.0205	<0.00200	<0.000500	0.0020	<0.0040			<0.000150	0.0855	0.00821	<0.00200	3.56
ELF-10	Background	09/15/2017		51.74	5568.83	1.6		5710		7.23	13100	39600		<0.00200	0.0601	<0.00200	<0.000500	0.0065	<0.0040			<0.000150	0.0795	0.01050	<0.00200	3.42
	, and the second	02/15/2018		49.84	5570.73	NA							<0.00200	<0.00200	0.0679	<0.00200	<0.000500	0.0052	0.0042			<0.000150	0.0618	<0.00200	<0.00200	2.30
		05/30/2018		50.89	5569.68	1.73	468	J- 8790	<0.100	6.99	10000	35300	<0.00100	<0.00200	0.0304	<0.00200	<0.000500	0.0024	<0.0040			- <0.000150		<0.00200	<0.00200	2.20
		05/08/2019		48.77	5571.80	2.12	543	9900	<0.100	6.88	10300	35200	<0.00400	<0.00200	0.0184	<0.00200	<0.000500	<0.00200	0.0055	3 <0.00200	1.76 J	+ <0.0000900	0.0516	<0.00200	<0.00200	2.47
		08/20/2019		51.64	5568.93	NS - Not	t enough wa	ter										•								
		05/12/2020		49.21	5571.36	1.59	474	1180	0 <0.100	6.85	9230	33600	<0.00400	<0.00200	0.0145	<0.00200	<0.000500	0.0030	0.0043	2 <0.00200	2.90	<0.0000900	0.0331	0.00234	<0.00200	2.41
		10/28/2020		50.42	5570.15	1.54	407	1210	0 <0.100	7.79 .	8610	32900	<0.00400	<0.00200	0.0155	<0.00200	<0.000500	0.0022	0.0042	1 <0.00200	2.18	<0.0000900	0.0341	<0.00200	<0.00200	1.10 U
		03/24/2021		51.09	5569.48		t enough wa																			
		10/26/2021		49.23	5571.34				0 <0.100	7.46 J	+ 9910 J	39900	<0.00400	<0.00200	0.0147	<0.00200	<0.000500	<0.00200	<0.0040	0.0020	2.89	<0.0000900 U	UJ 0.0142	<0.00200	<0.00200	2.39
		04/07/2022		50.41	5570.16		t enough wa																			
		10/27/2022		48.50	5572.07				0 <0.5 L	JJ 6.90	11000	37100) J+ <0.0025	0.0404	0.038	<0.0025	<0.001	0.0080	0.005	<0.0025	2.01	<0.00015	0.0131 J	0.327	<0.001	3.17
		04/06/2023		50.56	5570.01		t enough wa																			
		10/23/2023	<u> </u>	47.55	5573.02	NS - Not	t enough wa	ter																		

NS: Not Sampled NM: Not Measured GWE: Ground Water Elevation DTW: Depth to Water TOC: Top of Casing

AMSL: Above Mean Sea Level

Q: Data Validation Qualifier

J: Estimated

J+: Overestimated

UJ: Estimated Non-Detect

Table 1. Hunter Power Plant - Ash Landfill Assessment Monitoring Results Appendix II Radium SAMPLE ID WELL TYPE COLLECTION DATE TOC AMSL (ft) DTW (ft) GWE AMSL (ft) Ca SO₄ TDS Sh Cd Mο 226+228 mg/L Q mg 5604.78 09/18/2015 34.37 5570.41 NS - Not enough water NS - Not enough water NM 11/10/2015 NM 34.40 5570.38 NS - Not enough water 12/01/2015 34.30 5570.48 NS - Not enough water 01/12/2016 34.25 02/02/2016 5570.53 NS - Not enough water NM NS - Not enough water 03/09/2016 NM 34.30 04/07/2016 5570.48 NS - Not enough water 05/04/2016 NM NM NS - Not enough wate 09/08/2016 34.02 5570.76 NS - Not enough water 05/09/2017 33 43 5571 35 NS - Not enough water 33.32 609 <0.100 7.79 33000 47700 <0.00200 <0.00200 0.0150 <0.00200 < 0.000500 <0.00200 0.00455 <0.00200 4.20 < 0.000150 0.0320 3.76 08/02/2017 5571.46 1.01 492 0.16900 < 0.00200 2.22 02/15/2018 34.04 5570.74 < 0.00200 < 0.00200 0.0118 < 0.00200 < 0.00400 2.67 0.0335 0.12500 < 0.00200 FIF-3 < 0.00200 < 0.000500 < 0.00200 < 0.000150 05/30/2018 34.80 5569.98 NS - Not enough water 31.75 465 768 <0.00400 0.00205 0.0042 0.0214 < 0.0000900 <0.00200 05/08/2019 5573.03 1.51 < 0.100 7.52 27700 50700 0.0391 < 0.00200 0.00078 0.00605 3.26 0.0209 0.50200 3.61 431 J+ <0.400 08/20/2019 30 30 5574 48 <5.00 642 7 79 32000 50400 < 0.00400 <0.00200 0.0111 <0.00200 <0.000500 0.0025 <0.00400 <0.00200 2 81 <0.0000000 0.0187 0.61700 <0.00200 3.04 30.75 455 840 <0.100 7.47 35100 49300 < 0.00400 < 0.00200 0.0405 0.0022 0.0159 0.00491 <0.00200 05/13/2020 5574.03 1.08 < 0.00200 < 0.000500 3.16 < 0.0000900 0.0172 0.52100 5.41 30.89 1.05 7.66 1 28800 < 0.00400 < 0.00200 0.0107 < 0.00200 < 0.00200 < 0.00400 < 0.00200 0.0157 < 0.00200 10/28/2020 5573.89 390 545 < 0.100 48600 < 0.000500 3.61 < 0.0000900 0.45000 1.32 03/24/2021 NM NM NS - Not enough wat 10/26/2021 33.80 5570.98 NS - Not enough water 04/07/2022 33.32 5571.46 NS - Not enough water 33.57 NS - Not enough water 10/27/2022 5571.21 NS - Not enough water 04/06/2023 33.34 5571.44 10/23/2023 33.03 5571.75 NS - Not enough water 09/18/2015 5581.50 15.03 5566.47 4.66 526 2320 0.300 7.20 5790 10400 < 0.001 < 0.001 < 0.05 < 0.001 < 0.001 0.0020 0.008 < 0.001 1.70 < 0.0001 0.0010 0.00400 < 0.0005 2.10 11/10/2015 14.97 5566.53 4.93 486 2040 4.46 6.94 5350 11200 <0.002 < 0.002 0.0116 < 0.002 < 0.0005 < 0.002 0.00583 <0.002 5.41 < 0.00015 0.0026 0.00496 <0.002 1.60 482 15.12 5566.38 4.88 7.01 6240 < 0.002 0.0118 < 0.002 0.00591 < 0.002 < 0.002 11.59 12/01/2015 2370 3.67 11400 < 0.002 < 0.002 < 0.0005 4.31 < 0.00015 0.0026 0.00486 01/12/2016 15.22 5566.28 5.02 514 2500 3.93 7.52 5900 12400 < 0.002 < 0.002 0.0155 < 0.002 < 0.0005 < 0.002 < 0.004 < 0.002 4.43 < 0.00015 0.0030 0.00471 < 0.002 1.39 02/02/2016 15.25 5566.25 495 2170 4.25 5410 <0.002 <0.002 0.0119 <0.0005 <0.002 0.00582 <0.002 4.39 <0.00015 0.0025 0.00352 <0.002 3.60 5.19 6.97 11500 < 0.002 03/09/2016 15 36 5566 14 4 96 496 2240 4.06 7.03 5290 11200 <0.002 <0.002 0.0153 <0.002 <0.0005 <0.002 0.00729 <0.002 2 37 <0.00015 0.0031 0.00360 <0.002 2.20 04/06/2016 15.38 5566.12 4.77 519 2320 3.63 6.97 6110 11300 <0.002 <0.002 0.0139 < 0.002 <0.0005 <0.002 0.00675 <0.002 2.96 <0.00015 0.0026 0.00365 <0.002 0.62 5567.09 < 0.1 7.16 6010 < 0.002 < 0.002 0.0123 < 0.002 < 0.0005 < 0.002 0.00637 < 0.002 1.40 < 0.00015 0.0024 < 0.002 05/04/2016 14.41 4.42 476 2280 11600 0.00281 1.98 09/08/2016 NM NM NS - Not enough water 05/09/2017 16.05 5565.45 NS - Not enough water 4.35 483 2240 <0.100 7.21 5750 11600 08/02/2017 16 25 5565 25 <0.00200 <0.00200 0.0115 <0.00200 < 0.000500 <0.00200 0.00611 < 0.00200 1 65 < 0.000150 0.0027 0.00255 <0.00200 2 5 7 ELF-4 02/15/2018 16.52 5564.98 0.00200 <0.00200 0.0141 < 0.00200 0.000500 0.0044 0.00833 < 0.00200 1.71 <0.000150 0.0026 < 0.00200 <0.00200 1.57 4.88 5564.97 456 2200 0.339 6.98 5290 < 0.00200 0.0116 <0.00200 0.00666 1.78 05/30/2018 16.53 11700 < 0.00100 < 0.00200 0.000500 < 0.00200 < 0.000150 0.0028 < 0.00200 < 0.00200 1.81 05/08/2019 16.49 5565.01 5.00 515 1980 0.187 7.06 4800 11800 < 0.00400 <0.00200 0.0118 <0.00200 <0.000500 <0.00200 0.00593 <0.00200 1.82 <0.0000900 0.0027 <0.00200 <0.00200 1.72

4890

6260

6290

6200

5320

6140

6200

11200

11100

11200

11100

9890

10300

11200

10700

10300

11100

8640

5970

8740

7.40 J 5860

7 00 | 1 | 5170

12200

12100

12900

12000

12400

13000

12800

12900

21000

22600

21000

21300

21000

22300

19200

21100

20600

27800

21600

24000

14300

17900

18100

22600 I+ <0.0005

12100 J+

7.22

6.89

7.13

7.23

7.00

7.00

7.1

7.20

6 98

6.99

7.26

7 04

7.05

7 10

7.19

7.03

7.04

7.09

7.10

7 00

7.23 12300

7.0 J 8190

7.30 J 7160

<0.00400

< 0.00400

<0.00400

<0.00400

<0.00400

< 0.0005

< 0.0005

<0.0005

< 0.00004

< 0.001

< 0.002

< 0.002

< 0.002

< 0.002

<0.002

< 0.002

< 0.002

< 0.002

<0.00200

< 0.00100

< 0.00400

< 0.00400

<0.0005

0.0006

< 0.00004

<0.00200

<0.00200

< 0.00200

< 0.00200

<0.00200

0.0015

0.0051

0.0015

0.0011

< 0.001

< 0.002

<0.002

< 0.002

<0.002

<0.002

< 0.002

< 0.002

< 0.002

<0.00200

< 0.00200

< 0.00200

0.00212

0.0129

0.0078

0.0026

0.0024

0.0103

0.0104

0.0111

0.0119

0.0118

0.012

0.012

0.012

< 0.006

< 0.05

0.0131

0.0097

0.0112

0.0097

0.0123

0.0179

0.0151

0.0170

0.0103

0.0117

0.0138

0.0267

0.013

0.017

0.017

< 0.006

< 0.00200

<0.00200

< 0.00200

< 0.00200

<0.00200

< 0.0005

< 0.0005

<0.0005

< 0.0003

< 0.001

< 0.002

<0.002

< 0.002

< 0.002

<0.002

< 0.002

<0.002

< 0.002

< 0.00200

<0.00200

< 0.00200

< 0.00200

<0.0005

< 0.0005

<0.0005

< 0.0007

0.00050

0.000500

0.000500

0.000500

0.000500

0.0003

0.0003

0.0004

0.0004

< 0.001

< 0.0005

<0.0005

<0.0005

< 0.0005

<0.0005

< 0.0005

<0.0005

< 0.0005

< 0.000500

< 0.000500

< 0.000500

< 0.000500

0.0002

< 0.0002

0.0002

0.0002

< 0.00200

<0.00200

< 0.00200

< 0.00200

<0.00200

< 0.005

< 0.005

<0.005

< 0.007

0.0040

< 0.002

<0.002

< 0.002

< 0.002

<0.002

0.0022

< 0.002

0.0023

<0.00200

< 0.00200

< 0.00200

0.0044

<0.005

< 0.005

< 0.005

< 0.007

0.00637

0.00553

0.00638

0.00594

0.00608

0.0056

0.0078

0.0069

0.0068

< 0.005

< 0.004

< 0.004

0.00402

< 0.004

0.00413

0.00457

0.00424

0.00409

< 0.00400

0.0043

0.0102

0.00618

0.0047

0.0043

0.0042

0.0044

< 0.00200

< 0.00200

< 0.00200

< 0.00200

< 0.00200

< 0.0005

< 0.0005

<0.0005

< 0.0001

<0.001

< 0.002

<0.002

< 0.002

<0.002

<0.002

< 0.002

< 0.002

< 0.002

< 0.00200

<0.00200

< 0.00200

0.00246

<0.0005

< 0.0005

0.0006

0.00080

1.71

1 69

1.62

1.58

1.82

1.88

1 74

1.80

1 52

3.70

13 7

9.96

11.7

10.6

5.83

3 10

5.68

8.64

4 35

6.85

4.29

5.93

3.94

3 81

3.36

<0.0000900

< 0.0000900

< 0.000090

< 0.0000900

<0.000090

<0.0002

< 0.00015

<0.00015

< 0.00008

< 0.0001

< 0.00015

<0.00015

< 0.00015

< 0.00015

<0.00015

< 0.00015

<0.00015

< 0.00015

< 0.000150

< 0.000150

<0.0000900

<0.0002

< 0.00015

< 0.00008

3.69 J <0.00015

J+ <0.0000900

0.0024

0.0046

0.0026

0.0021

0.0023

0.0024

0.0024

0.0023

0.0024

0.0020

0.0045

0.0044

0.0045

0.0046

0.0050

0.0045

0.0044

0.0042

0.0046

0.0050

0.0049

0.0072

0.0044

0.0048

0.0042

0.0041

< 0.00200

< 0.00200

< 0.00200

< 0.00200

<0.00200

0.0097

0.0386

0.0150

0.011

0.05200

0.04530

0.03760

0.03640

0.03250

0.02970

0.03370

0.03060

0.03970

0.01810

0.02500

0.00913

0.01270

0.120

0.078

0.0323

0.030

<0.00200

<0.00200

< 0.00200

< 0.00200

<0.00200

0.0005

0.0005

0.0006

0.0006

<0.0005

< 0.002

< 0.002

<0.002

< 0.002

<0.002

< 0.002

< 0.002

< 0.002

< 0.00200

<0.00200

< 0.00200

< 0.00200

0.0006

0.0005

0.0006

J 0.0006

2.73

2.00

1.53

2.17

1.45

2.43

2.302

1.932

4 98

3.20

1 70

10.36

1.56

1.61

2.89

3 70

1.75

2.02

1 81

2.37

2.85

2 77

2.65

3 61

2.186

2.4 U

NS:	Not Sampled
NM:	Not Measured
GWE:	Ground Water Elevation
DTW:	Depth to Water
TOC:	Top of Casing
AMSL:	Above Mean Sea Level

ELF-5

ELF-5R

Q: Data Validation Qualifier

J: Estimated

5564.62

5564 16

5563.80

5563.61

5563.40

5563.15

5562.99

5562.91

5562 87

5561.18

5561 59

5561.05

5560.94

5561 27

5561.32

5561 48

5562.44

5560.49

5560.66

NM

5559 79

5559.81

5559.21

5559.10

5560.05

5559.04

NM

5557.85

5557 31

5557.47

5557.25

4.98

4 60

4.74

4.77

4.36

4.13

4 28

4.79

4 28

5.44

5 89

5.53

6.20

6.10

6.55

5 35

5.99

6.03

6.06

8.7

4.31

4 45

4.75

4.66

507

489

446

491

479

437

464

463

448

464

499

480

503

481

492

476

465

491

489

423

456

407

433

NS - Not enough wate

NS - Not enough water

NS - Not enough wate

NS - Not enough water

NS - Not enough water

NS - Not enough water

1840

2470

2170

2420

2220

2260

1980

4250

4110

4150

4210

3750

4170

3700

3900

4420

3180

510 J+ 4440 0.962

2330 J

3610

3210

3650 J <0.500

3980

2060 J

2350 J

0.941

< 0.100

0.212

0.396

0.319

<50.0

< 0.5

<0.500

< 0.26

0.40

<0.1

3.49

4.85

3.96

4.62

3 53

< 0.1

< 0.1

0.104

0.108

<50.0

< 0.26

<0.5

16.88

17 34

17.70

17.89

18.10

18.35

18.51

18.59

18 63

16.61

16 20

16.74

16.85

16.52

16.47

16 31

15.35

17.30

17.13

NM

18 00

17.98

18.58

18.69

17.74

18.75

NM

NM

20.94

21 48

21.32

21.54

5577.79

5578.79

08/20/2019

05/13/2020

10/28/2020

03/24/2021

10/26/2021

04/07/2022

10/26/2022

04/05/2023

10/23/2023

09/18/2015

11/10/2015

12/02/2015

01/12/2016

02/02/2016

03/09/2016

04/06/2016

05/04/2016

09/08/2016

05/09/2017

08/02/2017

02/15/2018

05/30/2018

05/08/2019

08/20/2019

05/13/2020

10/28/2020

03/24/2021

10/26/2021

04/06/2022

10/27/2022

04/05/2023

10/23/2023

+: Overestimated

U.I: Estimated Non-Detect

Underestimated

Table 1. I	Hunter Powe	r Plant - Ash	Landfill A	Assessment	Monitoring	Results
------------	--------------------	---------------	------------	------------	-------------------	---------

									Append	ix III										Į.	Appendi	ix IV						
																												Radium
SAMPLE ID	WELL TYPE	COLLECTION DATE	TOC AMSL (ft)	DTW (ft)	GWE AMSL (ft)) B	Ca	CI	F	pH	SO ₄	TDS	Sb	As	B	1	Be	Cd	Cr	c	ю	Pb	Li	Hg	Mo	Se	TI	226+228
						mg/L	Q mg/L	Q mg/L	Q mg/L	Q s.u	Q mg/L	Q mg/L	Q mg/L	Q mg/L	Q mg/L	Q r	mg/L Q	mg/L	Q mg/L	Q mg/L	L Q	mg/L Q	mg/L (Q mg/L	Q mg/L	Q mg/L	Q mg/L	Q pCi/L Q
		09/18/2015	5579.61	15.97	5563.64	14.3	531	5650	0.60	7.20	9470	22100	<0.001	<0.002	<0.05	<(0.001	< 0.001	0.0010	J+ 0.027	7	<0.001	5.80	<0.0001	<0.001	0.28400	<0.0005	4.70
	•	11/10/2015	5578.79	16.02	5563.59	16.0	518	4670	<0.10	6.78	9130	19500	<0.002	<0.002	0.010	. <(0.002	<0.0005	<0.002	0.022	6	<0.002	18.7	<0.00015	<0.002	0.07970	<0.002	1.40
	•	12/01/2015		16.09	5563.52	14.4	454	4850	4.03	7.03	10300	19500	<0.002	<0.002	0.0094	<(0.002	<0.0005	<0.002	0.020	18	<0.002	14.6	<0.00015	<0.002	0.08870	<0.002	33.62 J+
		01/12/2016		16.20	5563.41	14.6	505	NA	NA	NA	NA	NA	<0.002	<0.002	0.010	<(0.002	<0.0005	<0.002	0.020	18	<0.002	15.1	<0.00015	<0.002	0.08920	<0.002	1.68
		02/02/2016		16.29	5563.32	13.6	493	4060	5.13	6.94	8800	20100	<0.002	<0.002	0.009	<(<0.002	<0.0005	<0.002	0.019	1	<0.002	14.2	<0.00015	<0.002	0.08280	<0.002	2.26
		03/09/2016		16.26	5563.35	15.7	500	1190	5.07	6.90	930	20800	<0.002	<0.002	0.010) <(0.002	<0.0005	<0.002	0.020	16	<0.002	7.20	<0.00015	<0.002	0.09590	<0.002	2.70
		04/06/2016		16.30	5563.31	13.3	491	4890	4.87	7.04	9910	20200	<0.002	<0.002	0.008) <(0.002	<0.0005	<0.002	0.017	'8	<0.002	1.63	<0.00015	<0.002	0.09510	<0.002	1.93
		05/04/2016		16.12	5563.49	12.6	491	4630	<0.1	7.40	8400	19600	<0.002	<0.002	0.011	<(0.002	<0.0005	<0.002	0.018	6	<0.002	7.92	<0.00015	<0.002	0.09170	<0.002	1.53
		09/08/2016		NM	NM	NS - Not	t enough wa	ater				•		•	•		•	•		•		•		•				
ELF-6	Downgradient	05/09/2017		16.52	5563.09	NS - Not	t enough wa	ater																				
		08/02/2017		NM	NM	NS - Not	t enough wa	ater																				
		02/15/2018		16.30	5563.31	NA							<0.00200	<0.00200	0.009	<0.	0.00200	<0.000500	<0.00200	0.014	7	<0.00200	5.50	<0.000150	0.0024	0.09240	<0.00200	1.76
		05/30/2018		17.87	5561.74	NS - Not	t enough wa	ater										-	•	•		•						
		05/08/2019		17.62	5561.99	12.4	539	3810	0.139	7.06	7840	23700	<0.00400	<0.00200	0.015	<0.	0.00200	<0.000500	<0.00200	0.035	8	<0.00200	5.56 J	J+ <0.0000900	<0.00200	0.00795	<0.00200	5.23
		08/20/2019		18.25	5561.36	NS - Not	t enough wa	ater											•			•						
		05/13/2020		NM	NM	NS - Not	t enough wa	ater																				
		10/28/2020		NM	NM	NS - Not	t enough wa	ater																				
		03/24/2021		NM	NM	NS - Not	t enough wa	ater																				
		10/26/2021		NM	NM	NS - Not	t enough wa	ater																				
		04/06/2022	5579.99	20.21	5559.78	2.64	341	2440	J <50.0	UJ 7.40	11700	J- 29200	J <0.0005	0.0016	J 0.013	<0	0.0005	<0.0002	<0.005	0.004	.9 J	<0.0005	2.81	<0.0002	0.0022	0.0432	J <0.0002	1.49
ELF-6R	Downgradient	10/27/2022		20.51	5559.48	2.78	404	3920	<0.5	UJ 7.20	14200	26100	J+ <0.001	0.0094	0.01	<(0.001	<0.0004	<0.005	0.005	2	<0.001	2.82	<0.00015	0.0017	J 0.125	<0.0004	1.531
LLF-OK	Downgraulent	04/05/2023		20.20	5559.79	4.74	465	10900	J <0.500	7.2	J 16200	33600	0.0008	0.0015	<0.10	<0	0.0005	<0.0002	<0.100	0.011	.3	0.0007	4.35	J <0.00015	0.0016	0.445	<0.0002	1.307 UJ
		10/23/2023		20.58	5559.41	3.43	J+ 447	4930	<0.26	7.30	J 13600	30700	<0.00004	0.0016	J <0.00	<0	0.0003	<0.00003	< 0.007	0.005	5	<0.0001	3.37	<0.00008	0.0016	0.0998	J <0.00003	2.72 UJ
		09/18/2015	5579.81	13.24	5566.57	1.72	496	2800	0.40	7.10	8720	15300	<0.001	<0.001	<0.05	<(0.001	<0.001	<0.001	<0.00	15	<0.001	2.00	<0.0001	<0.001	0.45500	<0.0005	3.00
	_	11/10/2015		13.42	5566.39	1.86	480	2600	4.00	6.93	8650	19200	<0.002	<0.002	0.010	. <(0.002	<0.0005	<0.002	0.0052	29	<0.002	6.83	<0.00015	0.0024	0.39200	<0.002	1.50
		12/01/2015		13.60	5566.21	1.98	471	2790	3.12	6.99	9050	16800	<0.002	<0.002	0.011		0.002	<0.0005	<0.002	0.0050		<0.002	5.41	<0.00015	0.0028	0.40800	<0.002	9.80 J+
		01/12/2016		13.68	5566.13	1.79	480	2910	4.36	7.11	9140	14900	<0.002	<0.002	0.012	i <(0.002	<0.0005	<0.002	0.0060	04	<0.002	5.67	<0.00015	0.0026	0.40000	<0.002	1.27
		02/02/2016		13.67	5566.14	1.81	469	2660	4.63	6.13	8250	17100	<0.002	<0.002	0.010		0.002	<0.0005	<0.002	0.0042	28	<0.002	5.35	<0.00015	0.0021	0.37300	<0.002	3.84
		03/09/2016		13.77	5566.04	1.79	443	2710	3.37	7.01	8180	16800	<0.002	<0.002	0.012		0.002	<0.0005	<0.002	0.0066	_	<0.002	2.73	<0.00015	0.0030	0.38300	<0.002	2.90
		04/06/2016		13.76	5566.05	1.70	485	2850	3.19	6.94	9580	16500	<0.002	<0.002	0.009		0.002	0.00050	<0.002	0.0044	_	<0.002	2.64	<0.00015	0.0023	0.42100	<0.002	1.39
		05/04/2016		13.87	5565.94	1.58	445	2650	<0.1	7.16	8680	16900	<0.002	<0.002	0.009		0.002	<0.0005	<0.002	0.0048		<0.002	0.639	<0.00015	0.0021	0.36000	<0.002	1.64
		09/08/2016		14.12	5565.69	1.84		2660	<0.1	7.07	8640	18100	<0.002	<0.002	0.009	i <(0.002	<0.0005	<0.002	0.0049	98	<0.002	4.59	<0.00015	0.0024	0.36000	<0.002	2.34
	-	05/09/2017		16.27	5563.54		t enough wa															, , , , , , , , , , , , , , , , , , , ,				,		
	-	08/02/2017		14.37	5565.44	1.72	476	2480	<0.100	7.13	8680	17800	<0.00200	<0.00200	0.012		0.00200	<0.000500	<0.00200	0.0081		<0.00200	2.12	<0.000150	0.0025	0.25300	<0.00200	2.28
ELF-7	Downgradient	02/15/2018		14.71	5565.10	NA							<0.00200	<0.00200	0.010		0.00200	<0.000500	<0.00200	0.0061		<0.00200	2.13	<0.000150	0.0025	0.17500	<0.00200	1.35
	-	05/30/2018		14.25	5565.56	1.86		J- 2590	0.329	6.99	8460	17200	<0.00100	<0.00200	0.008		0.00200	<0.000500	<0.00200	<0.004		<0.00200	2.49	J- <0.000150	J- 0.0025	0.13600	<0.00200	1.63
	-	05/08/2019		14.86	5564.95	1.86	471	2710	0.132	7.03	8260	17200	<0.00400	<0.00200	0.009		0.00200	<0.000500	<0.00200	0.005		<0.00200	2.23 J	l+ <0.0000900	0.0023	0.06620	<0.00200	2.26
	-	08/20/2019		15.22	5564.59	2.24	-	J+ 2720	3.88	7.19	9480	19500	<0.00400	<0.00200	0.011		0.00200	<0.000500	<0.00200	<0.004		<0.00200	2.23	<0.0000900		0.08190	<0.00200	2.22
		05/13/2020		15.80	5564.01		542		<0.100	6.73	10200	18700	<0.00400	<0.00200	0.010	<0.	0.00200	<0.000500	<0.00200	<0.004	00	<0.00200	2.73	<0.0000900	0.0037	0.02050	<0.00200	1.73
		10/28/2020		16.12	5563.69		t enough wa																					
		03/24/2021		NM	NM	_	t enough wa																		I I			
		10/26/2021		16.29	5563.52	1.80	461	2980	0.330	7.33	+ 9610	J- 18400	<0.00400	<0.00200	0.010		0.00200	<0.000500	<0.00200	<0.004		<0.00200	2.42	<0.0000900		0.03110	<0.00200	<0.85
		04/06/2022		16.62	5563.19	1.36	388	2710	J <50.0	UJ 7.00	7370	J- 18800	J <0.0005	0.0113	J 0.017		0.0005	0.0003	<0.005	0.007		0.0014	1.88	J- <0.0002	0.0029	0.129	J 0.0006	2.91
		10/26/2022		16.90	5562.91	1.64		2940	<0.5	UJ 7.00	7850	16500	J+ <0.001	0.0077	0.011		0.001	<0.0004	<0.005	0.006		<0.001	1.94	<0.00015	0.0022	J 0.0752	0.0006	2.203
		04/05/2023		16.89	5562.92	1.61	421	3050	J <0.500	7.2	J 7420	16300	<0.0005	0.0031	0.009		0.0005	0.0002	<0.005	0.004		<0.0005	1.91	J <0.00015	0.0019	0.0287	0.0005	2.127 UJ
		10/23/2023		16.84	5562.97	1.81	460	2760	<0.26	7.10	J 5930	15900	<0.00004	0.0026	J <0.00	<0	0.0007	0.0003	<0.007	0.006	5	0.0011	1.73	<0.00008	0.0023	0.0409	J 0.0006	2.11 UJ

NS: Not Sampled

NM: Not Measured

GWE: Ground Water Elevation

DTW: Depth to Water TOC: Top of Casing

AMSL: Above Mean Sea Level

Q: Data Validation Qualifier

J: Estimated

J+: Overestimated

UJ: Estimated Non-Detect

Table 1. Hunter Power Plant - Ash Landfill Assessment Monitoring Results

		ower Plant -	71011	7100			J9 10		Apper	dix III									Append	dix IV						
SAMPLE ID	WELL TYPE	COLLECTION DATE	TOC AMSL (ft)	DTW (ft)	GWE AMSL (ft)	В	Ca		I F	pН	SO ₄	TDS	Sb	As	Ва	Be	Cd	Cr	Со	Pb	Li	Hg	Мо	Se	TI	Radium
																										226+228
						mg/L	Q mg/L	Q mg/l	Q mg/L	Q s.u	Q mg/L (Q mg/L C	mg/L C	mg/L	Q mg/L	Q mg/L C) mg/L (Q mg/L	Q mg/L (Q mg/L (Q mg/L Q	mg/L Q	mg/L Q	mg/L Q	mg/L Q	Q pCi/L Q
		09/18/2015	5584.50	8.37	5576.13	26.6	628	2320	1.40	7.60	3120	7430	<0.001	0.002	0.0700	<0.001	0.01000	0.0130	0.196	0.01200	3.50	<0.0001	0.4370	<0.004	<0.002	3.60
	-	11/10/2015		8.15	5576.35	30.4	577	2160		7.30	3140	7690	<0.002	<0.002	0.0163	<0.002	0.00073	<0.002	0.147	0.00527	10.7	<0.00015	0.5220	<0.002	<0.002	2.20
	-	12/01/2015		8.29	5576.21	30.2	586	2370		7.52	3410	8070	<0.002	<0.002	0.0275	<0.002	0.00090	0.0035	0.15	0.00536	8.59	<0.00015	0.4880	<0.002	<0.002	18.90 J+
	-	01/12/2016 02/02/2016		8.32 8.14	5576.18 5576.36	29.7 27.2	623 579	2380		7.62	3130 2970	7860	<0.002 <0.002	<0.002 <0.002	0.0218 0.0140	<0.002 <0.002	0.00099 <0.0005	0.0022 <0.002	0.2 0.0143	0.00473 <0.002	9.43 8.79	<0.00015 <0.00015	0.4590 0.0173	<0.002 0.00716	<0.002 <0.002	1.80 1.98
	-	03/09/2016		8.26	5576.24	26.6	590	2240		7.47	2950	7580	<0.002	0.00299	0.0140	<0.002	0.00113	0.0089	0.202	0.00682	5.09	<0.00015	0.4330	<0.002	<0.002	3.70
	l t	04/06/2016		8.40	5576.10	25.4	609	2300			3390	7440	<0.002	<0.002	0.0244	<0.002	0.00113	0.0029	0.166	0.00545	<0.1	<0.00015	0.4810	<0.002	<0.002	2.60
	Ī	05/04/2016		8.45	5576.05	25.4	588	2190		7.61	3170	7900	<0.002	0.00224	0.0507	<0.002	0.00105	0.0097	0.172	0.00657	4.40	<0.00015	0.4310	<0.002	<0.002	2.40
		09/08/2016		8.66	5575.84	27.4	595	2350	1.33	7.53	3280	8010	<0.002	<0.002	0.0120	<0.002	0.00170	<0.002	0.145	0.00628	7.77	<0.00015	0.4710	<0.002	<0.002	2.10
		05/09/2017		8.60	5575.90		enough wa						, ,													, ,
	-	08/02/2017		8.79	5575.71	31.6	623	2110	1.69	7.54	3260	8420	<0.00200	<0.00200	0.0212	<0.00200	0.00294	0.0023	0.161	0.01260	3.54	<0.000150	0.4780	<0.00200	<0.00200	1.07
ELF-8	Downgradient	02/15/2018 05/30/2018		8.56 8.81	5575.94	NA 20.7	527	1 1040	0.975	7.47	1 2020	7020	<0.00200 <0.00100	<0.00200	0.0130	<0.00200 <0.00200	0.00332 0.00199	<0.00200 <0.00200	0.197 0.188	0.00633	3.68	<0.000150 J-	0.4310 0.4410	<0.00200 <0.00200	<0.00200 <0.00200	1.24
	-	05/08/2019		8.49	5575.69 5576.01	28.7 29.8	606	J- 1940 2100		7.47	2820 2980	7920 9400	<0.00100	<0.00200 <0.00200	0.0114 0.0110	<0.00200	0.00199	<0.00200	0.201	0.00737 0.00643	3.95 J- 4.03 J+	<0.000130]-	0.3990	<0.00200	<0.00200	1.98 2.25
	-	08/20/2019		9.17	5575.33	30.2		J+ 1920			3130	8240	<0.00400	<0.00200	0.0110	<0.00200	0.00174	<0.00200	0.19	0.00762	3.42	<0.0000900 UJ	0.4550	<0.00200	<0.00200	2.15
	Ī	05/13/2020		8.94	5575.56	31.8	635	2250		7.51	3540	8340	<0.00400	<0.00200	0.0111	<0.00200	0.00162	<0.00200	0.207	0.00724	3.85	<0.0000900	0.3900	<0.00200	<0.00200	1.65
		10/28/2020		10.52	5573.98	27.6	527	1910	0.957	7.74	J 3220	8380	<0.00400	<0.00200	0.0115	<0.00200	0.00159	<0.00200	0.198	0.00786	3.20	<0.0000900	0.4300	<0.00200	<0.00200	2.11
		03/24/2021		8.96	5575.54	28.8	562	2340		7.58	3720	7820	<0.00400	<0.00200	0.0112	<0.00200	0.00158	<0.00200	0.228	0.00719	3.24	<0.0000900	0.4210	<0.00200	<0.00200	2.74
	-	10/25/2021		9.11	5575.39	30.6	578	2040		7.76	J+ 3550 J	J- 8140	<0.00400	<0.00200	0.0160	<0.00200	0.00173	<0.00200	0.198	0.00847	3.81	<0.0000900 UJ	0.3940	<0.00200	<0.00200	2.19 U
		04/07/2022		9.10	5575.40	25.8	506	1870	J <50.0	UJ 7.40	2790 J	J- 4810 J	<0.0005	0.0046	J 0.012	<0.0010	0.0015	<0.005	0.193	J 0.0061	3.79	<0.0002	0.345	0.0373 J-	0.0006	NA 0.24
	-	05/04/2022 10/26/2022		9.06 9.22	5575.44 5575.28	28.2	ium sample 527	2030	1.200	J- 7.40	3340	8180 J+	<0.0005	0.0039	0.012	<0.0005	0.0017	<0.005	0.216	0.0066	3.58	<0.00015	0.382 J	0.0414	0.0007	0.24 2.536
	-	04/05/2023		9.22	5575.31	26.2	543	2040		7.5	J 3250	8160	<0.0005	0.0039	0.012	<0.0005	0.0017	<0.005	0.216	0.0065	3.58 3.46 J	<0.00015	0.343	0.0414	0.0007	2.536 2.08 U.
	-	10/23/2023		9.38	5575.12	28	J+ 540	1680		7.50	J 2720	8280	<0.0003	0.0018	J <0.006	<0.0003	0.0014	<0.007	0.21	0.0076	3.31	<0.00013	0.384	0.0173 0.0102 J	0.0007	2.06 U.
		09/18/2015	5597.32	28.03	5569.29	14.4	432	1230	+ +	7.50	10200	14300	<0.001	<0.001	<0.05	<0.001	<0.001	<0.001	0.017	<0.001	3.20	<0.0001	0.0160	0.00700	<0.0005	1.20
	l l	11/10/2015		28.09	5569.23	16.3	419	1180		7.40	9890	15200	<0.002	<0.002	0.0203	<0.002	<0.0005	<0.002	0.0151	<0.002	10.2	<0.00015	0.0253	0.00644	<0.002	1.20
		12/01/2015		28.45	5568.87	17.0	410	1290	<0.1	7.39	10900	17600	<0.002	<0.002	0.0189	<0.002	<0.0005	<0.002	0.0153	<0.002	8.58	<0.00015	0.0210	0.00753	<0.002	31.52 J+
	-	01/12/2016		28.42	5568.90		enough wa															,		, ,		
	-	02/02/2016		28.38	5568.94	16.3	414	952			7910	15600	<0.002	<0.002	0.0139	<0.002	<0.0005	<0.002	0.0143	<0.002	8.49	<0.00015	0.0174	0.00739	<0.002	2.12
	-	03/09/2016 04/06/2016		28.46 28.41	5568.86 5568.91	18.1 15.2	413 412	4290 1230			9020	15700 15800	<0.002 <0.002	<0.002 <0.002	0.0224 0.0191	<0.002 <0.002	<0.0005 <0.0005	<0.002 <0.002	0.0131 0.0147	<0.002 <0.002	4.33 3.29	<0.00015 <0.00015	0.0241 0.0214	0.00545 0.00700	<0.002 <0.002	3.23 1.24
	-	05/04/2016		28.31	5569.01	14.9	399	1170			10000	15700	<0.002	<0.002	0.0245	<0.002	<0.0005	<0.002	0.014	<0.002	4.31	<0.00015	0.0214	0.00666	<0.002	2.78
	Ī	09/08/2016		28.20	5569.12	17.3		1180			10000	16200	<0.002	<0.002	0.0163	<0.002	<0.0005	<0.002	0.0126	<0.002	6.44	<0.00015	0.0201	0.00885	<0.002	0.95
		05/09/2017		28.13	5569.19	NS - Not	enough wa	ter							•							•				
	<u> </u>	08/02/2017		28.36	5568.96	NS - Not	enough wa	ter														, ,	, ,	, ,		1
ELF-11	Downgradient	02/15/2018		28.20	5569.12	NA	1.00						<0.00200	<0.00200	0.0193	<0.00200	<0.000500	<0.00200	0.0154	<0.00200	3.43	<0.000150	0.0220	0.05560	<0.00200	2.03
		05/30/2018 05/08/2019		28.19 28.10	5569.13 5569.22	18.8 17.8	406	J- 993 1100		7.23	9980 9980	16700 16800	<0.00100 <0.00400	<0.00200 <0.00200	0.0168 0.0142	<0.00200 <0.00200	<0.000500 <0.000500	<0.00200	0.0202 0.0146	<0.00200 <0.00200	3.99 J- 3.49 J+	<0.000150 J- <0.0000900	0.0201 0.0183	0.07270 0.06490	<0.00200 <0.00200	1.83
	-	08/20/2019		28.31	5569.01	17.8	442	_			9910	17000	<0.00400	<0.00200	0.0142	<0.00200	<0.000500	<0.00200 <0.00200	0.0146	<0.00200	3.36	<0.0000900 UJ	0.0186	0.06270	<0.00200	2.48
		05/12/2020		28.11	5569.21	16.1	420	1000			10700	18500	<0.00400	<0.00200	0.0131	<0.00200	<0.000500	<0.00200	0.0198	<0.00200	3.44	<0.0000900	0.0200	0.06630	<0.00200	2.67
		10/28/2020		30.28	5567.04	15.6	384	1040		7.89	J 10800	17800	<0.00400	<0.00200	0.0108	<0.00200	<0.000500	<0.00200	0.0197	<0.00200	3.15	<0.0000900	0.0183	0.06690	<0.00200	2.75 U
		03/24/2021	-	28.09	5569.23	15.2	415	1230			J+ 12700	19100	<0.00400	<0.00200	0.0219	<0.00200	<0.000500	0.0026	0.0213	0.00210	3.4	<0.0000900	0.0164	0.08830	<0.00200	3.32
		10/25/2021		28.09	5569.23	16.1	444	1110			J+ 12100 J	J- 17500 J-	<0.00400	<0.00200	0.0122	<0.00200	<0.000500	<0.00200	0.0194	<0.00200	4.37	<0.0000900 UJ	0.0182	0.10700	<0.00200	1.92
	-	04/07/2022		28.09	5569.23		390		J <50.0	UJ 7.30	J+ 10500 J	J- 22000 J	<0.0005	0.0034	J 0.028	<0.0005	0.0002	<0.005	0.0211	J 0.0018	3.86 J-	<0.0002	0.0185	0.169 J	0.0003	NA 2.45
	-	05/04/2022		28.04	5569.28		ium sample		T 40.5	Lul 7 20 L	12200	16500 1	40.001	I 0.0015 I	0.071	z0.001	<0.0004	1 0.0100	0.0103	0.0035	1 2 70 1	<0.00015	0.017	0.130	<0.0004	2.15 2.642
	-	10/26/2022 04/05/2023		28.11 28.10	5569.21 5569.22	_	435 378	989 1120		UJ 7.20 7.4	J 7610	16500 J-	<0.001	0.0015 <0.0005	0.071 0.020	<0.001 <0.0005	<0.0004 0.0002	0.0100 <0.005	0.0193 0.0192	0.0025 0.0010	3.79 3.62 J	<0.00015 <0.00015	0.017 J 0.0185	0.138 0.141	<0.0004 0.0003	2.642 2.57 U.
	-	10/23/2023		28.07	5569.25	13.2		1200			J 11900	21300	<0.0003	<0.0003	JJ <0.006	<0.0003	0.0002	<0.007	0.0192	0.0010	3.05	<0.00013	0.0183	0.141 0.163 J	0.0003	1.57 U.
		11/02/2018	5569.99	19.35	5550.64		J+ 225	_		7.65	11400	21700	<0.00400	<0.00200	0.0207	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.820	<0.000150	<0.00200	<0.00200	<0.00200	4.80
	-	05/08/2019		19.59	5550.40	1.68	182	500		7.55	12200	20100	<0.00400	<0.00200	0.0192	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.839 J+	<0.000900	<0.00200	<0.00200	<0.00200	2.25
		08/20/2019		NM	NM	1.68	169				11400	19900	<0.00400	<0.00200	0.0165	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.792	<0.0000900 UJ	<0.00200	<0.00200	<0.00200	2.83
		05/12/2020		20.15	5549.84	1.32	151	414		7.53	11200	19200	<0.00400	<0.00200	0.0099	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.937	<0.0000900	<0.00200	<0.00200	<0.00200	3.12
		10/28/2020		20.48	5549.51	1.31	139	392			J 11900	18600	<0.00400	<0.00200	0.0101	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.738	<0.0000900	<0.00200	<0.00200	<0.00200	2.42 U
ELF-12	Downgradient	03/24/2021		20.86	5549.13	1.25	172	640			J+ 13500	15600	<0.00400	<0.00200	0.0099	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.820	<0.0000900	<0.00200	<0.00200	<0.00200	4.26
	-	10/25/2021 04/06/2022		20.79	5549.20 5548.64	1.25 1.10	173 131	605 409			J+ 13300 J J+ 12200 .	J- 19000 J 9620 J	<0.00400 <0.0005	<0.00200 0.0009	0.0096 J 0.009	<0.00200 <0.0005	<0.000500 <0.0002	<0.00200 <0.005	<0.00400 <0.0005 U	<0.00200 JJ <0.0005	1.340 0.856	<0.000900 UJ <0.0002	<0.00200 <0.0005	<0.00200 0.0049 J	<0.00200 <0.0002	2.85 NA
	-	05/04/2022		21.35			ium sample		1 \20.0	7.00	12200 .	,	\U.UUU3	0.0003	. 0.003	\U.UUU3	\U.UUUZ	\0.003	1 <0.0003 [0	-0.0003	0.030	\0.000Z	\0.0003	0.0043 J	\0.000Z	2.93
		10/27/2022		21.25	5548.74	1.18		478	J- <0.5	7.60	J+ 14000	19600 J-	<0.001	0.004	0.067	<0.001	<0.0004	0.0110	0.0027	0.0036	0.858	<0.00015	<0.001 UJ	0.0221	<0.0004	5.98
		04/06/2023		21.65	5548.34	1.25		484			J 14500	20200	<0.001	0.0010	0.013	<0.0005	<0.0002	<0.005	<0.0005	0.0005	0.808 J	<0.00015	<0.0005	0.0046	<0.0002	3.49 U.
		10/23/2023		20.41	5549.58	1.16		533			J 11800	20600	<0.00004	0.005	J 0.1	<0.0001	0.0002	<0.007	0.0046	0.008	0.721	<0.00008	0.0006	0.0053 J	0.0002	3.9 U.
		10, 20, 2020		20.71	3343.30	2.20	102	555	10.20	7.00	- 11000	20000	-5.00004	3.003	- 0.1	-0.0001	5.0002	10.007	0.00-10	3.000	J., 21	.0.00000	3.3000	J.5055 J	0.0002	5.5

NS: Not Sampled NM: Not Measured

GWE: Ground Water Elevation

DTW: Depth to Water

TOC: Top of Casing AMSL: Above Mean Sea Level Q: Data Validation Qualifier

J: Estimated

J+: Overestimated UJ: Estimated Non-Detect

Table 1. Hunter Power Plant - Ash Landfill Assessment Monitoring Results

									Appendix	II									Append	dix IV						
SAMPLE I	WELL TYPE	COLLECTION DATE	TOC AMSL (ft)	DTW (ft)	GWE AMSL (ft)		Ca	CI	F	рН	SO ₄	TDS	Sb	As	Ва	Ве	Cd	Cr	Co	Pb	Li	Hg	Мо	Se	ТІ	Radium 226+228
						-			Q mg/L Q		-					mg/L Q	-		$\overline{}$		Q mg/L Q				Q mg/L C	
		11/02/2018	5559.43	3.82	5555.61		J+ 471		<0.100	7.24	7470	17900	<0.00400	<0.00200	0.0573	<0.00200	<0.000500	<0.00200	0.00471	<0.00200	1.72	<0.000150	<0.00200	<0.00200	<0.00200	2.26
		05/08/2019		3.10	5556.33	0.703		2730	<0.100	7.03	7730	16700	<0.00400	<0.00200	0.0111	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	2.06 J+	<0.0000900	<0.00200	<0.00200	<0.00200	1.58
		08/20/2019		NM	NM	0.732		J+ 2420	0.798	7.25	7370	17300	<0.00400	<0.00200	0.0110	<0.00200	<0.000500	<0.00200	0.00407	<0.00200	1.86	<0.0000900 L	JJ <0.00200	<0.00200	<0.00200	2.07
		05/12/2020		3.52	5555.91	0.536	449	2770	<0.100	7.05	8300	17000	<0.00400	<0.00200	0.0097	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	1.82	<0.0000900	<0.00200	<0.00200	<0.00200	2.49
		10/28/2020		4.63 4.20	5554.80 5555.23	0.609	411 471	2720	<0.100	7.75 J	9410	16800 16500	<0.00400	<0.00200	0.0100	<0.00200 <0.00200	<0.000500 <0.000500	<0.00200	0.00421	<0.00200	1.74 1.84	<0.0000900 <0.0000900	<0.00200	<0.00200	<0.00200 <0.00200	2.32
ELF-13	Downgradient	03/24/2021 10/25/2021		4.20	5555.23	0.580	471	3160 2810	0.243	7.18 J+ 7.44 J+	9410 9040 J-	19900	<0.00400 <0.00400	<0.00200 <0.00200	0.0092	<0.00200	<0.000500	<0.00200 <0.00200	0.00432	<0.00200 <0.00200	2.36	<0.0000900 L	<0.00200 IJ <0.00200	<0.00200 <0.00200	<0.00200	2.72
		04/06/2022		4.30	5554.72	0.556	386	2510	J <50.0 U		7590 J-	16400	J <0.00400	0.00200 0.0023 J	0.0098	<0.00200	<0.000300	<0.00200	0.00426	J <0.00200	1.98	<0.000900	0.0013	0.00200	J- 0.0003	NA NA
		05/05/2022		4.71	5554.84		lium sample		J \ \ 30.0 0.	7.00] 3-	7390 3-	10400	7 (0.0010	0.0023	0.009	(0.0003	<0.0004	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.0044	1 (0.0003	1.90	<0.0002	0.0013	0.0400	J- 0.0003	1.57
		10/26/2022		4.87	5554.56	0.5	430	2640	<0.5	7.00	8380	17900	+ <0.001	0.0059	0.01	<0.001	<0.0004	<0.005	0.005	<0.001	1.94	<0.00015	0.0012 J	0.0545	0.0004	2.927
		04/06/2023		4.78	5554.65	<0.50	293	2950	J- <0.100	7.2 J	8750	17800	- <0.0005	0.0030	<0.050	<0.001	0.0003	<0.050	0.0043	<0.001	1.69 J	<0.00015	0.0009	0.0188	0.0004	3.37 UJ
		10/23/2023		4.89	5554.54	0.54	428	2490	<0.26		7920	18000	<0.0003	0.0038 J	<0.003	<0.0007	0.0002	<0.004	0.0042	<0.0003	1.94	<0.00013	0.0011	0.0249	J 0.0004	2.28 UJ
		11/02/2018	5560.91	6.30	5554.61			J- 3830	0.173	7.56	7450	20500	<0.00400	<0.00200	0.0464	<0.00200	<0.000500	<0.00200	0.0131	<0.00200	4.01	<0.000150	<0.00520	0.00401	<0.00200	1.60
		05/08/2019		6.07	5554.84	2.42	534	5070	<0.100	7.13	7280	19700	<0.00400	<0.00200	0.0327	<0.00200	<0.000500	0.0089	0.00976	0.00241	4.79 J+	<0.0000900	0.0039	0.00512	<0.00200	2.58
		08/20/2019		NM	NM	3.09	496	J+ 3640	0.589	7.49	7280	19800	<0.00400	<0.00200	0.0137	<0.00200	<0.000500	<0.00200	0.00912	<0.00200	4.58	<0.0000900 L	JJ 0.0043	0.00664	<0.00200	2.69
		05/12/2020		6.48	5554.43	2.32	486	4160	<0.100	7.32	8220	19400	<0.00400	<0.00200	0.0102	<0.00200	<0.000500	<0.00200	0.00728	<0.00200	4.12	<0.0000900	0.0039	0.00296	<0.00200	2.22
		10/28/2020		6.00	5554.91	2.79	443	3880	<0.100	7.67 J	8730	18800	<0.00400	<0.00200	0.0129	<0.00200	<0.000500	<0.00200	0.00841	<0.00200	4.15	<0.0000900	0.0040	0.00573	<0.00200	2.12 U
ELF-14	Downgradient	03/24/2021		6.74	5554.17	2.15	482	4770	0.413		9740	16900	<0.00400	<0.00200	0.0106	<0.00200	<0.000500	<0.00200	0.00701	<0.00200	4.23	<0.0000900	0.0030	0.00314	<0.00200	2.34
		10/25/2021		6.76	5554.15	2.48	494	4050	0.332	7.42 J+	9110 J	19600	<0.00400	<0.00200	0.0150	<0.00200	<0.000500	<0.00200	0.0104	<0.00200	4.66	<0.0000900 L	JJ 0.0038	0.00344	<0.00200	2.19
		04/06/2022		6.25	5554.66	1.90	438	3650	J <50.0 U.	7.20	7770 J	19600	J <0.0005	0.0151 J	0.010	<0.0005	<0.0002	<0.005	0.0072	J <0.0005	4.42 J-	<0.0002	0.0037	0.133	J 0.0003	3.07
		10/26/2022		7.22	5553.69	2.34	450	4020	<0.5	7.00	9260		+ <0.0025	0.0093	0.012	<0.0025	<0.001	<0.005	0.008	<0.0025	4.19	<0.00015	0.0038 J	0.0704	<0.001	2.801
		04/06/2023		6.78	5554.13	1.93	417	3930	J- <0.500	7.2 J	8780	18000	<0.0005	0.0041	0.010	<0.0005	<0.0002	<0.005	0.0062	<0.0005	4.19 J	<0.00015	0.0034	0.0275	0.0004	3.208 UJ
		10/23/2023		7.34	5553.57	2.39	415	3400	<0.26	7.20 J	8320	19500	<0.00004	0.0036 J	<0.006	<0.00007	0.00020	<0.007	0.0076	<0.0001	3.62	<0.00008	0.0042	0.0215	J 0.0005	3.06 UJ
		04/06/2022	5563.81	7.79	5556.02	2.83	379	2380	J <50.0 U.	7.30 J+	8180 J		J <0.0005	0.0015 J	0.014	<0.0005	0.0003	<0.005	0.0038	J <0.0005	2.37	<0.0002	0.0029	0.0264	J 0.0002	2.66
ELF-15	Downgradient	10/27/2022		8.35	5555.46	3.19	437	2750	<0.5	7.00	9720		+ <0.0025	0.0073	0.012	<0.0025	<0.001	<0.005	0.0047	<0.0025	2.48	0.00025	0.0025 J	0.0612	<0.001	2.466
		04/06/2023		7.94	5555.87	3.38		2820	J- <0.500		9590	16000	0.0005	0.0029	0.024	<0.0005	0.0003	<0.005	0.0042	0.0012	2.53 J	<0.00015	0.0025	0.0256	0.0003	2.32 UJ
		10/23/2023		8.24	5555.57	3.4	J+ 457	2480	<0.26	7.10 J	8880	19300	<0.00004	0.0018 J	<0.006	<0.0003	0.0003	<0.007	0.0041	<0.0001	2.24	<0.00008	0.0032	0.0174	J 0.0003	2.9 UJ
		04/06/2022	5569.80	14.35	5555.45	6.64	388	3280	J <50.0 U	7.40 J+	8160 J-	20000	J <0.0005	0.0021 J	0.016	<0.0005	<0.0002	<0.005	0.0077	J <0.0005	4.97	<0.0002	0.0046	0.0453	J 0.0003	2.19
ELF-16	Downgradient	10/27/2022		14.94	5554.86	7.82	445	3600	<0.5	7.00	9860		+ <0.0025	0.0091	0.03	<0.0025	<0.001	<0.005	0.0078	<0.0025	4.62	<0.00015	0.0041 J	0.0969	<0.001	3.73
		04/06/2023		14.43	5555.37	7.74	414	3540	J- <0.500	7.1 J	9270	20900	0.0005	0.0030	0.012	<0.0005	0.0002	<0.005	0.0063	<0.0005	4.80 J	<0.00015	0.0038	0.0495	0.0003	1.85 J
		10/23/2023	5505.00	15.05	5554.75	7.83	422	3100	4.69	7.10 J	8460	20300	<0.00004	0.0025 J	<0.006	<0.00007	0.00020	<0.007	0.0063	0.00050	4.08	<0.00008	0.0037	0.0436	J 0.0004	3.3 UJ
		04/05/2022	5585.00	NM	NM		t enough wa																			
ELF-17	Downgradient	10/26/2022 04/06/2023		NM	NM		t enough wa																			
				29.65	5555.35		t enough wa																			
		10/23/2023		29.45	5555.55	NS - Not	t enough wa	iter																		

NS: Not Sampled

NM: Not Measured

GWE: Ground Water Elevation

DTW: Depth to Water

TOC: Top of Casing
AMSL: Above Mean Sea Level

Q: Data Validation Qualifier

J: Estimated

J+: Overestimated

UJ: Estimated Non-Detect

Table 2. Summary of Groundwater Quality Comparisons – April 2023 Event

Analyte	Upper Tolerance Limit (mg/L)	Maximum Contaminant Level (mg/L)	Groundwater Protection Standard (mg/L)	Downgradient Wells that Exceed Groundwater Protection Standard
Antimony	0.004	0.006	0.006	None Exceed
Arsenic	0.0117	0.01	0.0117	None Exceed
Barium	0.102	2.0	2.0	None Exceed
Beryllium	0.0025	0.004	0.004	None Exceed
Boron ¹	3.77	NA	3.77	ELF-4, ELF-5R, ELF-6R, ELF-8, ELF-11
Cadmium	0.0011	0.0050	0.0050	None Exceed
Calcium	543	NA	543	None Exceed
Chloride	13100	NA	13100	None Exceed
Chromium	0.066	0.1000	0.1000	None Exceed
Cobalt	0.0131	0.006	0.0131	ELF-8, ELF-11
Fluoride	4.36	4.0	4.36	None Exceed
Fluoride Appendix III	4.36	NA	4.36	None Exceed
Lead	0.012	0.015	0.015	None Exceed
Lithium	4.22	0.04	4.22	ELF-6R
Mercury	0.0002	0.002	0.002	None Exceed
Molybdenum	0.158	0.100	0.158	ELF-8
pH Acidic Range	6.56	NA	6.56	None Exceed
pH Basic Range	8.48	NA	8.48	None Exceed
Radium	6.1	5.0	6.1	None Exceed
Selenium	0.608	0.050	0.608	None Exceed
Sulfate	20700	NA	20700	None Exceed
TDS	40300	NA	40300	None Exceed
Thallium	0.002	0.002	0.002	None Exceed

¹ New monitoring well ELF-16 exhibited concentrations in excess of the background UTL for boron and the GWPS for lithium. ELF-16 was installed in 2022 as a boundary well for the landfill and as yet does not have eight independent measurements. As a result, it is not shown in Table C.5.

Table 3. Summary of Groundwater Quality Comparisons – October 2023 Event

Analyte	Upper Tolerance Limit (mg/L)	Maximum Contaminant Level (mg/L)	Groundwater Protection Standard (mg/L)	Downgradient Wells that Exceed Groundwater Protection Standards
Antimony	0.004	0.006	0.006	None Exceed
Arsenic	0.0117	0.01	0.0117	None Exceed
Barium	0.102	2.0	2.0	None Exceed
Beryllium	0.0025	0.004	0.004	None Exceed
Boron	3.77	NA	3.77	ELF-4, ELF-5R, ELF-6R, ELF- 8, ELF-11, ELF-16
Cadmium	0.0011	0.0050	0.0050	None Exceed
Calcium	543	NA	543	None Exceed
Chloride	13100	NA	13100	None Exceed
Chromium	0.066	0.1000	0.1000	None Exceed
Cobalt	0.0131	0.006	0.0131	ELF-8, ELF-11
Fluoride	4.36	4.0	4.36	None Exceed
Fluoride Appendix III	4.36	NA	4.36	None Exceed
Lead	0.012	0.015	0.015	None Exceed
Lithium	4.22	0.04	4.22	ELF-6R, ELF-16
Mercury	0.0002	0.002	0.002	None Exceed
Molybdenum	0.158	0.100	0.158	ELF-8
pH Acidic Range	6.56	NA	6.56	None Exceed
pH Basic Range	8.48	NA	8.48	None Exceed
Radium	6.1	5.0	6.1	None Exceed
Selenium	0.608	0.050	0.608	None Exceed
Sulfate	20700	NA	20700	None Exceed
TDS	40300	NA	40300	None Exceed
Thallium	0.002	0.002	0.002	None Exceed

ATTACHMENT A:

Field Summary Report – April 2023 Event

Facility Name: Hunter Power Plant – CCR Landfill

Event Description: Assessment Monitoring

Event Dates: April 5-6, 2023

Field Personnel: Brad Giles, Dennis Vanderbeek

ACTIVITY SUMMARY. PacifiCorp personnel arrived onsite April 5, 2023 and performed groundwater sampling at Hunter CCR Landfill. Prior to collecting samples, field instruments were calibrated, followed by the collection of water levels in the CCR monitoring wells. After recording water levels, the wells were purged in accordance with the EPA low-flow method. Field parameters were monitored during well purging in accordance with the site-specific sampling and analysis plan (SAP). Once field parameters met the SAP stabilization requirements, groundwater samples were collected for Appendix III and Appendix IV constituents. All calibration data and field measurements were recorded on the WET electronic field form. The wells that underwent sampling during this sampling event included:

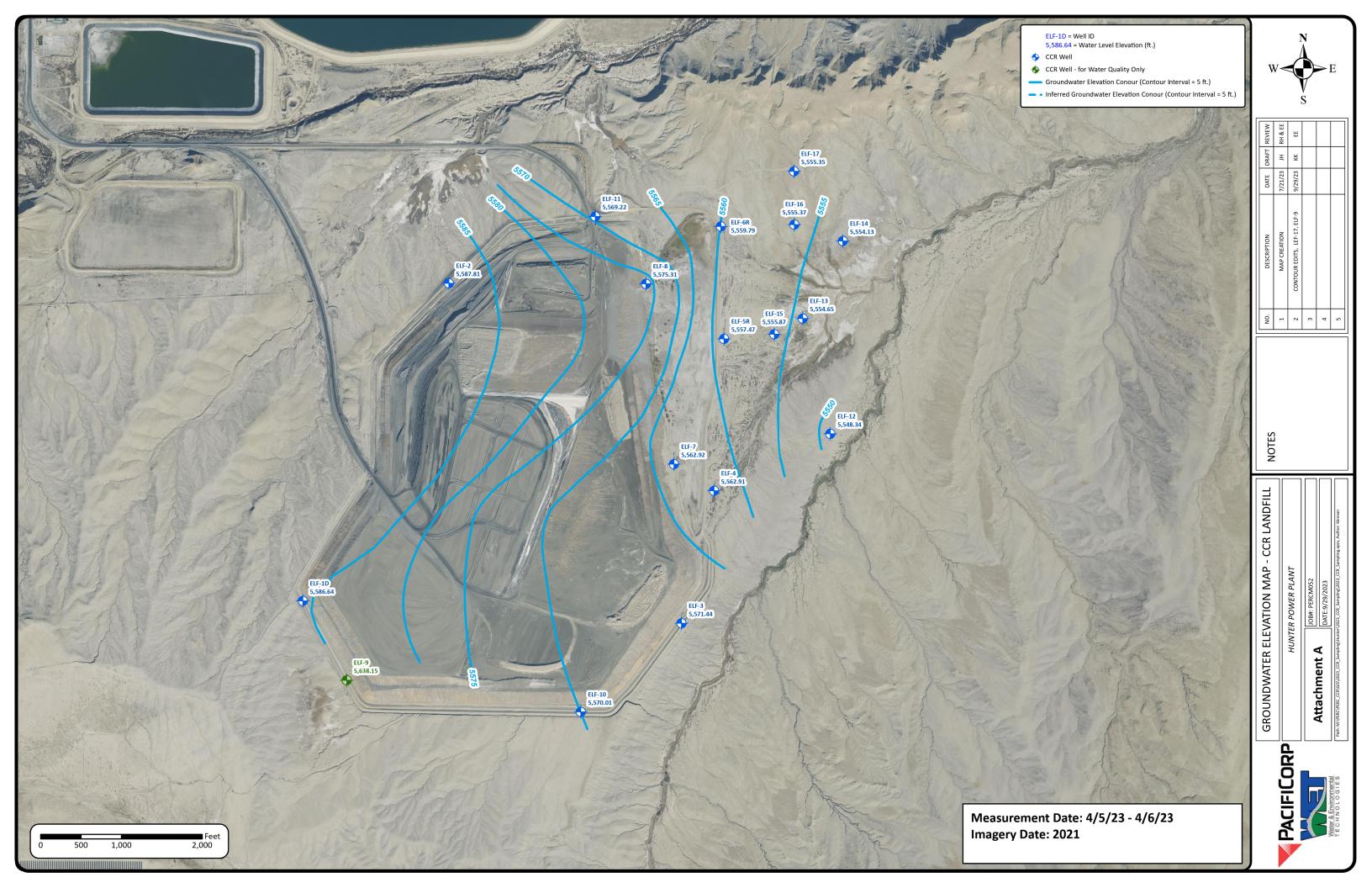
- ELF-10
- ELF-11
- ELF-12
- ELF-13
- ELF-14
- ELF-1D
- ELF-2
- ELF-3
- ELF-4

- ELF-5R
- ELF-6R
- ELF-7
- ELF-8
- ELF-9
- ELF-15
- ELF-16
- ELF-17

The following details dates for conducting field work and post-field work data processing:

- Date fieldwork completed: 4/6/2023
- Dates unvalidated lab data received: 4/24/2023 & 5/18/2023
- Data validation completion date: 09/01/2023

After collection, the samples were preserved in accordance with the SAP, placed on ice, chain of custody forms were completed, and the samples were transported to Chemtech-Ford in Sandy, Utah. Samples arrived at Chemtech-Ford on 4/7/2023. Chemtech-Ford subcontracted Radium analyses to Pace Analytical in Mount Juliet, Tennessee. Samples arrived at Pace Analytical on 4/12/2023. The following information is attached to this summary as a supplement:


- Attachment A: Groundwater Contour Map
- Attachment B: Data Validation Summary
- Attachment C: Statistical Analysis
- Attachment D: Field Data Sheets
- Attachment E: Laboratory Analytical Reports

SAP DEVIATIONS. Wells ELF-3, ELF-10, ELF-17 and ELF-1D did not have enough water to sample.

Attachment A:

Groundwater Contour Map

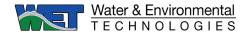
Attachment B:

Data Validation Summary

Data Verification/Validation Checklist and Summary Report

	PROJECT AND LABORATORY INFORMATION
Project/Task/Sub-Task #:	PAC-HTRCCR-M052
Site & Location:	Hunter Power Plant – Castle Dale, UT
Sample Collection Date(s):	April 5-7, 2023
Laboratory & Location:	Chemtech-Ford Laboratories – Sandy, UT
	Pace Analytical – Mount Juliet, TN
Sample Delivery Group (SDG):	2023 Spring
Work Order (WO):	23D0472
Extraction/Prep Date(s):	NA
Analysis Date(s):	April 7 – May 13, 2023
Laboratory Report Date(s):	April 24, 2023 (Chemtech-Ford)
	May 17, 2023 (Pace Analytical)
Data Validator:	Richelle Carney
Data Validation Date(s):	August 8, 2023
Data Validation Reviewer:	Janelle Garza
Data Validation Review Date(s):	September 1, 2023

SDG/WO							
Sample ID	Lab ID	Sample Date	Sample Time	Matrix	Notes		
ELF-2	23D0472-01/12D0470-01	4/6/2023	11:30	Aqueous			
ELF-4	23D0472-02/12D0470-02	4/5/2023	18:55	Aqueous			
ELF-5R	23D0472-03/12D0470-03	4/5/2023	18:20	Aqueous			
ELF-6R	23D0472-04/12D0470-04	4/5/2023	17:40	Aqueous			
ELF-7	23D0472-05/12D0470-05	4/5/2023	19:40	Aqueous			
ELF-8	23D0472-06/12D0470-06	4/5/2023	16:15	Aqueous			
ELF-9	23D0472-07/12D0470-07	4/6/2023	9:50	Aqueous			
ELF-11	23D0472-08/12D0470-08	4/5/2023	15:20	Aqueous			
ELF-12	23D0472-09/12D0470-09	4/6/2023	17:00	Aqueous			
ELF-13	23D0472-10/12D0470-10	4/6/2023	15:45	Aqueous			
ELF-14	23D0472-11/12D0470-11	4/6/2023	14:30	Aqueous			
ELF-15	23D0472-12/12D0470-12	4/6/2023	15:10	Aqueous			
ELF-16	23D0472-13/12D0470-13	4/6/2023	12:15	Aqueous			
Duplicate - (CCR)	23D0472-14/12D0470-14	4/5/2023	12:00	Aqueous	ELF-8 Duplicate		
Field Blank - (CCR)	23D0472-15/12D0470-15	4/6/2023	9:50	Deionized Water	Field Blank		


METHOD(S)/ANALYSES				
A2540 C	Total Dissolved Solids (TDS)			
A4500-H B	pH			
E200.7/8: Total Metals	Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Lead, Lithium, Molybdenum, Selenium, Thallium			
E245.1	Mercury			
E300.0	Chloride & Sulfate & Fluoride			
E903.0/9315	Radium-226			
904/9320	Radium-228			

	QUALIFIER DEFINITIONS				
U	The analyte was analyzed for but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.				
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.				
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.				
J-	The result is an estimated quantity, but the result may be biased low.				
J+	The result is an estimated quantity, but the result may be biased high.				
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.				

Quality (DEQ) k plan (WP) ly 2018)	N/A N/A		
k plan (WP)	N/A N/A		
, , ,	N/A		
, , ,	N/A		
, , ,	N/A		
ly 2018)			
ly 2018)			
(0.0.0)			
Water & Environmental Technologies (WET) Data Validation (DV): Standard Operating Guidelines (SOG) Inorga Radioanalytical, & High Resolution			
0	NI/A		
Organic	N/A		
Asbestos	N/A		
	Χ		
	N/A		
No			

Review (SMDR) referenced/resourced:	^		
Select the applicable USEPA Guideline for Data Review referenced/resourced:	High Resolution	Asbestos	N/A
Was the Ideba National Engineering and Engineering	Vaa	Na	X
Was the Idaho National Engineering and Environmental Laboratory (INEEL) Radioanalytical DV Guide referenced/resourced? If no, enter any/all radioanalytical DV SOG/SOP referenced/resourced:	Yes X	No	N/A
		-	
CHECKLIST			
Field QA/QC			
Was field documentation provided and complete?	Yes	No	N/A
was neid documentation provided and complete:	X		
Were calibration checks within project stabilization criteria (or other	Yes	No	N/A
applicable range)?	X		
Was shain of sustably (COC) desumentation assurate and semulate?	Yes	No	N/A
Was chain-of-custody (COC) documentation accurate and complete?	X		
More all planned complex ship to be callested?	Yes	No	N/A
Were all planned samples able to be collected?	X		
ELF-1D, ELF-3, ELF-10, and ELF-17 were dry and unable to be sampled. This is completion total.	reflected in the s	ample delivery g	roup
Were samples submitted within a reasonable time frame to meet	Yes	No	N/A
extraction/prep and/or analytical hold times (HT)? If no, detail below.		X	
The laboratory flagged all pH results for hold time exceedance. The hold time	e for pH is 15 min	utes. It is not feas	sible to
laboratory-analyze samples within 15 minutes of collection. Stabilized field pl	H measurements	are provided in fi	eld
documentation. All analytical pH results were qualified as estimated (J).		•	
❖ TDS in ELF-13 was qualified as estimated low (J-) due to analysis 13.8 days	after collection, >	7-day hold time.	
More camples submitted received by the laboratory in good condition?	Yes	No	N/A
Were samples submitted received by the laboratory in good condition?	X		
		1	
	Yes	No	N/A

Were samples received by the laboratory within temperature and pH requirements? If no, detail below.	X		
Were volatile samples collected with zero headspace, or was enough	Yes	No	N/A
volume available for analysis without using any containers with bubbles? If no, detail below.			Х
	Yes	No	N/A
Were field duplicate (FD) samples required?	X	NO	IV/A
Were FD samples collected at the correct frequency? If no, all field data	Yes	No	N/A
points are qualified as estimated (J/UJ) due to lack of field precision QA/QC (FDX).	X		
Were FD relative percent difference (RPD) results at or below control	Yes	No	N/A
limits (CLs)? If no, detail below.		Χ	

ELF-9 (original) and Duplicate – (CCR) (duplicate): representing all samples

- Lithium RPD was 41.1%, >20% CL. The original and duplicate sample results were >5xRL.
 - Field Blank (CCR) was qualified as estimated (UJ) due to a ND result.
 - All remaining samples were qualified as estimated (J) due to detected results.
- Chloride RPD was 27.5%, >20% CL. The original and duplicate sample results were >5xRL.
 - Field Blank (CCR) was qualified as estimated (UJ) due to a ND result.
 - All remaining samples were qualified as estimated (J) due to detected results.
 - ELF-12, ELF-13, ELF-14, ELF-15, ELF-16, and Duplicate (CCR) were more specifically qualified as estimated low (J-) due to low MS recovery.
- Radium 228 RPD was 97.9%, >20% CL.
 - ➤ No qualification required due to a mean difference <3 (1.5).

Was field decontamination of sampling equipment required?	Yes	No	N/A
was new decontainination of sampling equipment required?		X	
Were equipment rines blank (EBB) complex required?		No	N/A
Were equipment rinse blank (ERB) samples required?		Х	
Were ERB samples collected at the correct frequency? If no, all field data	Yes	No	N/A
points are qualified (J/UJ) as estimated due to lack of field QA/QC (ERBX).			X
Were all ERB results non-detect (ND)? If no, detail below.	Yes	No	N/A
vere all END results non-detect (ND): If no, detail below.			X
Were field blank (FB) samples required?	Yes	No	N/A
vvere nera biank (FD) samples required:	X		
Were FB samples collected at the correct frequency? If no, all data is	Yes	No	N/A
qualified as estimated due to lack of field QA/QC (FBX).	X		
Were all FB results ND? If no, detail below.	Yes	No	N/A
Wele all FD lesuits ND ! II IIU, uetall below.		Х	
Fight Blook (OOD) was south and the			_

Field Blank – (CCR): representing all samples

- TDS was detected at 14 mg/L, ≥RL of 10 mg/L.
 - No qualification was required for any samples due to all results ≥10xFB.
- Radium-226 was detected at 0.294 pCi/l, ≥2σ, >0, and >MDC (DL).
 - > ELF-16 was qualified as an estimated detection (J) due to a result >MDC (DL), a mean difference >2, and a difference factor <10.
 - ELF-16 was qualified as an estimated ND (J) due to MB detection. The J qualifier will override the UJ qualifier.
 - > All remaining samples were qualified as estimated ND (UJ) due to results >MDC (DL), mean differences between 0 and 2, and difference factors <10.
- Radium-228 was detected at 2.03 pCi/l, ≥2σ, >0, and >MDA.
 - > ELF-6R, ELF-8, ELF-16, and Duplicate (CCR) were qualified as estimated detections (J) due to results >MDC (DL), mean differences >2, and difference factors <10.
 - All remaining samples were qualified as estimated ND (UJ) due to results >MDC (DL), mean differences between 0 and 2, and difference factors <10.

Were trip blank (TB) samples required (volatiles analyses)?	Yes	No	N/A
		X	
Were TB samples submitted as required (one per shipping container)? If	Yes	No	N/A
no, all data is qualified as estimated due to lack of TB (TBX).			Х

	Yes	No	N/A
Other issues? If yes, detail below.		X	1071

Field QA/QC Summary

Out of 330 total data points:

- 256 data points (77.6%) remain unqualified.
- Out of 74 data points (22.4%) qualified as estimated:
 - 16 data points (21.6% of qualified, 4.8% of total) were due to HT exceedances.
 - No data points were due to preservation (temperature and/or pH) issues.
 - 28 data points (37.8% of qualified, 8.5% of total) were due to blank contamination.
 - 30 data points (40.5% of qualified, 9.1% of total) were due to poor replication.
- No data points were rejected.

Laboratory QA/QC			
Did the laboratory use appropriate methods to extract/prep and analyze all	Yes	No	N/A
samples within HT?	X		
Were there any results reported below the RL or in exceedance of (E) or	Yes	No	N/A
over (O) instrument calibration? If yes, detail below.		X	
Other issues? If yes, detail below.	Yes	No	N/A
Other issues: if yes, detail below.	X		
The laboratory did not complete Radium 226+228 as instructed. This is reflected	in the work order	r completion tota	l
Laboratory Blanks			
Were TB results ND? If no, detail below.	Yes	No	N/A
Were 1D results ND: If no, detail below.			X
Were method blank (MB) samples analyzed at a frequency of one per 20	Yes	No	N/A
samples or one per batch?	X		
Were MB results ND? If no, detail below.	Yes	No	N/A
Wele Mid leading Md: II ilo, detail below.		X	

- ❖ Method 903.0/9315
 - ➤ Batch WG2050046: all samples
 - Radium-226 was detected at 0.413 pCi/l, ≥2σ, >0, and >MDC (DL).
 - All samples were qualified as estimated ND (UJ) due to results >MDC (DL), mean differences between 0 and 2, and difference factors <10.
 - ♦ ELF-16 was qualified as an estimated detection (J) due to the FB detection. The J qualifier will override the UJ qualifier.
- ❖ Method 904/9320
 - Batch WG2056321: all samples except Field Blank (CCR)
 - Radium-228 was detected at 0.280 pCi/l, ≥2σ, >0, and >MDC (DL).
 - ELF-16 was qualified as estimated ND (UJ) due to a result >MDC (DL), a mean difference between 0 and 2, and difference factor <10.
 - ♦ ELF-16 was qualified as an estimated detection (J) due to the FB detection. The J qualifier will override the UJ qualifier.
 - All remaining samples were qualified as estimated detections (J) due to results >MDC (DL), mean differences
 2, and difference factors <10.
 - ♦ All samples except ELF-6R, ELF-8, ELF-16, and Duplicate (CCR) were qualified as estimated ND (UJ) due to the FB detection. The J qualifier will override the UJ qualifier.

Laboratory Accuracy			
Were initial/continuing calibration verification (ICV/CCV) analyses	Yes	No	N/A
performed at the appropriate frequency?	Х		
	Yes	No	N/A
Were ICV/CCV percent recoveries within CLs? If no, detail below.	Х		
Were laboratory fortified blanks (LFB) / control samples (LCS) analyzed at	Yes	No	N/A
a frequency of one per 20 samples or one per batch?	Х		
Ware LED/LCC narrout recovering within Cl c2 If no detail below	Yes	No	N/A
Were LFB/LCS percent recoveries within CLs? If no, detail below.		Χ	

N/A

- ❖ Method E200.7
 - ▶ Batch BXD0533: Duplicate (CCR) and Field Blank (CCR)
 - Barium was recovered at 120%, >115% upper CL.
 - Duplicate (CCR) was qualified as estimated high (J+) due to a detected result.
 - Field Blank (CCR) did not require qualification due to a ND result.
 - Calcium was recovered at 119%, between the upper CL of 115% and the expanded upper CL of 140%.
 - Duplicate (CCR) was qualified as estimated high (J+) due to a detected result.
 - Field Blank (CCR) did not require qualification due to a ND result.

Were matrix spike (MS) samples analyzed at a frequency of one per 20	Yes	No	N/A
samples or one per batch?	X		
Were MS percent recoveries within CLs? If no, detail below.	Yes	No	N/A
were mo percent recoveries within ous! If no, detail below.		X	

- ❖ Method 200.7
 - Batch BXD0255: ELF-4, ELF-5R, ELF-6R, ELF-7, ELF-9, ELF-11, ELF-12, ELF-13, ELF-14, ELF-15, and ELF-16
 - 23D0472-10: ELF-13
 - Calcium was recovered at 347% (MSD), >130% upper CL.
 - ♦ No qualification was required due to a parent sample result ≥4x the spike concentration.
 - Lithium was recovered at 163% (MS) and 190% (MSD), >130% upper CL.
 - ♦ No qualification was required due to a parent sample result ≥4x the spike concentration.
 - ➤ Batch BXD0256: ELF-2
 - 23D0472-01: ELF-2
 - Calcium was recovered at 314% (MS) and 359% (MSD), >130% upper CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.
- Method 300.0
 - ▶ Batch BXD0289: ELF-2, ELF-4, ELF-5R, ELF-6R, ELF-7, ELF-8, and ELF-9
 - 23D0472-01: ELF-2
 - Sulfate was recovered at 50.3% (MS) and 44.6% (MSD), <80% lower CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.
 - Batch BXD0313: ELF-12, ELF-13, ELF-14, ELF-15, ELF-16, Duplicate (CCR) and Field Blank (CCR)
 - 23D0430-01: unassociated work order
 - Chloride was recovered at 186% (MS) and 209% (MSD), >120% upper CL with QC ID BXD0313-MS(D)1. The parent sample result was ≥4x the spike concentration, thus no qualification was required.
 - Chloride was recovered at 76.4% (MS), <80% lower CL with QC ID BXD0313-MS(D)2. The parent sample result was <4x the spike concentration.
 - Field Blank (CCR) was qualified as estimated (UJ) due to a ND result.
 - ♦ All remaining samples were qualified as estimated low (J-) due to detected results.
 - Sulfate was recovered at 7.36% (MS), <80% lower CL and <35% expanded lower CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.
 - ➤ Batch BXD0346: ELF-11
 - 23C2043-02: unassociated work order
 - Chloride was recovered at 12.7% (MS) and 16.9% (MSD), <80% lower CL and <35% expanded lower CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.
 - Chloride was recovered at -162% (MS) and -161% (MSD), <80% lower CL and <35% expanded lower CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.

 Yes No

Were surrogate recoveries within CLs (organics only)? If no, detail below.	Yes	NO	N/A
were surrogate recoveries within CLS (organics only)? If no, detail below.			X
Laboratory Precision			
Were laboratory duplicates analyzed at a frequency of one per 20 samples	Yes	No	N/A
or one per batch, either through laboratory sample duplicates (LSD), LCS	Y		
duplicates (LCSD), or MS duplicates (MSD)?	^		
Were laboratory duplicate RPD results at or below CLs? If no, detail	Yes	No	N/A
below.		Χ	

- Method E903/9315
 - Batch WG2050046: all samples
 - L1604336-18: Field Blank CCR
 - Radium-226 RPD was 83.2%, >20% CL.
 - ♦ No qualification was required due to a mean difference <3 (0.84).</p>
- Method E904/9320

- ➤ Batch WG2056321: all samples except Field Blank CCR
 - L1604336-01: unassociated sample delivery group
 - Radium-228 RPD was 200%, >20% CL.
 - No qualification required due to a laboratory-calculated RER <3 (1.33).
- Batch WG2057687: Field Blank CCR
 - L1604350-01: unassociated work group
 - Radium-228 RPD was 200%, >20% CL.
 - ♦ No qualification required due to a laboratory-calculated RER <3 (1.22).

Were serial dilution (SD) samples analyzed at a frequency of one per 20	Yes	No	N/A
samples or one per batch (metals only)?		X	
Were SD RPD results at or below CLs? If no, detail below.	Yes	No	N/A
Were 3D RFD results at or below CLS? If ito, detail below.			X

Laboratory QA/QC Summary

Out of 330 total data points:

- 292 data points (88.5% of total) remain unqualified.
- Out of 38 data points (11.5% of total) qualified as estimated:
 - No data points were due to detections below the RL or above the instrument upper calibration value or estimated values.
 - 29 data points (76.3% of qualified, 8.8% of total) were due to laboratory blank contamination.
 - 9 data points (23.7% of qualified, 2.7% of total) were due to poor accuracy (high LCS and low MS recoveries).
 - No data points were due to poor precision.
- No data points were rejected.

OVERALL SUMMARY

Data Quality

Out of 330 total data points:

- 253 data points (76.7%) remain unqualified and are considered quantitative.
- Out of 77 data points (23.3%) qualified as estimated and assigned as qualitative:
 - 74 data points (96.1% of qualified, 22.4% of total) due to field QA/QC.
 - 36 data points (46.8% of qualified, 10.9% of total) due to laboratory QA/QC.
- · No data points were rejected.

Completeness

Out of 19 samples planned, 4 wells were dry and unable to be sampled, so 15 samples were completed. This sample delivery group is 78.9% complete. This is not reflective of quality.

Out of 120 analyses planned, the lab failed to complete Radium 226+228 analysis, so 105 analyses were completed. This work order is 87.5% complete. This is not reflective of quality.

Attachment C:

Statistical Analysis

CONTENTS

1.0	INT	RODUC'	TION	1
• •	DD D		DVD 171 1311 VACA	
2.0	PRE		ARY DATA ANALYSIS	
	2.1	Data A	Analysis Techniques	2
		2.1.1	Mean	2
		2.1.2	Standard Deviation	2
		2.1.3	Coefficient of Variance	2
		2.1.4	Quartiles and the Five Number Summary	
	2.2	Visual	Tools	3
		2.2.1	Histograms	3
		2.2.2	Dot Plots	
		2.2.3	Outliers	5
		2.2.4	Treatment of Non-Detects	
	2.3	Summ	ary Results	6
3.0	UPC	RADIE	NT AND DOWNGRADIENT WELL COMPARISON	12
	3.1	Groun	dwater Protection Standards	12
		3.1.1	Normal Distribution	
		3.1.2	Upper Tolerance Limits and Groundwater Protection Standard	
4.0	CON	ICLUSIO	ONS	16
5.0	REE	ERENC	ES	17
5.0	KLI	LICENCI	טם	1 /

LIST OF FIGURES

- Figure C.1. Histogram of fluoride data from the CCR Landfill upgradient wells
- Figure C.2. Dot plot of fluoride data the CCR Landfill upgradient wells
- Figure C.3. Histograms and dot plots for the upgradient Ash Landfill data
- Figure C.4. Background upper tolerance limit plots for the CCR Landfill

LIST OF TABLES

- Table C.1. Summary statistics for the CCR Landfill upgradient wells
- Table C.2. Five-number summary for the CCR Landfill upgradient wells
- Table C.3. Shapiro-Wilk Test for the CCR Landfill upgradient wells
- Table C.4. Comparison of downgradient wells to the Groundwater Protection Standard

1.0 INTRODUCTION

This appendix contains a statistical analysis of the data collected from the groundwater monitoring network for the CCR Landfill at the Hunter Power Plant in Castle Dale, Utah. Methods used to evaluate compliance vary depending on the characteristics of the upgradient well data. Upgradient well data were analyzed for outliers, normality, non-detects, and other characteristics that affect the comparison measures. A comprehensive statistical analysis is presented along with a discussion of the methods used to compare upgradient and downgradient water quality. Table C.1 lists the upgradient and downgradient wells that are used in this analysis. Note that if a well appears in Table C.1 and not in the tables and figures in this appendix it means that no samples were able to be collected from that well.

Table C.1. Upgradient and downgradient wells for the CCR Landfill.

Upgradient Well	Downgradient Well
ELF-1D	ELF-3
ELF-2	ELF-4
ELF-9	ELF-5R
ELF-10	ELF-6R
	ELF-7
	ELF-8
	ELF-11
	ELF-12
	ELF-13
	ELF-14
	ELF-15
	ELF-16
	ELF-17

2.0 PRELIMINARY DATA ANALYSIS

The primary purpose of this statistical analysis is to establish background values from the upgradient well data and compare these to the downgradient well data to determine if the downgradient water quality has been / remains impacted by the CCR Landfill. Familiarity with numerical and distributional characteristics of the upgradient wells aids in computing appropriate limits and in correctly interpreting those limits. This section contains a statistical summary of the upgradient well data. It is essential to understand the statistical characteristics of the data, prior to making the upgradient / downgradient well comparison. This understanding helps to ensure the appropriate calculations have been done and comparisons are completed using the proper statistical measures. The mean, standard deviation, quartiles, and other statistical quantities and corresponding graphs are presented in the following sections.

2.1 Data Analysis Techniques

The following sections summarize the statistical tools and techniques, used to evaluate upgradient well data from the CCR Landfill.

2.1.1 Mean

One measure of primary interest is the center of the data. The average (\bar{x}), or the mean, is the most commonly used measure of the central tendency of the data. However, it can be heavily influenced by outliers and by asymmetric data. The mean is calculated using Equation (1):

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{1}$$

Where:

 \overline{x} = mean

n = number of observations

 $x_i = i^{th}$ observation.

2.1.2 Standard Deviation

Another quantity of interest is the spread of the data. The standard deviation (*s*) is the most commonly used measure of spread, as it is easy to interpret and is used in many other statistical methods. Because it is calculated using the average, it is also sensitive to outliers and affected by data that are not symmetric. The standard deviation is calculated using Equation (2):

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$
 (2)

Where:

s = standard deviation

n = number of observations

 $x_i = i^{th}$ observation

 \bar{x} = mean of the observations.

2.1.3 Coefficient of Variance

The coefficient of variance (CV) is a relative measure of variation in the sample data which expresses the standard deviation relative to the mean. The CV is expressed as a percentage and

provides a direct comparison to the standard deviations of two different data sets. It is important to note the mean of the data may be very close to or very far away from zero and the spread may be independent of the distance from the mean to zero. Therefore, no firm guidelines have been established for interpreting the CV.

The CV was calculated for each detected analyte in each data grouping using Equation (3):

$$CV = \frac{s}{\overline{X}} \times 100\% \tag{3}$$

Where:

s = standard deviation

 \bar{X} = mean of the observations

2.1.4 Quartiles and the Five Number Summary

The five-number summary is a set of five numbers that are used to assess the spread of the data. It consists of the minimum value, first quartile, median, third quartile, and maximum of the data value. The first quartile is the 25th percentile of the data, the median is the 50th percentile of the data, and the third quartile is the 75th percentile of the data. The 25th percentile of the data is the number such that 25% of the data are less than that number and 75% of the data are above the 25th percentile. The median and third quartiles are found in a similar manner.

2.2 Visual Tools

It is difficult to review numerical summary statistics and identify the degree of symmetry or normality of data without the aid of visual tools. In completing the statistical analysis for the CCR Landfill, histograms and dot plots were developed for each of the analytes with at least one detectable observation. All graphs were developed using the R Statistical Package (R Core Team 2023).

2.2.1 Histograms

Histograms display the distribution and symmetry of the data. The data are displayed in such a way, that deviations from a normal (i.e., bell shaped) distribution can easily be observed. Outliers are also often identifiable in a histogram. Histograms for the upgradient wells were generated using both non-detects and detected results. The method detection limits (MDL) are plotted on the histogram with a blue line to show which observations are non-detects.

If an analyte has more than one MDL there will be more than one blue line on the histogram. Figure C.1 below is a histogram of fluoride data for the upgradient wells for the CCR Landfill. It is provided here to illustrate data distribution using a histogram. All of the histograms used to examine the analytes from the CCR Landfill upgradient well data, are provided at the end of this appendix in Figure C.3.

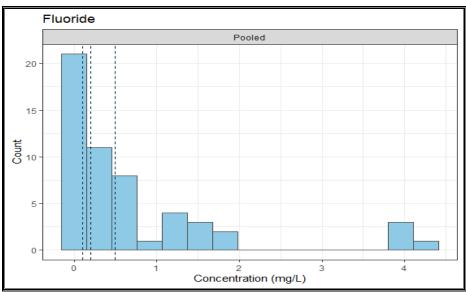


Figure C.1. Histogram of fluoride data from the CCR Landfill upgradient wells.

2.2.2 Dot Plots

A dot plot is a graphical tool used to determine the spread of the data and to look for outliers. Each measured concentration is plotted on the graph so that non-detects and outliers are clearly visible. The MDL for non-detects are shown as green points on the plot. Figure C.2 uses the same fluoride data points used to develop the Figure C.1. Several of the points are non-detects and the concentrations in well ELF-10 are larger than those in the other wells. All of the dot plots used to examine the CCR Landfill upgradient well data are provided at the end of this appendix in Figure C.3.

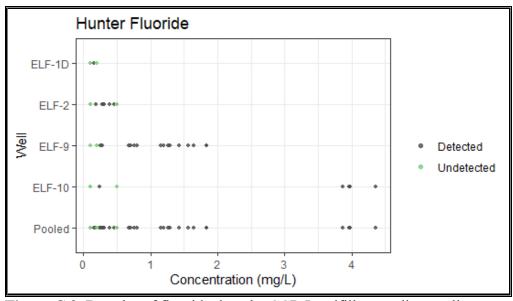


Figure C.2. Dot plot of fluoride data the CCR Landfill upgradient wells

2.2.3 Outliers

Outliers are data points that are notably larger or smaller than the rest of the data set and may indicate a problem with the data point or the data set as a whole. Examples which may be indicative of outliers include: 1) a misreported or erroneous concentration, 2) analytical error(s), or 3) natural variations in groundwater concentrations. Outliers are generally not omitted from project data simply because they are outliers. Rather, the result is examined individually or by project, to ensure the outlier does not represent an erroneous result or another concern warranting either additional sampling or omission of the outlier from the data analysis. There are reasonable situations when it is appropriate to remove outliers. For example, if outliers which represent exceedingly low concentrations are used to compute background concentrations, they may result in background levels which are too conservative. Conversely, use of excessively high outlier concentrations to compute background values, may result in an overestimation of background concentrations resulting in false-negative comparisons for downgradient groundwater quality.

Outliers were detected in the arsenic, cadmium, chromium, fluoride, lead, and radium data for the CCR Landfill. However, only the arsenic and chromium outliers are extreme enough to warrant removal from the dataset. Figure C.5 shows the concentration of the arsenic outlier relative to the other observed arsenic concentrations. This outlier was not included in the Groundwater Protection Standard (GWPS) calculation because it would have resulted in an inflated GWPS. The MDLs for the non-detects in the boron upgradient data in February 2016 and August 2019 were 5 mg/L and the largest detected value was less than 4 mg/L. This is an unusually large MDL and its inclusion would have resulted in a GWPS that was larger than any concentration detected in the upgradient wells. Thus, the non-detects were removed from the upgradient boron data and are not included in any tables or graphs in this appendix. The fluoride data for the May 2022 sampling event were all non-detects with unusually high detection limits so they were not included in the analysis. Fluoride was reassessed during the Spring 2023 sampling event and detection limits were within the normally expected ranges. Thus, the fluoride non-detects from the most recent sampling event is included in the calculations in this report.

2.2.4 Treatment of Non-Detects

Non-detect values are common in environmental data. When present in data sets, non-detects produce difficulties in computing statistical metrics because reliable values cannot be assigned. Substituting a value such as the MDL or one-half of the MDL for non-detects are common practices. However, use of the detection limit, or one-half of the detection limit, can produce unstable or unreliable results (EPA 2009). Statistical methods, such as Kaplan-Meier (Helsel 2004), can be used to appropriately evaluate data sets containing significant quantities of non-detects, by producing estimates of the survival probability function for non-detects. These estimates can then be used to compute summary statistics on the data set. However, Kaplan-Meier does not perform well if more than 50% of the results are non-detects or if fewer than eight detections are available for evaluation.

The antimony, arsenic, cadmium, chromium, lead, and thallium data have more than 50% non-detects. Beryllium and mercury were not detected in any of the samples. Thus, statistical analysis cannot be done for those analytes. The cobalt, fluoride and selenium data have more than 15%

non-detects, but more than half of the data are detectable. As a result, Kaplan-Meier was used to compute means, standard deviations, and statistical limits used to compare the upgradient to downgradient water quality for cobalt, fluoride, and selenium.

2.3 Summary Results

Table C.2 provides summary statistics for the CCR Landfill upgradient well data. Although the data from the upgradient wells were combined when compared to the downgradient wells, the summary statistics presented in this section are separated by well and are presented as pooled data. The data are presented in this way, due to observed differences between the different wells for many of the analytes. These tables in conjunction with the histograms and normal-quantile plots, provide information about differences between wells and the data properties of the combined data. Note that summary statistics were only computed for analytes and wells with at least 50% detects and at least eight positive results. Analytes that were not detected in any upgradient well samples are not listed in Table C.2.

Table C.2. Summary statistics for the CCR Landfill upgradient wells

Analyte	Well	Number of Samples	Samples Detected	Median (mg/L)	Mean (mg/L)	Standard Deviatio n (mg/L)	Coefficient of Variation (%)
Antimony	ELF-1D	5	0	< 0.004	NA	NA	NA
Antimony	ELF-2	21	0	< 0.002	NA	NA	NA
Antimony	ELF-9	19	3	< 0.002	NA	NA	NA
Antimony	ELF-10	15	0	< 0.002	NA	NA	NA
Antimony	Pooled	60	3	< 0.002	NA	NA	NA
Arsenic	ELF-1D	5	0	< 0.002	NA	NA	NA
Arsenic	ELF-2	21	3	< 0.002	NA	NA	NA
Arsenic	ELF-9	19	19	0.0066	0.0067	0.0024	36
Arsenic	ELF-10	14	3	< 0.002	NA	NA	NA
Arsenic	Pooled	59	25	< 0.002	NA	NA	NA
Barium	ELF-1D	5	5	0.0103	NA	NA	NA
Barium	ELF-2	21	20	0.0102	0.0137	0.0096	70
Barium	ELF-9	19	19	0.0160	0.0330	0.0309	94
Barium	ELF-10	15	15	0.0353	0.0384	0.0214	56
Barium	Pooled	60	59	0.0136	0.0256	0.0237	93
Boron	ELF-1D	4	4	2.15	NA	NA	NA
Boron	ELF-2	20	20	3.29	3.31	0.19	6
Boron	ELF-9	17	17	1.36	1.43	0.21	15
Boron	ELF-10	14	14	1.60	1.63	0.18	11
Boron	Pooled	55	55	1.84	2.22	0.87	39
Cadmium	ELF-1D	5	0	< 0.0005	NA	NA	NA

Analyte	Well	Number of Samples	Samples Detected	Median (mg/L)	Mean (mg/L)	Standard Deviatio n (mg/L)	Coefficient of Variation (%)
Cadmium	ELF-2	21	1	< 0.0005	NA	NA	NA
Cadmium	ELF-9	19	1	< 0.0005	NA	NA	NA
Cadmium	ELF-10	15	6	< 0.0005	NA	NA	NA
Cadmium	Pooled	60	8	< 0.0005	NA	NA	NA
Calcium	ELF-1D	4	4	372	NA	NA	NA
Calcium	ELF-2	20	20	397	395	24.3	6
Calcium	ELF-9	18	18	62.5	76.2	30.9	41
Calcium	ELF-10	14	14	477	479	35.5	7
Calcium	Pooled	56	56	389	312	170	55
Chloride	ELF-1D	4	4	6760	NA	NA	NA
Chloride	ELF-2	20	20	304	329	122	37
Chloride	ELF-9	18	18	381	392	100.7	26
Chloride	ELF-10	14	14	7600	8918	2506	28
Chloride	Pooled	56	56	452	2958	4034	136
Chromium	ELF-1D	5	1	< 0.002	NA	NA	NA
Chromium	ELF-2	21	3	< 0.002	NA	NA	NA
Chromium	ELF-9	19	7	< 0.0036	NA	NA	NA
Chromium	ELF-10	15	11	0.003	0.0049	0.0039	81
Chromium	Pooled	60	22	< 0.002	NA	NA	NA
Cobalt	ELF-1D	5	1	< 0.004	NA	NA	NA
Cobalt	ELF-2	21	13	0.0048	0.0057	0.0026	45
Cobalt	ELF-9	19	5	< 0.004	NA	NA	NA
Cobalt	ELF-10	15	11	0.0043	0.0049	0.0013	27
Cobalt	Pooled	60	30	0.004	0.0047	0.002	43
Fluoride	ELF-1D	4	1	< 0.132	NA	NA	NA
Fluoride	ELF-2	19	9	< 0.103	NA	NA	NA
Fluoride	ELF-9	17	15	1.16	1.00	0.58	58
Fluoride	ELF-10	14	5	< 0.1	NA	NA	NA
Fluoride	Pooled	54	30	0.268	0.74	1.07	145
Lead	ELF-1D	5	0	< 0.002	NA	NA	NA
Lead	ELF-2	21	2	< 0.002	NA	NA	NA
Lead	ELF-9	19	4	< 0.002	NA	NA	NA
Lead	ELF-10	15	6	< 0.002	NA	NA	NA
Lead	Pooled	60	12	< 0.002	NA	NA	NA
Lithium	ELF-1D	5	5	2.19	NA	NA	NA

Analyte	Well	Number of Samples	Samples Detected	Median (mg/L)	Mean (mg/L)	Standard Deviatio n (mg/L)	Coefficient of Variation (%)
Lithium	ELF-2	21	21	1.64	2.21	1.11	50
Lithium	ELF-9	19	19	1.03	1.05	0.41	39
Lithium	ELF-10	15	15	2.17	2.35	0.99	42
Lithium	Pooled	60	60	1.61	1.88	1.02	54
Molybdenum	ELF-1D	5	5	0.0161	NA	NA	NA
Molybdenum	ELF-2	21	20	0.003	0.0031	0.0007	24
Molybdenum	ELF-9	19	19	0.106	0.0937	0.0378	40
Molybdenum	ELF-10	15	15	0.0795	0.0735	0.0393	53
Molybdenum	Pooled	60	59	0.0336	0.0504	0.0494	98
pН	ELF-1D	4	4	7.22	NA	NA	NA
рН	ELF-2	20	20	7.26	7.30	0.157	2
pН	ELF-9	18	18	7.92	7.92	0.146	2
pН	ELF-10	14	14	7.18	7.26	0.411	6
pН	Pooled	56	56	7.37	7.48	0.387	5
Radium	ELF-1D	5	5	2.2	NA	NA	NA
Radium	ELF-2	21	21	1.63	1.97	1.58	80
Radium	ELF-9	19	18	1.5	1.49	0.563	38
Radium	ELF-10	15	15	2.41	3.02	3.24	107
Radium	Pooled	60	59	1.805	2.11	1.97	94
Selenium	ELF-1D	5	0	< 0.002	NA	NA	NA
Selenium	ELF-2	21	21	0.0879	0.228	0.233	102
Selenium	ELF-9	19	4	< 0.002	NA	NA	NA
Selenium	ELF-10	15	10	0.009	0.0983	0.139	142
Selenium	Pooled	60	35	0.0042	0.106	0.181	171
Sulfate	ELF-1D	4	4	8790	NA	NA	NA
Sulfate	ELF-2	20	20	7950	7764	690	9
Sulfate	ELF-9	18	18	6500	6518	723	11
Sulfate	ELF-10	14	14	14950	14718	4789	33
Sulfate	Pooled	56	56	7950	9190	4085	44
TDS	ELF-1D	4	4	26900	NA	NA	NA
TDS	ELF-2	20	20	12000	12010	459	4
TDS	ELF-9	18	18	10550	10640	803	8
TDS	ELF-10	14	14	38000	37443	2387	6
TDS	Pooled	56	56	12000	18990	11553	61
Thallium	ELF-1D	5	0	< 0.002	NA	NA	NA

Analyte	Well	Number of Samples	Samples Detected	Median (mg/L)	Mean (mg/L)	Standard Deviatio n (mg/L)	Coefficient of Variation (%)
Thallium	ELF-2	21	1	< 0.002	NA	NA	NA
Thallium	ELF-9	19	0	< 0.002	NA	NA	NA
Thallium	ELF-10	15	0	< 0.002	NA	NA	NA
Thallium	Pooled	60	1	< 0.002	NA	NA	NA

Table C.3 provides the five-number summaries for the CCR Landfill upgradient wells. As with the summary statistics, a five-number summary was computed for each well as well as for the pooled data. If a minimum or a quartile falls within the range of non-detects it is denoted using a less-than (<) symbol. Analytes that were not detected in any of the upgradient well samples are not listed in Table C.3.

Table C.3. Five-number summary for the CCR Landfill upgradient wells.

Analyte	Well	Minimum (mg/L)	First Quartile (mg/L)	Median (mg/L)	Third Quartile (mg/L)	Maximum (mg/L)
Antimony	ELF-1D	< 0.002	< 0.004	< 0.004	< 0.004	< 0.004
Antimony	ELF-2	< 0.0005	< 0.002	< 0.002	< 0.004	< 0.004
Antimony	ELF-9	< 0.0006	< 0.002	< 0.002	< 0.004	0.004
Antimony	ELF-10	< 0.001	< 0.002	< 0.002	< 0.0033	< 0.004
Antimony	Pooled	< 0.0005	< 0.002	< 0.002	< 0.004	0.004
Arsenic	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Arsenic	ELF-2	< 0.0007	< 0.002	< 0.002	< 0.002	0.002
Arsenic	ELF-9	0.0025	0.0052	0.0066	0.0074	0.0117
Arsenic	ELF-10	< 0.002	< 0.002	< 0.002	< 0.002	0.0093
Arsenic	Pooled	< 0.0007	< 0.002	< 0.002	0.0052	0.0117
Barium	ELF-1D	0.0084	0.0085	0.0103	0.0103	0.0104
Barium	ELF-2	< 0.0084	0.0097	0.0102	0.012	0.050
Barium	ELF-9	0.0118	0.0127	0.0160	0.0379	0.102
Barium	ELF-10	0.0145	0.0195	0.0353	0.051	0.0863
Barium	Pooled	< 0.0084	0.0104	0.0136	0.0334	0.102
Boron	ELF-1D	1.94	2.06	2.15	2.20	2.23
Boron	ELF-2	2.94	3.17	3.29	3.41	3.77
Boron	ELF-9	1.16	1.31	1.36	1.50	1.91
Boron	ELF-10	1.39	1.54	1.60	1.67	2.12
Boron	Pooled	1.16	1.50	1.84	3.21	3.77
Cadmium	ELF-1D	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005

Analyte	Well	Minimum (mg/L)	First Quartile (mg/L)	Median (mg/L)	Third Quartile (mg/L)	Maximum (mg/L)
Cadmium	ELF-2	< 0.0002	< 0.0005	< 0.0005	< 0.0005	0.0010
Cadmium	ELF-9	< 0.0002	< 0.0005	< 0.0005	< 0.0005	0.0005
Cadmium	ELF-10	< 0.0005	< 0.0005	< 0.0005	0.0006	0.0011
Cadmium	Pooled	< 0.0002	< 0.0005	< 0.0005	< 0.0005	0.0011
Calcium	ELF-1D	353	363	372	381	393
Calcium	ELF-2	342	382	397	415	430
Calcium	ELF-9	48.9	57.1	62.5	86.2	166
Calcium	ELF-10	407	460	477	503	543
Calcium	Pooled	48.9	90.6	389	429	543
Chloride	ELF-1D	6430	6588	6760	6960	7200
Chloride	ELF-2	187	213	304	449	473
Chloride	ELF-9	242	320	381	460	595
Chloride	ELF-10	5710	7128	7600	11325	13100
Chloride	Pooled	187	308	452	6813	13100
Chromium	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	0.0023
Chromium	ELF-2	< 0.001	< 0.002	< 0.002	< 0.002	0.066
Chromium	ELF-9	< 0.002	< 0.002	< 0.0036	0.0054	0.0201
Chromium	ELF-10	< 0.002	< 0.002	0.003	0.0061	0.0164
Chromium	Pooled	< 0.001	< 0.002	< 0.002	0.005	0.066
Cobalt	ELF-1D	< 0.004	< 0.004	< 0.004	< 0.004	0.0054
Cobalt	ELF-2	< 0.0032	< 0.004	0.0048	0.006	0.0131
Cobalt	ELF-9	< 0.0005	< 0.004	< 0.004	0.004	0.0052
Cobalt	ELF-10	< 0.004	< 0.004	0.0043	0.0052	0.0079
Cobalt	Pooled	< 0.0005	< 0.004	0.004	0.0051	0.0131
Fluoride	ELF-1D	< 0.1	< 0.1	< 0.1315	0.1723	0.200
Fluoride	ELF-2	< 0.1	< 0.1	< 0.103	0.3515	0.500
Fluoride	ELF-9	< 0.1	0.678	1.16	1.43	1.84
Fluoride	ELF-10	< 0.1	< 0.1	<0.1	3.03	4.36
Fluoride	Pooled	< 0.1	< 0.1	0.268	0.788	4.36
Lead	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Lead	ELF-2	< 0.0005	< 0.002	< 0.002	< 0.002	0.0021
Lead	ELF-9	< 0.0005	< 0.002	< 0.002	< 0.002	0.0077
Lead	ELF-10	< 0.002	< 0.002	< 0.002	0.0028	0.012
Lead	Pooled	< 0.0005	< 0.002	< 0.002	< 0.002	0.012
Lithium	ELF-1D	1.96	2.12	2.19	2.2	2.89
Lithium	ELF-2	1.34	1.52	1.64	2.14	4.93

Analyte	Well	Minimum (mg/L)	First Quartile (mg/L)	Median (mg/L)	Third Quartile (mg/L)	Maximum (mg/L)
Lithium	ELF-9	0.724	0.792	1.03	1.08	2.48
Lithium	ELF-10	0.841	1.82	2.17	2.90	4.59
Lithium	Pooled	0.724	1.08	1.61	2.18	4.93
Molybdenum	ELF-1D	0.0087	0.0153	0.0161	0.0165	0.0207
Molybdenum	ELF-2	< 0.002	0.0027	0.003	0.0034	0.005
Molybdenum	ELF-9	0.0322	0.0614	0.106	0.123	0.158
Molybdenum	ELF-10	0.0131	0.0428	0.0795	0.111	0.124
Molybdenum	Pooled	< 0.002	0.0033	0.0336	0.100	0.158
рН	ELF-1D	7.02	7.13	7.22	7.28	7.30
рН	ELF-2	7.12	7.20	7.26	7.41	7.76
рН	ELF-9	7.51	7.87	7.92	8.03	8.19
рН	ELF-10	6.85	6.99	7.18	7.38	8.37
рН	Pooled	6.85	7.20	7.37	7.87	8.37
Radium	ELF-1D	1.09	1.23	2.2	2.63	4.4
Radium	ELF-2	0.61	0.99	1.63	2.29	8.1
Radium	ELF-9	< 0.64	1.15	1.5	1.88	2.6
Radium	ELF-10	0.46	1.67	2.41	3.14	14.2
Radium	Pooled	< 0.46	1.13	1.805	2.40	14.2
Selenium	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Selenium	ELF-2	0.0031	0.0084	0.0879	0.451	0.608
Selenium	ELF-9	< 0.0012	< 0.002	< 0.002	< 0.002	0.0095
Selenium	ELF-10	< 0.002	< 0.002	0.009	0.152	0.410
Selenium	Pooled	< 0.0012	< 0.002	0.0042	0.115	0.608
Sulfate	ELF-1D	7730	8413	8790	9380	10700
Sulfate	ELF-2	6030	7310	7950	8215	8720
Sulfate	ELF-9	5460	5855	6500	7035	8030
Sulfate	ELF-10	8610	10075	14950	19675	20700
Sulfate	Pooled	5460	6845	7950	9013	20700
TDS	ELF-1D	25000	26350	26900	27425	28700
TDS	ELF-2	11300	11675	12000	12300	13100
TDS	ELF-9	9420	10150	10550	11125	12000
TDS	ELF-10	32900	35750	38000	39350	40300
TDS	Pooled	9420	11275	12000	29750	40300
Thallium	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Thallium	ELF-2	< 0.0002	< 0.002	< 0.002	< 0.002	0.002
Thallium	ELF-9	< 0.0002	< 0.002	< 0.002	< 0.002	< 0.002

Analyte	Well	Minimum (mg/L)	First Quartile (mg/L)	Median (mg/L)	Third Quartile (mg/L)	Maximum (mg/L)
Thallium	ELF-10	< 0.001	< 0.002	< 0.002	< 0.002	< 0.002
Thallium	Pooled	< 0.0002	< 0.002	< 0.002	< 0.002	0.002

3.0 UPGRADIENT AND DOWNGRADIENT WELL COMPARISON

Groundwater quality was assessed using upper tolerance limits (UTLs) and the Maximum Contaminant Levels (MCL) for each of the Appendix III and IV analytes. The data measured from the upgradient/background wells were used to compute a UTL, which serves as the background value. The larger of the UTL and MCL was used as the Groundwater Protection Standard (GWPS). Data obtained from the downgradient wells were compared point-by-point to the GWPSs to determine if the site complies with the *Final Rule*. The software package Sanitas© v.2016, was used to compute the UTLs. As part of this evaluation, groundwater data were examined for characteristics that impact how the UTL was computed. These characteristics include the:

- Number of non-detect results
- Data distribution
- Site-wide false-positive rate (SWFPR)
- Spatial and seasonal variability.

Summary statistics and other statistical characteristics of the data are discussed in the previous section. These characteristics were used to compute the appropriate UTL for each analyte.

3.1 Groundwater Protection Standards

The shape or distribution of the data was assessed to ensure that the most appropriate UTL was used for comparison purposes. The most efficient UTL is a parametric UTL that assumes the data follow a normal distribution. If the data do not follow a normal distribution, a non-parametric UTL is typically used. Thus, the data for each analyte are assessed to determine if a parametric UTL can be computed from the data. The parametric UTL is computed using the formula below:

$$UTL = \bar{X} + \kappa \times S$$

Where:

 \bar{X} = the average of the background data

 κ = multiplier from EPA Unified Guidance, March 2009

S = standard deviation of the background data

3.1.1 Normal Distribution

Histograms and dot plots were used to visually inspect the data for deviations from normality and to determine if outliers are present. This examination reveals that outliers are present in the data. The Shapiro-Wilk test was used to assess normality in conjunction with the normal quantile plots. If the p-value associated with the test was greater than or equal to 0.05, the data are considered normally distributed and a parametric UTL was computed using the upgradient measurements. If the p-value is less than 0.05, then the maximum detected value was used as the UTL.

Note: The 0.05 p-value is not a hard and fast rule. Parametric UTLs were computed for analytes whose p-values were sufficiently close to 0.05 as determined by the Sanitas software (Sanitas 2016).

If the data for an analyte were not normally distributed, the ladder of powers method was used to determine if a reasonable transformation existed that would produce normal data. The ladder of powers tests different monotonic transformations of the data, such as the natural logarithm or square, to see if the transformed data have a normal distribution. If a transformation within the ladder of powers can be found that produces normal data, a parametric UTL was computed using the transformed data. If a transformation was identified, it was applied to both upgradient / background and downgradient groundwater data prior to comparison.

A non-parametric UTL was computed for data that are not normally distributed and cannot be transformed. The non-parametric UTL is the largest value measured in the upgradient / background wells. Table C.4 summarizes the results of the Shapiro-Wilk test for each of the Appendix III and IV analytes where at least 50% of the measurements were detects. An appropriate transformation was found for lithium, pH, and radium. Non-parametric UTLs were computed for all of the analytes except for lithium, pH, and radium.

Table C.4. Shapiro-Wilk Test for the CCR Landfill upgradient wells.

Analyte	W-Statistic	P-Value	Normal
Barium	0.7183	< 0.0001	No
Boron	0.8324	< 0.0001	No
Calcium	0.8107	< 0.0001	No
Chloride	0.6877	< 0.0001	No
Cobalt	0.7405	< 0.0001	No
Fluoride	0.6345	< 0.0001	No
Lithium	0.8728	< 0.0001	No
Cube Root of Lithium	0.9487	0.0136	Yes
Molybdenum	0.8435	< 0.0001	No
рН	0.9295	0.0028	No
Cube Root of pH	0.9325	0.0038	Yes
Radium	0.5609	< 0.0001	No
LN of Radium	0.9604	0.0490	Yes

Analyte	W-Statistic	P-Value	Normal
Selenium	0.6272	< 0.0001	No
Sulfate	0.7074	< 0.0001	No
TDS	0.7016	< 0.0001	No

3.1.2 Upper Tolerance Limits and Groundwater Protection Standard

This section contains the GWPS computed for each analyte. Table C.5 lists the UTL, MCL, and GWPS for each of the analytes in the upgradient wells. The following criteria were used for determining each GWPS:

- If more than 50% of the data were detected and have a normal distribution, a parametric UTL was computed.
- If the data were not normally distributed or more than 50% of the data were nondetects, the greater of the largest MDL and maximum detected value was used as the UTL.
- If all of the upgradient samples were non-detects, the largest MDL was used as the UTL.
- The larger of the MCL and the UTL was used as the GWPS.
- Fluoride is compared to both the MCL and the UTL if the MCL exceeds the UTL, to meet the criteria for Appendix III constituents.

Figure C.4 shows graphs that were constructed for each of the analytes that had at least one detectable measurement in the downgradient wells. The graphs illustrate the GWPS as a horizontal line with the measurements from each of the downgradient wells plotted on the same graph. Non-detects are represented by hollow gray circles on the graphs. These graphs clearly depict how the downgradient measurements compare to the GWPS. Results above the GWPS line represent values exceeding the GWPS.

As the graphs illustrate, boron, cobalt, lithium, and molybdenum exceeded site-specific background or the GWPS. Table C.5 lists site-specific background values, maximum contaminant limits MCLs, the GWPS and the wells that exceed the GWPS for each analyte. GWPS plots are not provided for analytes that were not detected in any downgradient samples.

Table C.5. Comparison of downgradient wells to the Groundwater Protection Standard

Analyte	Upper Tolerance Limit (mg/L)	Maximum Contaminant Level (mg/L)	Groundwater Protection Standard (mg/L)	Downgradient Wells that Exceed Groundwater Protection Standard
Antimony	0.004	0.006	0.006	Within Limit
Arsenic	0.0117	0.01	0.0117	Within Limit
Barium	0.102	2.0	2.0	Within Limit
Beryllium	0.0025	0.004	0.004	Within Limit
Boron ^a	3.77	NA	3.77	ELF-4, ELF-5R, ELF-6R, ELF-8, ELF-11
Cadmium	0.0011	0.0050	0.0050	Within Limit
Calcium	543	NA	543	Within Limit
Chloride	13100	NA	13100	Within Limit
Chromium	0.066	0.1000	0.1000	Within Limit
Cobalt	0.0131	0.006	0.0131	ELF-8, ELF-11
Fluoride	4.36	4.0	4.36	Within Limit
Fluoride Appendix III	4.36	NA	4.36	Within Limit
Lead	0.012	0.015	0.015	Within Limit
Lithium	4.22	0.04	4.22	ELF-6R
Mercury	0.0002	0.002	0.002	Within Limit
Molybdenum	0.158	0.100	0.158	ELF-8
pH Acidic Range	6.56	NA	6.56	Within Limit
pH Basic Range	8.48	NA	8.48	Within Limit
Radium	6.1	5.0	6.1	Within Limit
Selenium	0.608	0.050	0.608	Within Limit
Sulfate	20700	NA	20700	Within Limit
TDS	40300	NA	40300	Within Limit
Thallium	0.002	0.002	0.002	Within Limit

^a New monitoring well ELF-16 exhibited concentrations in excess of the background UTL for boron and the GWPS for lithium. ELF-16 was installed in 2022 as a boundary well for the landfill and as yet does not have eight independent measurements. As a result, it is not shown in Table C.5.

4.0 CONCLUSIONS

Groundwater data was collected from the CCR Landfill monitoring network at the Hunter Power Plant. A comprehensive data analysis was completed on the upgradient wells to ensure that comparisons between upgradient and downgradient wells were done correctly. During the Spring 2023 sampling event, statistically significant increases (SSIs) above background were noted for Appendix III constituents:

• Boron

SSIs above groundwater protection standards were noted for Appendix IV constituents:

- Cobalt
- Lithium
- Molybdenum

5.0 REFERENCES

- EPA, 2009, "Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities Unified Guidance," EPA 530/R-09-007, U.S. Environmental Protection Agency, March 2009.
- Helsel, Dennis, 2004, Nondetects and Data Analysis: Statistic for Censored Environmental Data, New York: Wiley Interscience.
- R Core Team, 2023, R: A Language and Environment for Statistical Computing, https://www.R-project.org, R Foundation for Statistical Computing, Vienna, Austria.
- Sanitas Technologies, 2016, Sanitas, www.sanitastech.com, Shawnee, Kansas.

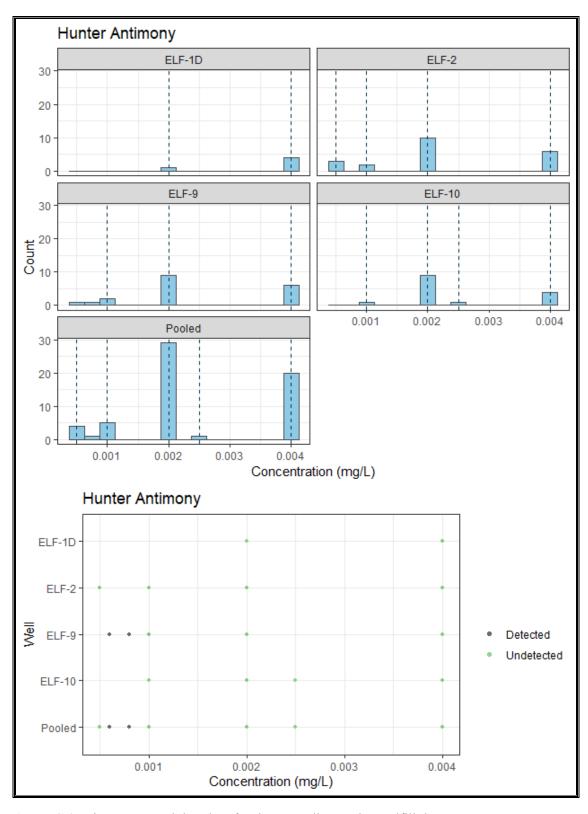


Figure C.3. Histograms and dot plots for the upgradient Ash Landfill data.

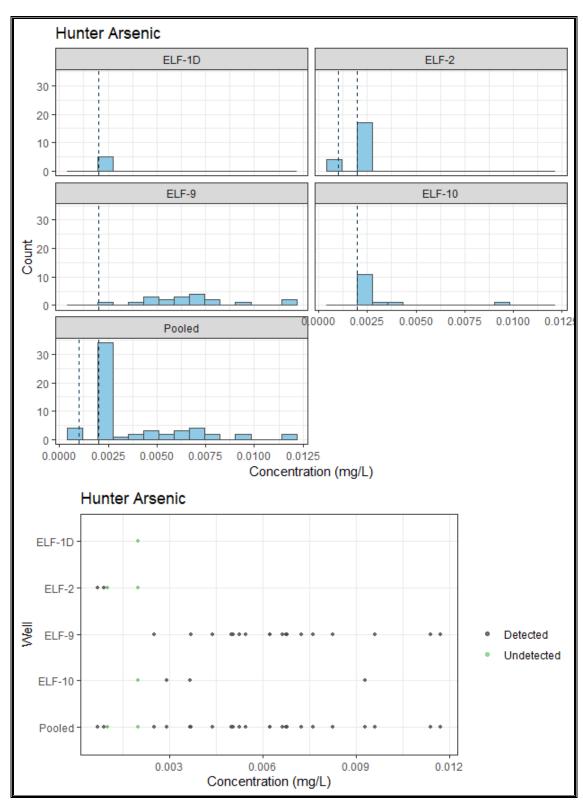


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

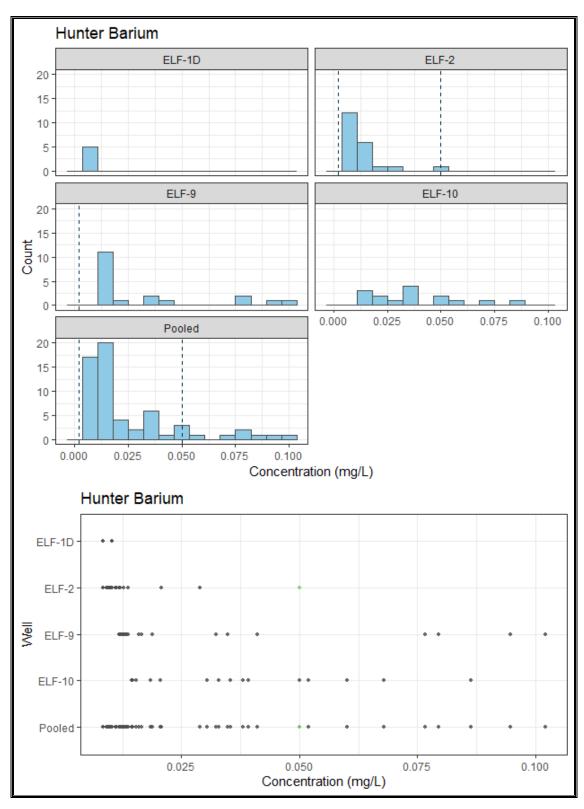


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

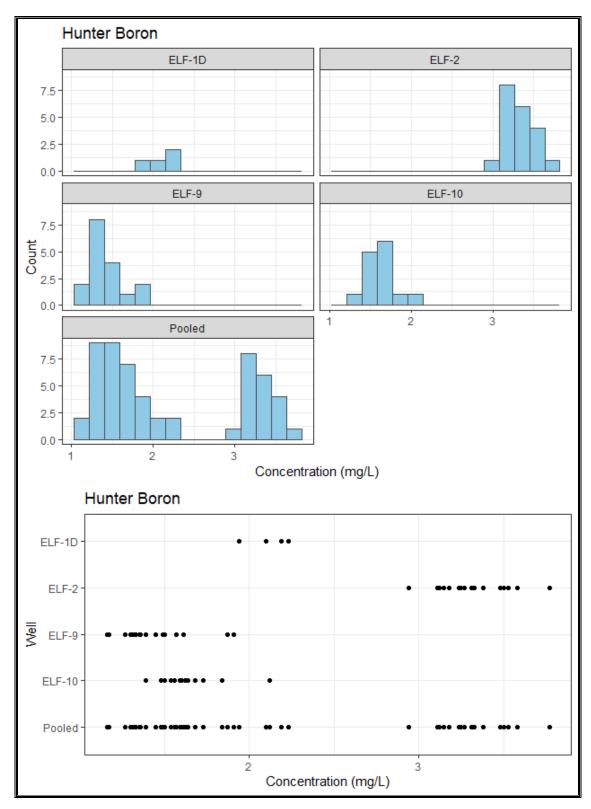


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

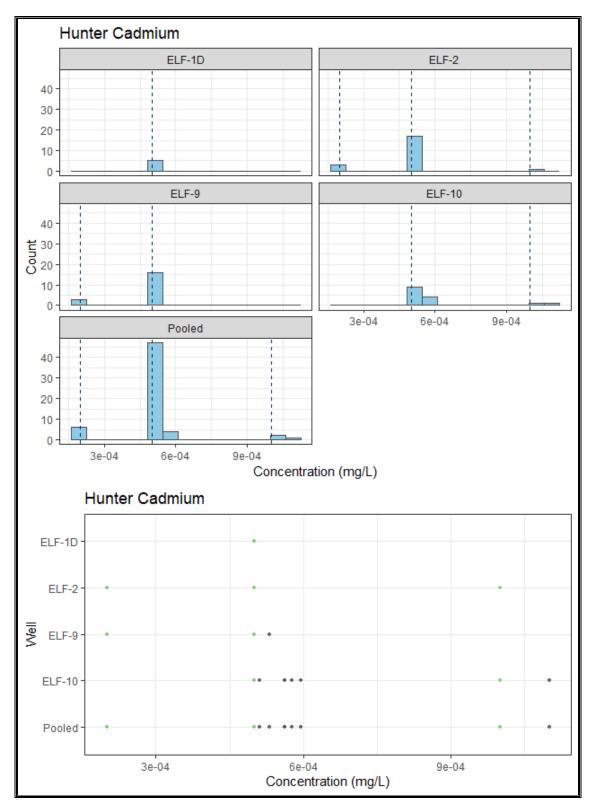


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

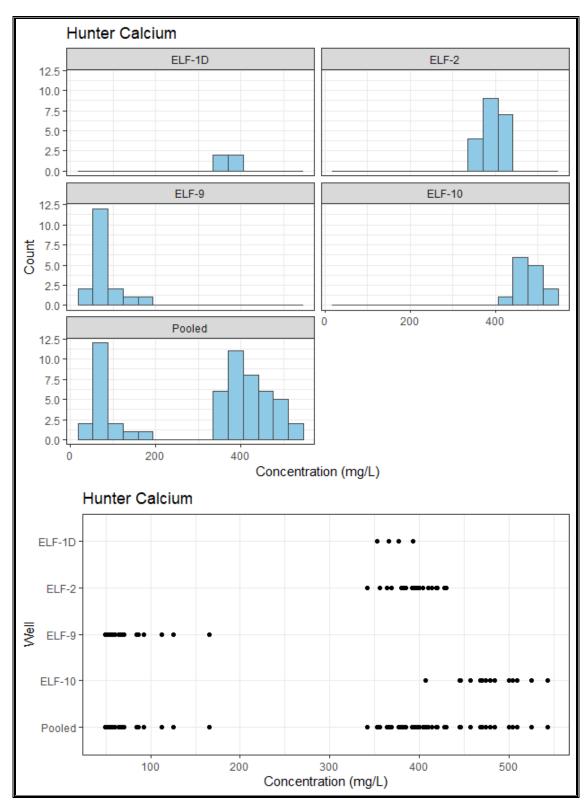


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

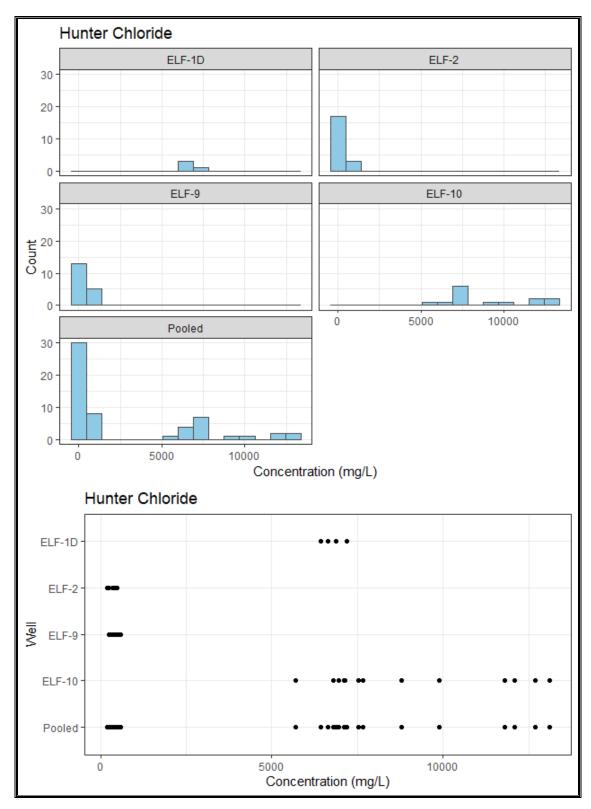


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

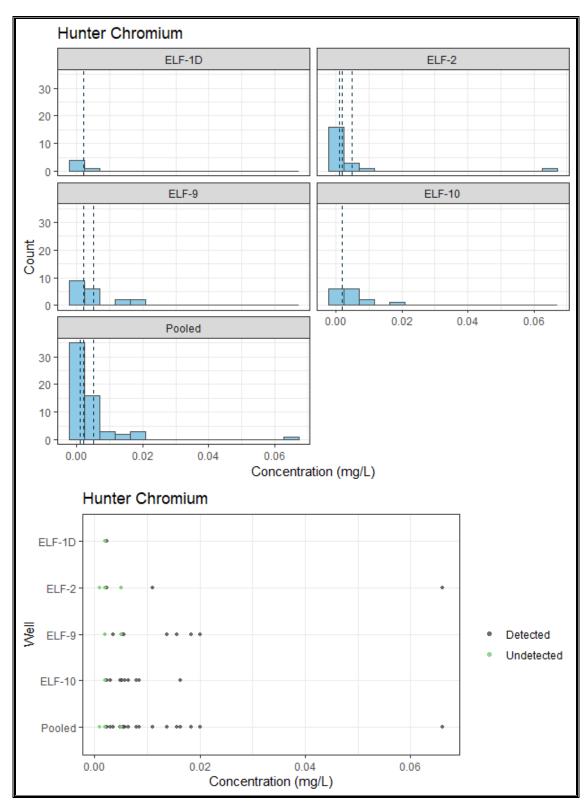


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

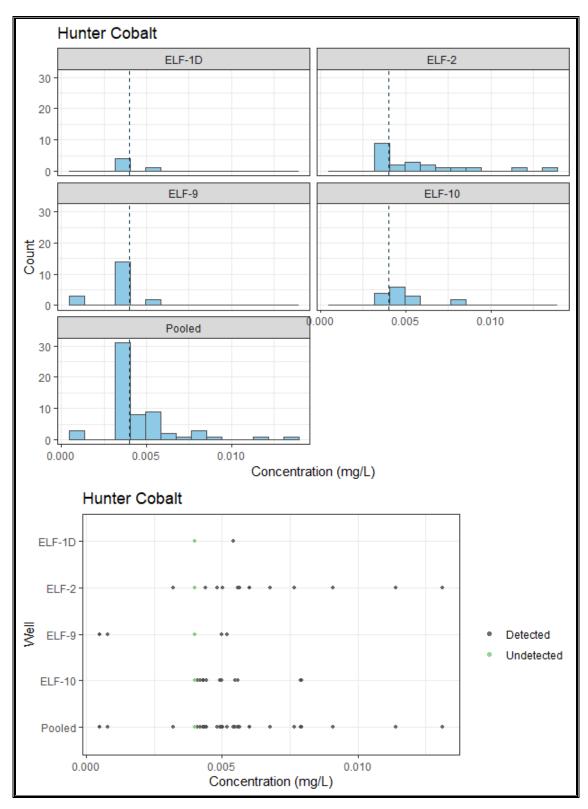


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

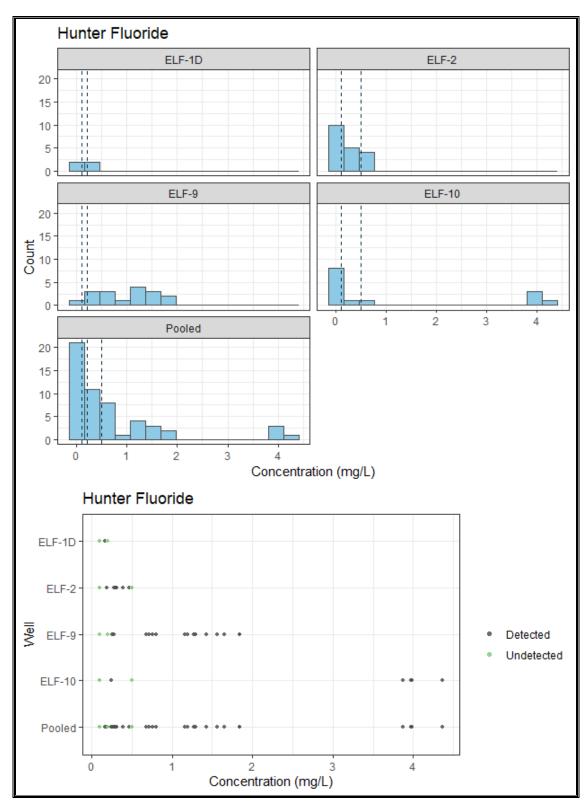


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

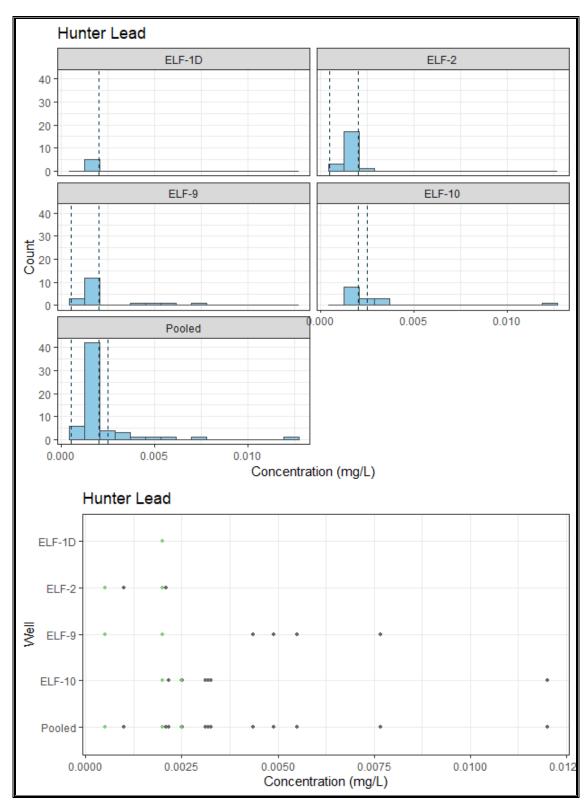


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

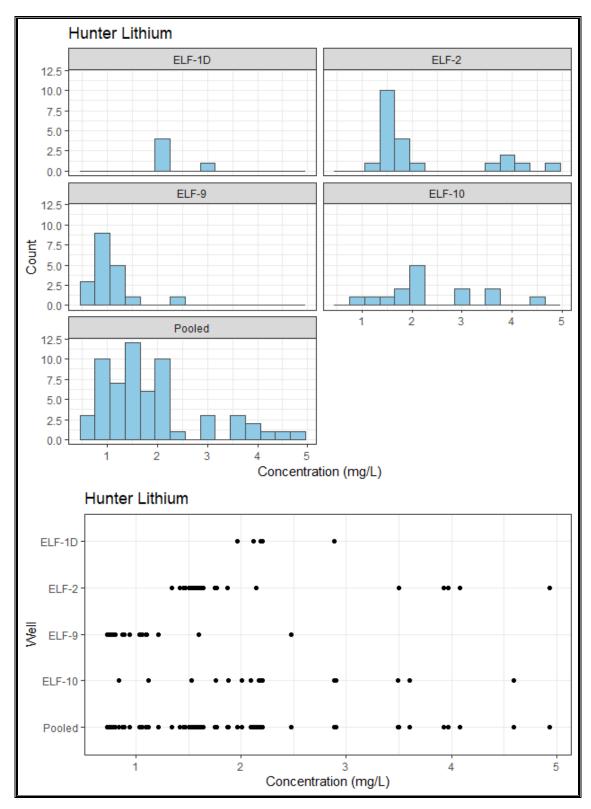


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

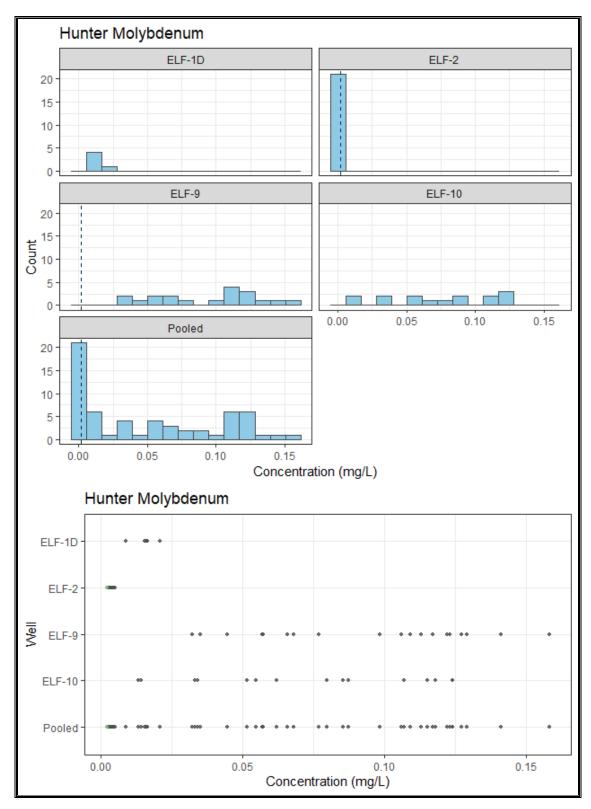


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

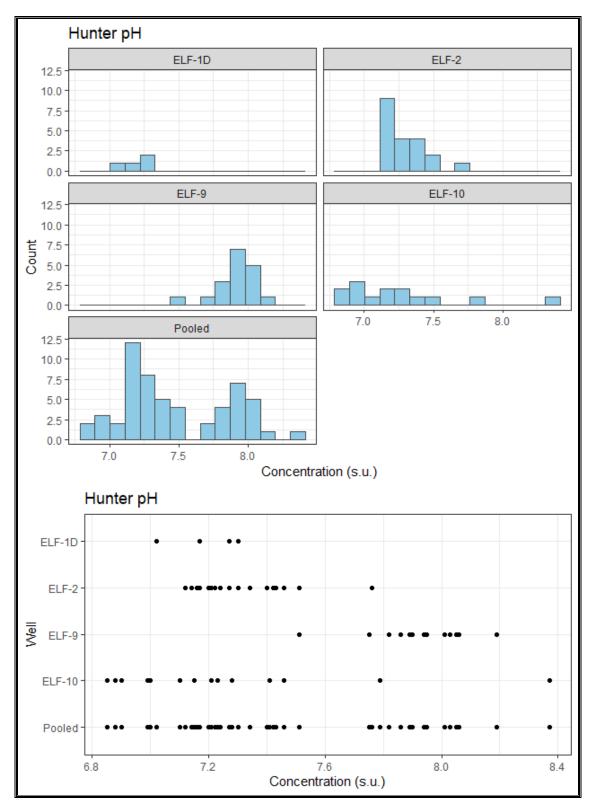


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

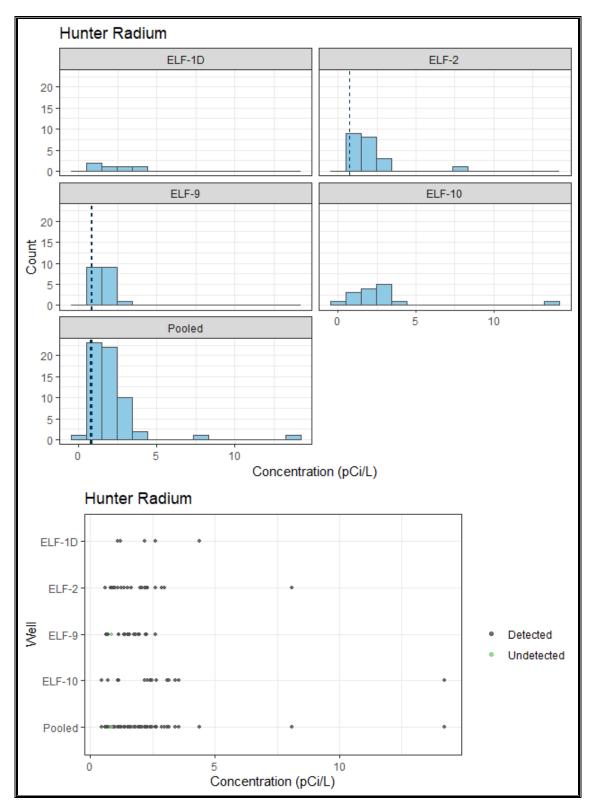


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

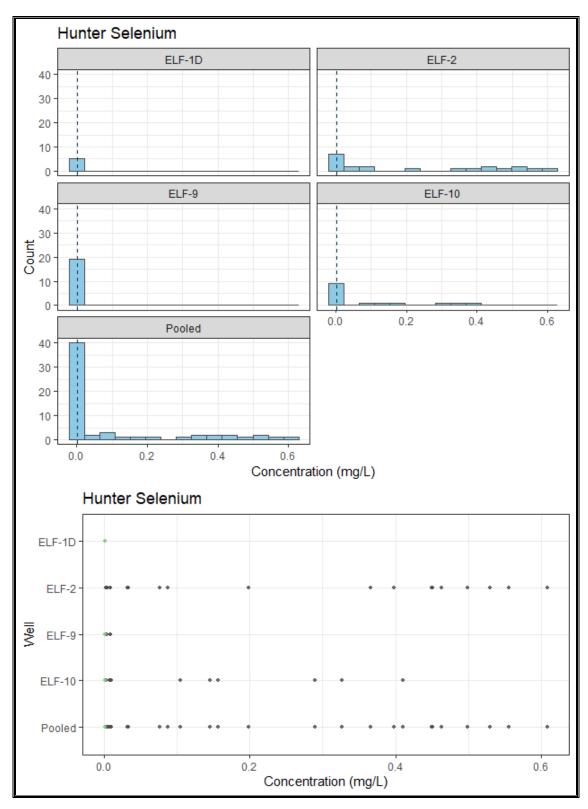


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

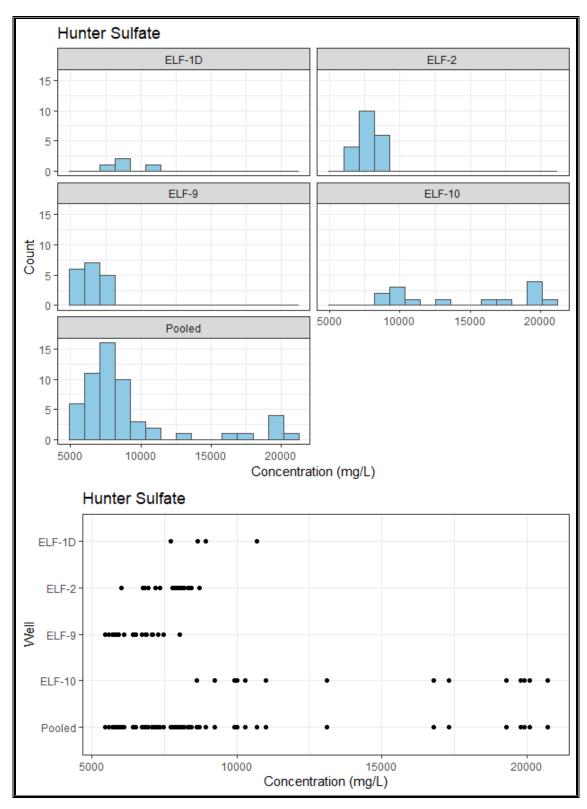


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

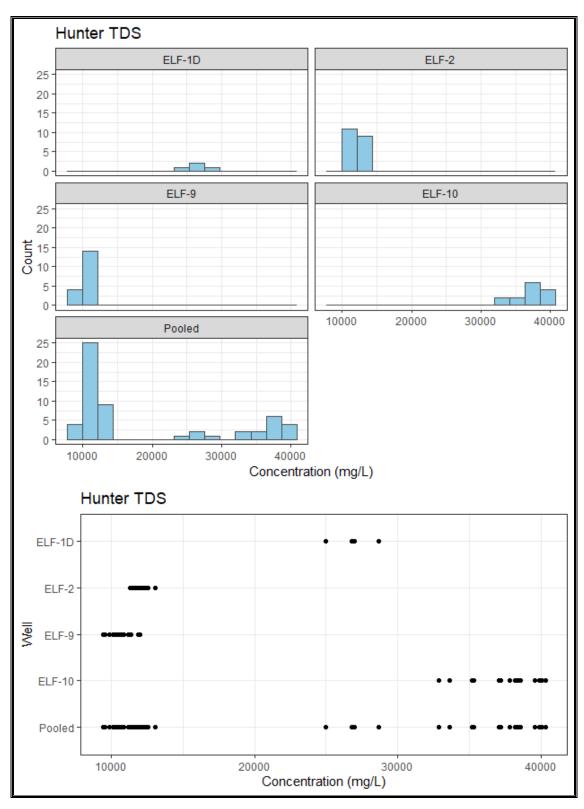


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

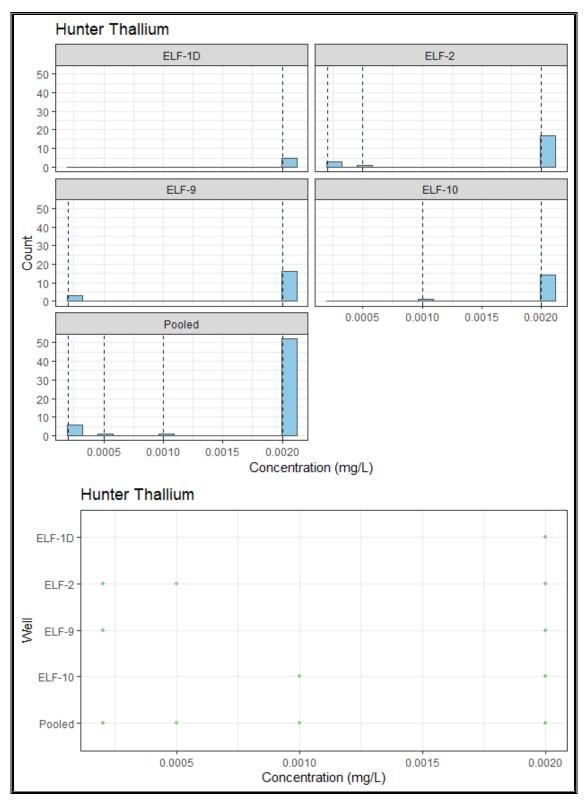


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

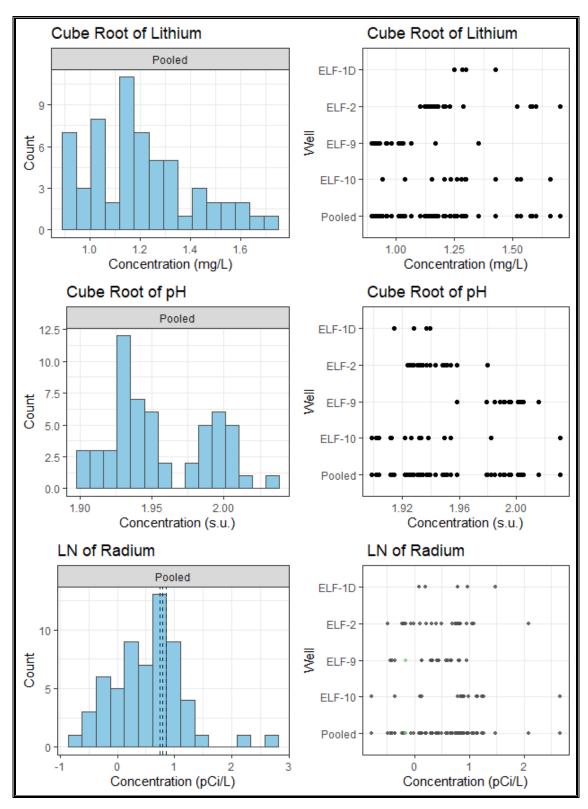


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

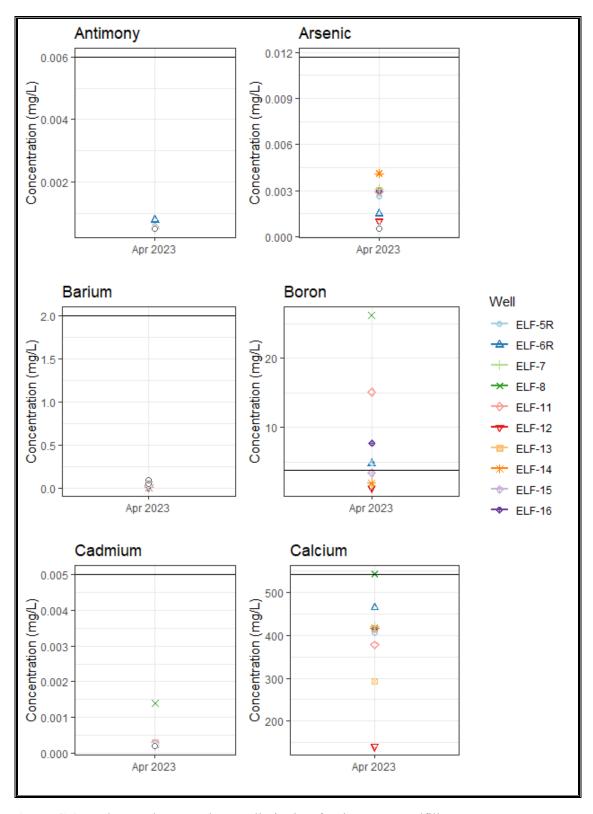


Figure C.4. Background upper tolerance limit plots for the CCR Landfill.

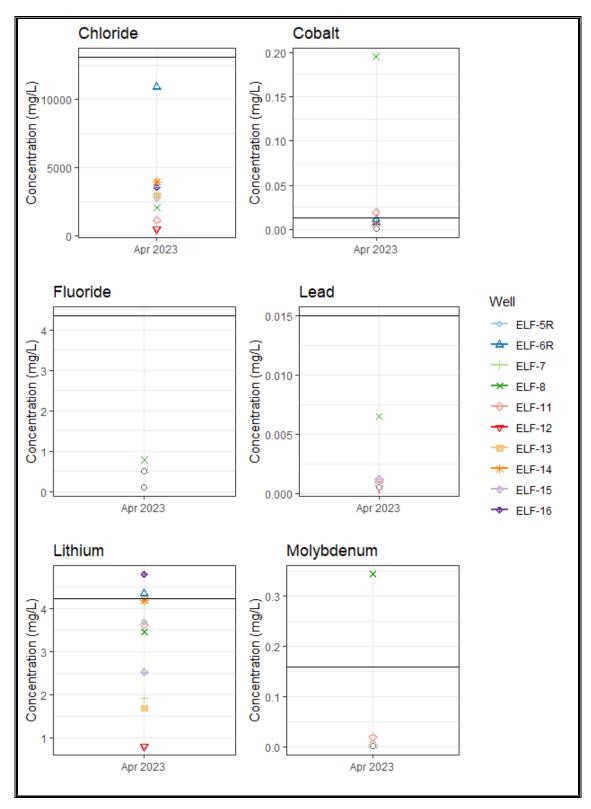


Figure C.4 (cont.). Background upper tolerance limit plots for the CCR Landfill.

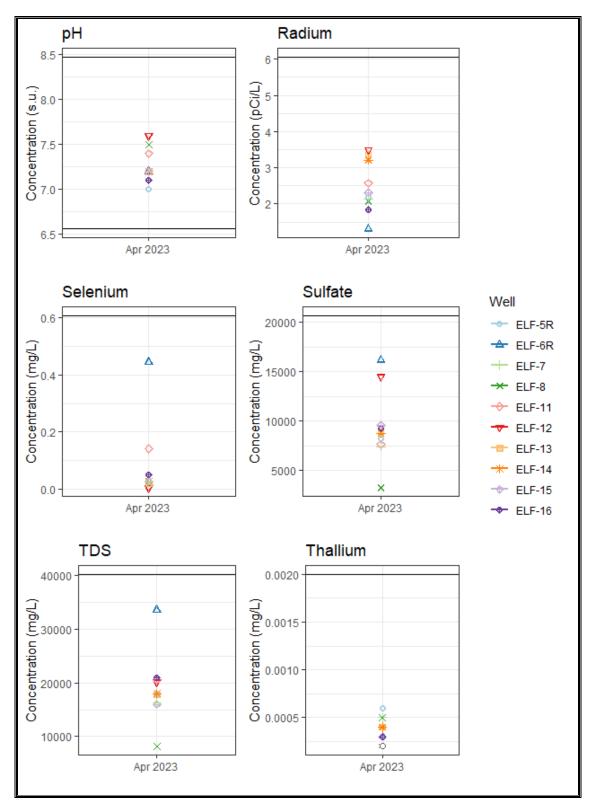


Figure C.4 (cont.). Background upper tolerance limit plots for the CCR Landfill.

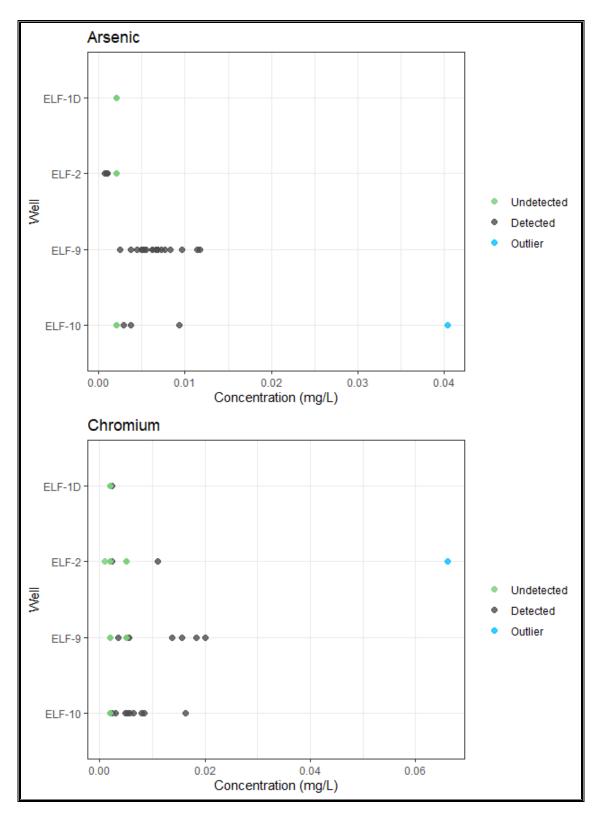


Figure C.5. Outlier plot for the Ash Landfill data.

Attachment D:

Field Data Sheets

480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-1d		
Sampling Method Low Flow Bladder Pump		Sample Date	April 6, 2023		
Decon Method	Dedicated Equipment	Sample Time			
Sampler(s) Initials DV and BG Depth to Water (ft.) 82.91					
Field Conditions	Good		·		

			FIELD PARA	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS/OF	BSERVATIONS		

No Sample. We have checked recharge in the past, Very poor. 3.6 ' water. not able to collect water.

GROUNDWATER SAMPLING FORM						
Project Name	Hunter Power Plant	Project Location	Castle Dale UT			
Job number(s)	2018.0284	Sample ID	ELF-1s			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time				
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	34.53			
Field Conditions	Good	·	•			

			FIELD PARA	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION					
APPENDIX FO	R CURRENT SAMPLE					
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
	·	COMMENTS	/OBSERVATIONS			

No Sample. 0.9 ft of water. very poor recharge.

480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM								
Project Name Hunter Power Plant Project Location Castle Dale UT								
Job number(s)	2018.0284	Sample ID	ELF-2					
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023					
Decon Method	Dedicated Equipment	Sample Time	11:30					
Sampler(s) Initials DV and BG Depth to Water (ft.) 24.21								
Field Conditions	•							

			FIELD PARAN	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,105	12.4	14,100	1.29	6.91	8	66.7
1,110	12.4	14,000	1.20	6.87	8	103
1,115	12.5	14,100	1.13	6.86	8	187
1,120	12.7	14,000	1.06	6.85	8	193
1,125	12.7	14,000	0.99	6.84	8	197

	SAMPLE COLLECTION					
APPENDIX FOR	R CURRENT SAMPLE	Not Applicable				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS/OF	BSERVATIONS			

ORP is Salinity. Started to get more turbid at sampling. Filled 4 bottles.

Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name	Hunter Power Plant	Project Location	Castle Dale UT			
Job number(s)	2018.0284	Sample ID	ELF-3			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time				
Sampler(s) Initials	33.34					
Field Conditions	Good	•	•			

			FIELD PARA	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION					
APPENDIX FO	R CURRENT SAMPLE					
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS/O	BSERVATIONS			

No Sample, 1.6' water. Very poor producer, takes > week to recharge.

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-4		
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023		
Decon Method	Dedicated Equipment	Sample Time	18:55		
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	18.59		
Field Conditions	Good	·	•		

			FIELD PARAN	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,830	10.9	15,600	1.21	6.82	9	64.3
1,835	11.0	15,600	1.02	6.80	8.9	40.4
1,840	11.0	15,600	0.93	6.80	9	17.9
1,845	11.0	15,600	0.89	6.80	9	18.4
1,850	10.9	15,600	0.83	6.80	9	18

	SAMPLE COLLECTION					
APPENDIX FO	R CURRENT SAMPLE	Not Applicable				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS	/OBSERVATIONS			

ORP is Salinity Filled 4 bottles.

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-5R		
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023		
Decon Method	Dedicated Equipment	Sample Time	18:20		
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	21.32		
Field Conditions	Good	·	•		

			FIELD PARAM	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,755	12.2	22,500	1.09	7.04	13.3	387
1,800	12.3	22,100	1.10	6.97	13.1	169
1,805	12.4	22,100	0.99	6.96	13.1	142
1,810	12.4	22,100	0.94	6.94	13.1	138
1,815	12.5	22,100	0.90	6.94	13.1	131

	SAMPLE COLLECTION					
APPENDIX FOR	R CURRENT SAMPLE	Not Applicable				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS/OE	SERVATIONS			

ORP is Salinity. Filled 4 bottles.

GROUNDWATER SAMPLING FORM						
Project Name	Hunter Power Plant	Project Location	Castle Dale UT			
Job number(s)	2018.0284	Sample ID	ELF-6R			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023			
Decon Method	Dedicated Equipment	Sample Time	17:40			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	20.20			
Field Conditions	Good	·	•			

			FIELD PARAM	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,715	11.8	39,700	1.40	7.09	24.8	96.4
1,720	11.7	39,500	1.31	7.09	24.7	86.1
1,725	11.7	39,400	1.24	7.08	24.6	59.6
1,730	11.8	39,200	1.15	7.07	24.4	52.3
1,735	11.8	39,000	1.13	7.07	24.3	51.8

	SAMPLE COLLECTION					
APPENDIX FOR CURRENT SAMPLE Not Applicable						
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS	/OBSERVATIONS			

ORP is Salinity. Filled 4 bottles.

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name	Hunter Power Plant	Project Location	Castle Dale UT			
Job number(s)	2018.0284	Sample ID	ELF-7			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023			
Decon Method	Dedicated Equipment	Sample Time	19:40			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	16.89			
Field Conditions	Good	·				

			FIELD PARAM	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,915	10.7	20,000	2.34	6.87	11.7	191
1,920	10.4	20,100	2.31	6.85	11.7	65.2
1,925	10.6	19,900	2.26	6.85	11.7	41.6
1,930	10.7	19,900	2.14	6.84	11.6	42.1
1,935	10.7	19,900	2.13	6.84	11.7	42

	SAMPLE COLLECTION					
APPENDIX FOR	R CURRENT SAMPLE	Not Applicable				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS/OE	SERVATIONS			

ORP is salinity. Filled 4 bottles.

480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM							
Project Name Hunter Power Plant Project Location Castle Dale UT							
Job number(s)	2018.0284	Sample ID	ELF-8				
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023				
Decon Method	Dedicated Equipment	Sample Time	16:15				
Sampler(s) Initials DV and BG Depth to Water (ft.) 9.19							
Field Conditions	Field Conditions Good						

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,550	11.2	11,500	1.70	7.24	6.4	15.1
1,555	11.2	11,400	1.15	7.24	6.4	8.3
1,600	11.2	11,400	0.97	7.29	6.4	1.1
1,605	11.2	11,400	0.94	7.19	6.4	0
1,610	11.2	11,400	0.89	7.30	6.4	0

	SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE	Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS	OBSERVATIONS		

ORP is Salinity. Filled 8 bottles - Dup included.

480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM					
Project Name Hunter Power Plant Project Location Castle Dale UT					
Job number(s)	2018.0284	Sample ID	ELF-9		
Sampling Method Low Flow Bladder Pump		Sample Date	April 6, 2023		
Decon Method	Dedicated Equipment	Sample Time	09:50		
Sampler(s) Initials	22.85				
Field Conditions	Good	·			

			FIELD PARAN	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
915	11.1	14,900	1.33	7.63	8.3	36.8
920	11.2	14,400	1.07	7.62	8.3	29.1
925	11.2	14,100	0.99	7.64	8.1	30.6
930	11.2	14,000	0.95	7.63	7.9	0
935	11.0	13,600	0.92	7.62	7.5	0
940	11.2	12,600	1.01	7.48	7.1	0
945	11.2	12,400	1.06	7.46	6.9	0

	SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE	Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
	·	COMMENTS/OI	BSERVATIONS		

ORP is Salinity. Filled 4 bottles w/sample and 4 bottles w/di water for field blank.

Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-10			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time				
Sampler(s) Initials DV and BG Depth to Water (ft.) 50.56						
Field Conditions	Good	•				

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS/OI	BSERVATIONS		

1.44 water. From past experince, very poor recharge. No Sample.

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-11			
Sampling Method Low Flow Bladder Pump		Sample Date	April 5, 2023			
Decon Method	Dedicated Equipment	Sample Time	15:20			
Sampler(s) Initials DV and BG Depth to Water (ft.) 28.10						
Field Conditions	Good	•	•			

			FIELD PARAM	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,455	12.5	21,500	3.86	7.17	12.8	196
1,500	12.5	21,700	2.99	7.14	12.9	185
1,505	12.5	21,700	2.86	7.13	12.9	181
1,510	12.5	21,800	2.80	7.12	13	170
1,515	12.5	21,800	2.71	7.12	13	166

	SAMPLE COLLECTION				
APPENDIX FOR CURRENT SAMPLE Not Applicable					
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS	/OBSERVATIONS		

ORP is Salinity. Filled 4 bottles.

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-12			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time	17:00			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	21.65			
Field Conditions	Good	•				

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,635	12.4	22,300	1.26	7.45	13.2	138
1,640	12.4	22,300	1.10	7.44	13.2	64
1,645	12.4	22,400	1.02	7.43	13.3	53
1,650	12.4	22,400	1.00	7.42	13.3	48.5
1,655	12.4	22,500	0.97	7.42	13.3	48.1

SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE	Not Applicable		
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS	
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228	
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury	
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
3	(1) 250 mL poly	HNO3	Total metals	
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228	
4	(1) 250 mL poly	HNO3	Total metals, Total mercury	
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
		COMMENTS	/OBSERVATIONS	

ORP is Salinity Filled 4 bottles.

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-13			
Sampling Method Low Flow Bladder Pump		Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time	15:45			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	4.78			
Field Conditions	Good	·				

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,525	9.5	21,200	0.99	6.95	12.4	0.9
1,530	9.5	21,200	1.02	6.93	12.4	0
1,535	9.5	21,100	1.03	6.92	12.4	0
1,540	9.5	21,100	1.02	6.92	12.4	0

SAMPLE COLLECTION				
APPENDIX FO	OR CURRENT SAMPLE	Not Applicable		
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS	
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228	
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury	
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
3	(1) 250 mL poly	HNO3	Total metals	
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228	
4	(1) 250 mL poly	HNO3	Total metals, Total mercury	
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
		COMMENTS	/OBSERVATIONS	

ORP is Salinity. Filled 4 bottles.

GROUNDWATER SAMPLING FORM							
Project Name Hunter Power Plant Project Location Castle Dale UT							
Job number(s)	2018.0284	Sample ID	ELF-14				
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023				
Decon Method	Dedicated Equipment	Sample Time	14:30				
Sampler(s) Initials DV and BG Depth to Water (ft.) 6.78							
Field Conditions	Field Conditions Good						

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,410	9.9	23,500	1.43	7.12	13.9	72.9
1,415	9.8	23,500	1.22	7.12	13.9	54.3
1,420	9.7	23,500	1.26	7.13	13.9	54.1
1,425	9.7	23,500	1.21	7.12	13.9	53.5

	SAMPLE COLLECTION				
APPENDIX FOR	R CURRENT SAMPLE	Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS/OE	SERVATIONS		

ORP is Salinity Filled 4 bottles

GROUNDWATER SAMPLING FORM								
Project Name Hunter Power Plant Project Location Castle Dale UT								
Job number(s)	2018.0284	Sample ID	ELF-15					
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023					
Decon Method	Dedicated Equipment	Sample Time	15:10					
Sampler(s) Initials DV and BG Depth to Water (ft.) 7.94								
Field Conditions	Field Conditions Good							

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,445	10.5	21,800	1.36	7.03	12.8	17.1
1,450	10.5	21,800	1.20	6.98	12.9	64.2
1,455	10.6	21,800	1.21	6.96	12.8	42.5
1,500	10.6	21,800	1.12	6.96	12.9	19.6
1,505	10.6	21,800	1.13	6.95	12.9	22.1

SAMPLE COLLECTION				
APPENDIX FO	OR CURRENT SAMPLE	Not Applicable		
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS	
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228	
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury	
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
3	(1) 250 mL poly	HNO3	Total metals	
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228	
4	(1) 250 mL poly	HNO3	Total metals, Total mercury	
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
		COMMENTS	/OBSERVATIONS	

ORP is Salinity. Filled 4 bottles.

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM									
Project Name	Hunter Power Plant	Project Location	Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-16						
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023						
Decon Method	Dedicated Equipment	Sample Time	12:15						
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	14.43						
Field Conditions	Good	·	•						

	FIELD PARAMETERS										
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)					
1,150	12.8	26,400	1.17	7.19	16	36.4					
1,155	12.8	26,500	1.11	7.18	16	30.8					
1,200	12.1	24,000	1.40	7.08	14.4	31					
1,205	12.0	24,100	1.23	7.07	14.4	30.3					
1,210	11.9	24,000	1.10	7.07	14.4	29.8					

SAMPLE COLLECTION								
APPENDIX FO	OR CURRENT SAMPLE	Not Applicable						
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS					
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228					
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury					
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite					
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity					
3	(1) 250 mL poly	HNO3	Total metals					
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite					
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity					
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228					
4	(1) 250 mL poly	HNO3	Total metals, Total mercury					
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite					
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity					
		COMMENTS	/OBSERVATIONS					

ORP is salinity. Filled 4 bottles.

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM									
Project Name	Hunter Power Plant	Project Location	Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-17						
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023						
Decon Method	Dedicated Equipment	Sample Time							
Sampler(s) Initials	Dv and BG	Depth to Water (ft.)	29.65						
Field Conditions	Good	·	<u> </u>						

	FIELD PARAMETERS										
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)					

SAMPLE COLLECTION								
APPENDIX FO	R CURRENT SAMPLE							
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS					
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228					
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury					
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite					
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity					
3	(1) 250 mL poly	HNO3	Total metals					
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite					
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity					
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228					
4	(1) 250 mL poly	HNO3	Total metals, Total mercury					
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite					
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity					
		COMMENTS/OF	BSERVATIONS					

Near Dry. No sample.

Attachment E:

Laboratory Analytical Reports

4/24/2023

Work Order: 23D0472 Project: Hunter Power Plant CCR

Pacificorp - Environmental Remediation
Attn: Brad Giles
1000 S Highway 10
Castle Dale, UT 84513

Client Service Contact: 801.262.7299

The analyses presented on this report were performed in accordance with the National Environmental Laboratory Accreditation Program (NELAP) unless noted in the comments, flags, or case narrative. If the report is to be used for regulatory compliance, it should be presented in its entirety, and not be altered.

Approved By:

Melissa Connolly, Project Manager

MeliCa

9632 South 500 West Sandy, Utah 84070 801.262.7299 Main 866.792.0093 Fax www.ChemtechFord.com

Pacificorp - Environmental Remediation

Project: Hunter Power Plant CCR **Project Manager:** Brad Giles

Laboratory ID	Sample Name
23D0472-01	ELF-2
23D0472-02	ELF-4
23D0472-03	ELF-5R
23D0472-04	ELF-6R
23D0472-05	ELF-7
23D0472-06	ELF-8
23D0472-07	ELF-9
23D0472-08	ELF-11
23D0472-09	ELF-12
23D0472-10	ELF-13
23D0472-11	ELF-14
23D0472-12	ELF-15
23D0472-13	ELF-16
23D0472-14	Duplicate - (CCR)
23D0472-15	Field Blank - (CCR)

Work Order Report Narrative

Sample Preparation

All samples were prepared within method specified holding times, except as noted on the report. No preparation issues were noted.

Method Blanks

All blank values were within method acceptance criteria. No blank values exceeded the minimum reporting limit for any analysis in this work order.

Laboratory Control Samples

All laboratory control samples were within method acceptance criteria.

Method Spikes

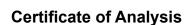
All method spike recoveries were within method acceptance criteria, except as noted by qualifying flags.

Method Spike Duplicates

All method spike duplicates were within method acceptance criteria, except as noted by qualifying flags.

Corrective Actions

There are no corrective actions associated with this work order.


Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com

Serving the Intermountain West Since 1953

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-2

Matrix: Water

Lab ID: 23D0472-01

Date Sampled: 4/6/23 11:30

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum		P (*	4 1 .	
	Result	<u>Units</u>	Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	212	mg/L	5.00	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pН	7.4	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:46	SPH
Sulfate	8440	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	11900	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0010	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.029	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0010	EPA 200.8	4/7/23	4/10/23	
Boron, Total	3.24	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	342	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	0.066	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0131	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0021	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.56	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0041	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0033	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 3 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

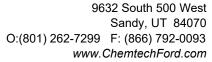
Project Name: Hunter Power Plant CCR

Sample ID: ELF-4

Matrix: Water

Lab ID: **23D0472-02**

Date Sampled: 4/5/23 18:55 Sampled By: Bradley Giles/Dennis Vanderbeek


Bate campica: II of 20 10100				campica By: Diadicy C			
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	<u>Flag(s)</u>
Inorganic							
Chloride	2350	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pH	7.1	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:47	SPH
Sulfate	6200	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	12800	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0015	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.012	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	4.79	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0004	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	463	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0069	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.80	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0023	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0150	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0006	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 4 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-5R

Matrix: Water

Lab ID: **23D0472-03**

Date Sampled: 4/5/23 18:20

Sampled By: Bradley Giles/Dennis Vanderbeek


<u> </u>				. , ,			
	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Inorganic							
Chloride	3650	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pH	7.0	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:51	SPH
Sulfate	8190	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	17900	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0006	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0026	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.017	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	4.75	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	407	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0042	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0006	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	3.69	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0042	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0323	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0006	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

Page 5 of 33 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

les

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

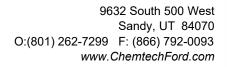
Sample ID: ELF-6R

Matrix: Water

Lab ID: 23D0472-04

Date Sampled: 4/5/23 17:40

Sampled By: Bradley Giles/Dennis Vanderbeek


	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Inorganic							
Chloride	10900	mg/L	500	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
рН	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:51	SPH
Sulfate	16200	mg/L	500	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	33600	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0008	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0015	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	ND	mg/L	0.100	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	4.74	mg/L	1.00	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	465	mg/L	4.0	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.100	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0113	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0007	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	4.35	mg/L	0.100	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0016	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.445	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 6 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

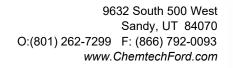
Project Name: Hunter Power Plant CCR

Sample ID: ELF-7

Matrix: Water

Lab ID: 23D0472-05

Date Sampled: 4/5/23 19:40 Sampled By: Bradley Giles/Dennis Vanderbeek


p							
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	<u>Flag(s)</u>
Inorganic							
Chloride	3050	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
рН	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:52	SPH
Sulfate	7420	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	16300	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0031	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.009	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	1.61	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	421	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0048	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.91	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0019	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0287	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0005	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 7 of 33

Serving the Intermountain West Since 1953

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-8

Matrix: Water

Lab ID: 23D0472-06

Date Sampled: 4/5/23 16:15		Sampled By: Bradley Giles/Dennis Vanderbeek						
	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)	
Inorganic								
Chloride	2040	mg/L	100	EPA 300.0	4/10/23	4/10/23		
Fluoride	0.787	mg/L	0.500	EPA 300.0	4/10/23	4/10/23		
pH	7.5	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:52	SPH	
Sulfate	3250	mg/L	100	EPA 300.0	4/10/23	4/10/23		
Total Dissolved Solids (TDS)	8160	mg/L	100	SM 2540 C	4/7/23	4/7/23		
Metals								
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23		
Arsenic, Total	0.0030	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23		
Barium, Total	0.011	mg/L	0.005	EPA 200.7	4/12/23	4/17/23		
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23		
Boron, Total	26.2	mg/L	0.05	EPA 200.7	4/12/23	4/17/23		
Cadmium, Total	0.0014	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23		
Calcium, Total	543	mg/L	0.2	EPA 200.7	4/12/23	4/17/23		
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/12/23	4/17/23		
Cobalt, Total	0.195	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23		
Lead, Total	0.0065	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23		
Lithium, Total	3.46	mg/L	0.005	EPA 200.7	4/12/23	4/17/23		
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23		
Molybdenum, Total	0.343	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23		
Selenium, Total	0.0175	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23		
Thallium, Total	0.0005	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23		

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

Page 8 of 33 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-9

Matrix: Water

Lab ID: **23D0472-07**

Date Sampled: 4/6/23 9:50 Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum Reporting		<u>Preparation</u>	<u>Analysis</u>	
	<u>Result</u>	<u>Units</u>	<u>Limit</u>	<u>Method</u>	<u>Date/Time</u>	<u>Date/Time</u>	Flag(s)
Inorganic							
Chloride	242	mg/L	5.00	EPA 300.0	4/10/23	4/10/23	
Fluoride	0.754	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pH	7.9	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:53	SPH
Sulfate	5730	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	9540	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0008	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0025	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.016	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	1.31	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	86.8	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0005	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.09	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0322	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0012	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 9 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

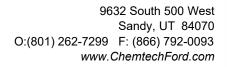
Project Name: Hunter Power Plant CCR

Sample ID: ELF-11

Matrix: Water

Lab ID: 23D0472-08

Date Sampled: 4/5/23 15:20 Sampled By: Bradley Giles/Dennis Vanderbeek


			Minimum		D 4:		
	Result	<u>Units</u>	Reporting <u>Limit</u>	Method	Preparation Date/Time	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	1120	mg/L	20.0	EPA 300.0	4/11/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pН	7.4	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:54	SPH
Sulfate	7610	mg/L	500	EPA 300.0	4/20/23	4/20/23	
Total Dissolved Solids (TDS)	20500	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.020	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	15.1	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	378	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0192	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0010	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	3.62	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0185	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.141	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 10 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

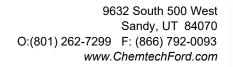
Project Name: Hunter Power Plant CCR

Sample ID: **ELF-12**

Matrix: Water

Lab ID: **23D0472-09**

Date Sampled: 4/6/23 17:00 Sampled By: Bradley Giles/Dennis Vanderbeek


			Minimum		P (*		
	Result	<u>Units</u>	Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	484	mg/L	5.00	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pН	7.6	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:54	SPH
Sulfate	14500	mg/L	500	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	20200	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0010	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.013	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	1.25	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	141	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0005	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	0.808	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0046	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

Page 11 of 33 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

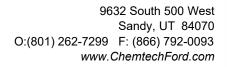
Project Name: Hunter Power Plant CCR

Sample ID: ELF-13

Matrix: Water

Lab ID: **23D0472-10**

Date Sampled: 4/6/23 15:45 Sampled By: Bradley Giles/Dennis Vanderbeek


	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Inorganic							
Chloride	2950	mg/L	20.0	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.100	EPA 300.0	4/20/23	4/20/23	
pН	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:55	SPH
Sulfate	8750	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	17800	mg/L	100	SM 2540 C	4/20/23	4/20/23	APH-R
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0030	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	ND	mg/L	0.050	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0010	EPA 200.8	4/7/23	4/10/23	
Boron, Total	ND	mg/L	0.50	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	293	mg/L	2.0	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.050	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0043	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.69	mg/L	0.050	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0009	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0188	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0004	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 12 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

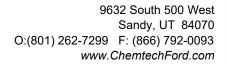
Sample ID: ELF-14

Matrix: Water

Lab ID: 23D0472-11

Date Sampled: 4/6/23 14:30

Sampled By: Bradley Giles/Dennis Vanderbeek


			Minimum				
	D 14	WT *4	Reporting Limit	M a l	Preparation	<u>Analysis</u> Date/Time	EL ()
Inaugania	Result	<u>Units</u>	Lillit	<u>Method</u>	<u>Date/Time</u>	Date/Time	Flag(s)
Inorganic Chloride	3930	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pH	7.2	pH Units	0.300	SM 4500 H-B	4/7/23 13:52	4/7/23 14:56	SPH
Sulfate	8780	•	100	EPA 300.0	4/10/23	4/11/23	SFII
		mg/L					
Total Dissolved Solids (TDS)	18000	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals		_					
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0041	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.010	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	1.93	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	417	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0062	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	4.19	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0034	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0275	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0004	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 13 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

les

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-15

Matrix: Water

Lab ID: 23D0472-12

Date Sampled: 4/6/23 15:10

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum		.		
	Result	<u>Units</u>	Reporting <u>Limit</u>	Method	Preparation Date/Time	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	2820	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pН	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:56	SPH
Sulfate	9590	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	16000	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0005	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0029	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.024	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	3.38	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	416	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0042	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0012	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	2.53	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0025	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0256	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 14 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-16

Matrix: Water

Lab ID: 23D0472-13

Date Sampled: 4/6/23 12:15

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum				
	D 14	WT *4	Reporting Limit	M a l	Preparation	<u>Analysis</u> Date/Time	EL ()
Inougania	Result	<u>Units</u>	Limit	<u>Method</u>	<u>Date/Time</u>	Date/Time	Flag(s)
Inorganic Chloride	3540	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pH	7.1	pH Units	0.300	SM 4500 H-B	4/7/23 13:53	4/7/23 15:04	SPH
Sulfate	9270	•	100	EPA 300.0	4/10/23	4/11/23	SFII
		mg/L					
Total Dissolved Solids (TDS)	20900	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0005	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0030	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.012	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	7.74	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	414	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0063	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	4.80	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0038	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0495	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 15 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

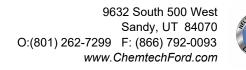
Project Name: Hunter Power Plant CCR

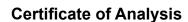
Sample ID: Duplicate - (CCR)

Matrix: Water

Lab ID: **23D0472-14**

Date Sampled: 4/5/23 0:00 Sampled By: Bradley Giles/Dennis Vanderbeek


			Minimum				
	Result	Units	Reporting Limit	Method	<u>Preparation</u> Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Inorganic	Kesuit	Onits	<u> </u>	Methou	<u>Bate/Time</u>	Date/Time	riag(s)
Chloride	2690	mg/L	500	EPA 300.0	4/10/23	4/11/23	
Fluoride	0.811	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pH	7.4	pH Units	0.1	SM 4500 H-B	4/7/23 13:53	4/7/23 15:05	SPH
Sulfate	3920	mg/L	500	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	8360	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Arsenic, Total	0.0026	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Barium, Total	0.010	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Boron, Total	26.2	mg/L	0.05	EPA 200.7	4/13/23	4/14/23	
Cadmium, Total	0.0016	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23	
Calcium, Total	469	mg/L	0.2	EPA 200.7	4/13/23	4/14/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Cobalt, Total	0.197	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Lead, Total	0.0060	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Lithium, Total	5.25	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.355	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Selenium, Total	0.0174	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Thallium, Total	0.0005	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23	


Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 16 of 33

Serving the Intermountain West Since 1953

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: Field Blank - (CCR)

Matrix: Water Lab ID: 23D0472-15

Date Sampled: 4/6/23 9:50 Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum Reporting		D	A 1	
	Result	<u>Units</u>	Limit	Method	Preparation Date/Time	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	ND	mg/L	1.00	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pH	5.7	pH Units	0.1	SM 4500 H-B	4/7/23 13:53	4/7/23 15:11	SPH
Sulfate	ND	mg/L	1.00	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	14	mg/L	10	SM 2540 C	4/10/23	4/10/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Arsenic, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Barium, Total	ND	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Boron, Total	ND	mg/L	0.05	EPA 200.7	4/13/23	4/14/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23	
Calcium, Total	ND	mg/L	0.2	EPA 200.7	4/13/23	4/14/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Cobalt, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Lithium, Total	ND	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Selenium, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Thallium, Total	ND	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 17 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation
Brad Giles
1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Report Footnotes

Abbreviations

ND = Not detected at the corresponding Minimum Reporting Limit (MRL).

1 mg/L = one milligram per liter or 1 mg/kg = one milligram per kilogram = 1 part per million.

1~ug/L~=one microgram per liter or~1~ug/kg = one microgram per kilogram = 1~part per billion.

1 ng/L = one nanogram per liter or 1 ng/kg = one nanogram per kilogram = 1 part per trillion.

On calculated parameters, there may be a slight difference between summing the rounded values shown on the report vs the unrounded values used in the calculation.

Flag Descriptions

APH-R = This sample was originally analyzed within the EPA-recommended holding time. The reported value was obtained from a confirmatory re-analysis that was performed outside of that holding time.

SPH = Sample submitted past method specified holding time.

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 18 of 33

CHEMTECH - FORD ANALYTICAL LABORATORY

CHAIN OF CUSTODY

COMPANY:	PacifiCorp Environmental	Remediati	on		BILLIN	IG AD	DRE	SS:				eı	mail i	invoid	e to E	radle	y Gile	s					1		
ADDRESS:	1407 West North Temple Sto				BILLING	CITY,	/STATI	E/ZIP:																	
CITY/STATE/ZIP:	Salt Lake City, Ut 8414	0			PURCHA	ASE O	RDER	#:																	
PHONE #:	(435) 748-6576	_FAX:			_																			FOR	D
CONTACT:	Bradley Giles	PROJECT:	Hunter Pow	er Plant CCR	<u>l</u>																LA	ABOR	ATOR	IIES	
EMAIL:	brad.giles@pacificorp.com	1						UND R	100				Q	C Lev	el 3 (1	.0 bus	iness	days	s)						
						* Exp	edited tu	ırnaroun	d subje	t to add	itional c	harge	TEST	S PEO	UESTEI							(B) (B)	D-	cteria	
								A PRESENT						JILLO		T	228					0.0	Da	cteria	
										8	Pb	Hg	E245.1				∞								
										Be,	Co,	⊨`					226					ont)			
										, Ba,	, C,	, Se,	/ E200.8 /	E300.0			dium	ed)				t/Abs	erated)		
								0	н В	, As,), Ca,	Mo,	N 11	- 11			A; Ra	combined)				coli (Present/Absent)	Enume		
			0			lers	A2540C	E300.0	A4500-H	s: Sb,	s: CD,	s: Li,	E200.	Sulfate			0-R/					coli	. soli (
2300	1472		KADS	on 23	500470	Containers	A25	l I	A45	etal	Metals:	Metals:	tals:	/Su			A750	te &				H +	H + E	Count)	
Lab Use Only	CL CL	IENT SAMPLE INFO	我的我们相同特色的影響的問題			Ş	.,	Fluoride		Total Metals:	al M	al M	Total Metals:	Cloride /			Radium A7500-RA; Radium	(separate				Total Coliform	Total Coliform + E. coli (Enumerated)	HPC (Plate Count)	E. Coli Only
	LOCATION / IDENTIFICATION	DATE	TIME	MATRIX	Field: Residual Chlorine	# of	TDS	문	표	Tot	Total	Total	Tot	ဗိ			Rad	es)				Total	Total	HPC	E. Co
	1. ELF-1D		-	w		4	x	x	x	x	x	x	x	x			x								
01	2. ELF-2	4/6/2023	11:30	w		4	x	x	x	x	x	x	x	x			x								
	3. ELF-3	-	•	w		4	x	х	x	x	x	x	х	х			х								
02	4. ELF-4	4/5/2023	18:55	w		4	х	х	х	х	х	х	х	х			х								
03	5. ELF-5R	4/5/2023	18:20	w		4	х	х	х	х	х	х	х	х			х								
0A	6. ELF-6R	4/5/2023	17:40	w		4	х	х	х	х	х	х	х	х			х								
05	7. ELF-7	4/5/2023	19:40	w		4	х	х	х	х	х	х	х	х			х								
Olo	8. ELF-8	4/5/2023	16:15	w		4	х	х	x	х	х	х	х	х			х								
07	9. ELF-9	4/6/2023	9:50	w		4	х	х	х	х	х	х	х	х			x								
	_{10.} ELF-10	-	-	w		4	х	х	x	х	x	х	х	x	-		х								
	sampled by: Bradley Giles & Dennis V	/anderbeek	Sampled by: [signature	e]									1	ONIC	E	NOT	ONIC	E	Te	mp (C	°):	1.			
	Special Instructions:													Sampl	es recei	ved ou	tside tl	he EPA	A reco	mmen	ded				
															peratur										
	Relinquished by: [signature]			Date/Time	12.21	Recei	ved by:	(signatu	ire]	/	/	1	7			2010-2017			Date/Ti	ime	43		1-	721	
	Relinquished by: [signature]			4-7-23 Date/Time	12:31	Recei	ved by:	[signate	re]	_	-								Date/Ti		07		10	231	
	Delta mishadhu (simahur)			Data/Time				- Talan	_	•															
	Relinquished by: [signature]			Date/Time		recei	ved by:	Sign		mple	Receir	ot Con	dition	A	21	191	e	M	17	179	1				
	CHEMTECH-FORD	801.262.7299 PHONI 866.792.0093 FAX				Payn	nent Te	rms	_			als Pre		_) Corre	t Conta	ainers		()	Heads	pace Pre	esent (\	/OC)	c	rney's
	9632 South 500 West Sandy, UT 84070	www.ChemtechFor	d.com							Conta		Intact bels M	latel) COC (erature B				
										Recei			atch) Suffici			lume		ecked b	ed within by:			19 of	33

CHEMTECH - FORD ANALYTICAL LABORATORY

CHAIN OF CUSTODY

COMPANY:	PacifiCorp Environmental	Remediati	on		BILLIN	IG AE	DRE	SS:				е	mail	invoi	e to l	Bradle	y Gile	es					A			
ADDRESS:	1407 West North Temple Ste	270			BILLING	CITY,	/STAT	E/ZIP:																		
CITY/STATE/ZIP:	Salt Lake City, Ut 84140	0			PURCH	ASE O	RDER	#:																		
PHONE #:	(435) 748-6576	FAX:			<u>-</u> .																CHI	EM ⁻	ΓEC	H-F	ORI	2
CONTACT:	Bradley Giles	PROJECT:	Hunter Pow	er Plant CCR	-).																į	LABC	DRAT	ORIE	S	
EMAIL:	brad.giles@pacificorp.com				-			UND F					Q	C Lev	el 3 (10 bus	iness	day	rs)							
						* Exp	edited to	urnarour	nd subjec	t to add	itional c	narge	TEST	S REQ	LIESTE	D								Bacte	orio	
											PPK 1	PSE NOT	1	JALL			228		0506038		4.275			Dacte	IIIa	
										8, B	Co, Pb	ті, нв	/ E245.				226 & 2									
										Ba, Be,	Cr, C	Se, TI	E200.8/	0.0	ı		ım 22						coli (Present/Absent)	(pa		
									В	As, B	Ca, C	10, S	7 / E2	E300.0			Radiu	combined)					sent/A	coli (Enumerated)		
						2	2	E300.0	0-H			1,1	E200.7	ate	ı		RA;	g mo					oli (Pre	oli (Enu		
23D0	472					Containers	A2540C	E3(A4500-H	Total Metals: Sb,	Total Metals: CD,	Metals: LI, Mo,		Sulfate			A7500-RA; Radium	જ					ui		nut)	
Lab Use Only	EDECEMBER OF STREET AND AREA STREET, AND	IENT SAMPLE INFO	DRMATION			Cont		Fluoride	1	Me	Me	Me	Total Metals:					separate					Total Coliform +	Total Coliform + E.	HPC (Plate Count)	July
	LOCATION / IDENTIFICATION	DATE	TIME	MATRIX	Field: Residual Chlorine	# of	TDS	Fluo	Hd	Fota	Fota	Total	otal	Cloride			Radium	seps					otal Co	otal Co	IPC (PI	E. Coli Only
58	, ELF-11	4/5/2023	15:20	w	Chlorine	4	x	x	x	x	x	x	х	х	1		x				\top	1				ш
09	₂ ELF-12	4/6/2023	17:00	w		4	х	х	х	х	х	x	х	x			х					\dashv			\top	
10	3 ELF-13	4/6/2023	15:45	w		4	х	х	х	х	х	х	х	x		1	x					\dashv			\top	
11	4 ELF-14	4/6/2023	14:30	w		4	х	x	х	х	х	х	x	х			x					\exists			\top	
17	5 ELF-15	4/6/2023	15:10	w		4	x	х	х	х	х	x	х	x		\top	x				\top	\dashv			\top	
13	6 ELF-16	4/6/2023	12:15	w		4	х	х	х	х	х	х	x	х			х					\dashv			\top	
	, ELF-17	-	-	w		4	х	х	х	х	х	х	х	х	1	\top	х					\dashv			\top	
	8					T								7		1						\dashv			\top	
14	9. Duplicate - (CCR)	4/5/2023	-	w		4	x	х	х	х	х	х	x	х			х					\dashv		\top	\top	
1415	10. Field Blank - (CCR)	4/6/2023	9:50	w		4	х	х	х	х	х	х	х	х			х								\top	_
•	Sampled by: Bradley Giles & Dennis V	anderbeek	Sampled by: [signatur	re]							a W			ONIC	E	NOT	ON IC	Œ	Te	emp (C	.°):	1-	1			
	Special Instructions:												C	Sampl	es rece	ived ou	tside tl	he EP	A reco	mmen	ded					
											-		-	SEASON WAS IN		re range										
	Relinquished by: [signature]			Date/Time	12:31	Receiv	ved by:	[signati	ure]		/	1							Date/1	me /	12		1	1:	21	
	Relinquished by: [signature]	7		Date/Time	12(2)	Receiv	ved by:	{signate	are]	0									Date/1	rime				L	1	_
	Relinquished by: [signature]			Date/Time		Receiv	ved by:	[signati	ure]										Date/T	Гime						
	CHEMTECH-FORD	801.262.7299 PHON	F																							
	C. L. C.	OUTITOR LEGIS LUCIN	-																							

9632 South 500 West Sandy, UT 84070 801.262.7299 PHONE 866.792.0093 FAX www.ChemtechFord.com

Payment Terms are net 30 days OAC. 1.5% interest charge per month (18% per annum). Client agress to pay collection costs and attorney's fees.

	QC Repo	rt for Work Order (W	VO) - 23D0472			
Analyte	% Rec R	PD Limits RPI	D Max Result Source Conc	Spk Value	MRL	DF
		Blank - EPA 200.	7			
QC Sample ID: BXD0255-BLK1	Batch: BXD	0255				
Date Prepared: 04/07/2023	Date Analyz	ed: 04/10/2023				
Barium, Total	·		ND		0.005	1.00
Boron, Total			ND		0.05	1.00
Calcium, Total			ND		0.2	1.00
Chromium, Total			ND		0.005	1.00
Lithium, Total			ND		0.005	1.00
	D / 1 DVD	0056	ND		0.000	1.00
QC Sample ID: BXD0256-BLK1	Batch: BXD					
Date Prepared: 04/07/2023	Date Analyz	ed: 04/10/2023				
Barium, Total			ND		0.005	1.00
Boron, Total			ND		0.05	1.00
Calcium, Total			ND		0.2	1.00
Chromium, Total			ND		0.005	1.00
Lithium, Total			ND		0.005	1.00
QC Sample ID: BXD0462-BLK1	Batch: BXD	0462				
Date Prepared: 04/12/2023	Date Analyz	ed: 04/13/2023				
Barium, Total	•		ND		0.005	1.00
Boron, Total			ND		0.05	1.00
Calcium, Total			ND		0.2	1.00
Chromium, Total			ND		0.005	1.00
Lithium, Total			ND		0.005	1.00
	Batch: BXD	0522				
QC Sample ID: BXD0533-BLK1						
Date Prepared: 04/13/2023	Date Analyz	ed: 04/14/2023	ND		0.005	4.00
Barium, Total			ND		0.005	1.00
Boron, Total			ND		0.05	1.00
Calcium, Total			ND		0.2	1.00
Chromium, Total			ND		0.005	1.00
Lithium, Total			ND		0.005	1.00
		LCS - EPA 200.7	•			
QC Sample ID: BXD0255-BS1	Batch: BXD	0255				
Date Prepared: 04/07/2023		ed: 04/10/2023				
Barium, Total	99.7	85 - 115	0.199	0.200	0.005	1.00
Boron, Total	98.1	85 - 115	0.49	0.500	0.05	1.00
Calcium, Total	99.6	85 - 115	10.2	10.2	0.03	1.00
Chromium, Total	99.6 105	85 - 115	0.210	0.200	0.2	1.00
Lithium, Total	105	85 - 115 85 - 115	0.210	0.200	0.005	1.00
			0.203	0.200	0.003	1.00
QC Sample ID: BXD0256-BS1	Batch: BXD					
Date Prepared: 04/07/2023	•	ed: 04/10/2023				
Barium, Total	101	85 - 115	0.202	0.200	0.005	1.00
Boron, Total	99.6	85 - 115	0.50	0.500	0.05	1.00
Calcium, Total	101	85 - 115	10.3	10.2	0.2	1.00
Chromium, Total	106	85 - 115	0.212	0.200	0.005	1.00
Lithium, Total	99.3	85 - 115	0.199	0.200	0.005	1.00
QC Sample ID: BXD0462-BS1	Batch: BXD	0462				
Date Prepared: 04/12/2023		ed: 04/13/2023				
•	92.6		0.195	0.200	0.005	1.00
Barium, Total		85 - 115	0.185	0.200	0.005	
Boron, Total	92.6	85 - 115 85 - 445	0.46	0.500	0.05	1.00
Calcium, Total	95.7	85 - 115	9.8	10.2	0.2	1.00
Chromium, Total	95.7	85 - 115	0.191	0.200	0.005	1.00
Lithium, Total	96.2	85 - 115	0.192	0.200	0.005	1.00
CtF WO#: 23D0472						
WWW Chamtach Ford com					D. ^	4 -4 00

www.ChemtechFord.com Page 21 of 33

QC Report for Work Order (WO) - 23D0472
----------------------------	---------------

-	•	•	_			
			Source Conc	Spk Value	MRL	DF
	•	nt.)				
Batch: BXD0462	2					
Date Analyzed: (04/13/2023					
	85 - 115	ND			0.005	1.00
	85 - 115	ND			0.05	1.00
	85 - 115	0.01			0.2	1.00
		ND			0.005	1.00
	85 - 115	ND			0.005	1.00
Batch: BXD0533	3					
Date Analyzed: (04/14/2023					
120	85 - 115	0.241		0.200	0.005	1.00
	de acceptance limits.		ch was accep			
,	'	,				
106	85 - 115	0.53		0.500	0.05	1.00
119	85 - 115	12.1		10.2	0.2	1.00
le recovery was outsid	de acceptance limits.	The analytical bat	ch was accep	oted based or	1	
						1.00
				0.200	0.005	1.00
Mat	trix Spike - EPA 2	00.7				
Batch: BXD0255	5 QC Source S	Sample: 23D0472	-10			
Date Analyzed: (04/10/2023					
74.2	70 - 130	0.155	0.007	0.200	0.005	1.00
110	70 - 130	1.00	0.45	0.500	0.05	1.00
103	70 - 130	303	293	10.2	0.2	1.00
96.6	70 - 130	0.194	0.001	0.200	0.005	1.00
						1.00
Batch: BXD025	5 OC Source S	Sample: XXXXX	XX-XX			
		r				
Date Analyzed: (04/10/2023	•	0.143	0.200	0.005	1.00
		0.342 0.74	0.143 0.22	0.200 0.500	0.005 0.05	1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the street of the street	04/10/2023 70 - 130 70 - 130 ne MS and/or MSD. The ference. The batch was	0.342 0.74 he RPD between vas accepted base	0.22 the MS and Med on the acce	0.500 /ISD was eptable	0.05	1.00
Date Analyzed: (99.4 104 acceptance limits for th	04/10/2023 70 - 130 70 - 130 ne MS and/or MSD. Ti	0.342 0.74 he RPD between	0.22 the MS and M	0.500 MSD was		
Date Analyzed: (99.4 104 acceptance limits for the street of the street	04/10/2023 70 - 130 70 - 130 ne MS and/or MSD. The ference. The batch was	0.342 0.74 he RPD between vas accepted base	0.22 the MS and Med on the acce	0.500 /ISD was eptable	0.05	1.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interference) 103	04/10/2023 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch was recommended.	0.342 0.74 he RPD between vas accepted base 31.1	0.22 the MS and Med on the accordance 20.5	0.500 MSD was eptable	0.05	1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the sistem of the sistem	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch w 70 - 130 70 - 130 70 - 130	0.342 0.74 he RPD between a vas accepted base 31.1 0.209	0.22 the MS and Med on the accordance 20.5 0.001 0.078	0.500 MSD was eptable 10.2 0.200	0.05 0.2 0.005	1.00
Date Analyzed: (99.4 104 acceptance limits for the six due to matrix interference of the six of th	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The batch with the	0.342 0.74 he RPD between a vas accepted base 31.1 0.209 0.278	0.22 the MS and Med on the accordance 20.5 0.001 0.078	0.500 MSD was eptable 10.2 0.200	0.05 0.2 0.005	1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the sis due to matrix interference in the sister of	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The batch with the	0.342 0.74 he RPD between a vas accepted base 31.1 0.209 0.278	0.22 the MS and Med on the accordance 20.5 0.001 0.078	0.500 MSD was eptable 10.2 0.200	0.05 0.2 0.005	1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interference of the image of	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch w 70 - 130 70 - 130 70 - 130 6 QC Source S 04/10/2023	0.342 0.74 he RPD between vas accepted base 31.1 0.209 0.278 Sample: XXXXX	0.22 the MS and Med on the accordance 20.5 0.001 0.078	0.500 //SD was eptable 10.2 0.200 0.200	0.05 0.2 0.005 0.005	1.00 1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interference of the image of	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch was 70 - 130 70 - 130 70 - 130 6 QC Source St 70 - 130 70 - 130	0.342 0.74 he RPD between a vas accepted base 31.1 0.209 0.278 Sample: XXXXX	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX	0.500 //SD was eptable 10.2 0.200 0.200	0.05 0.2 0.005 0.005	1.00 1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interformation of the image	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The MSD. The MSD. The batch with the state of the batch with the state of	0.342 0.74 he RPD between a vas accepted base 31.1 0.209 0.278 Sample: XXXXX	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500	0.05 0.2 0.005 0.005 0.050 0.50	1.00 1.00 1.00 1.00 10.00 10.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interformation of the image	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The MSD. The batch with the batch	0.342 0.74 he RPD between a series accepted base 31.1 0.209 0.278 Sample: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500 10.2	0.05 0.2 0.005 0.005 0.050 0.50 2.0	1.00 1.00 1.00 1.00 10.00 10.00 10.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interformation of the image	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. Tilerence. The batch were represented by the ference of the state of the s	0.342 0.74 he RPD between and a second base of the second bas of the second base of the second base of the second base of the	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4 ND ND	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500 10.2 0.200	0.05 0.2 0.005 0.005 0.050 0.50 2.0 0.050	1.00 1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the sis due to matrix interference of the sister of t	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch we ference. The batch we for 130 70 - 130	0.342 0.74 he RPD between vas accepted base 31.1 0.209 0.278 Sample: XXXXX 0.278 0.58 77.5 0.216	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4 ND ND	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500 10.2 0.200	0.05 0.2 0.005 0.005 0.050 0.50 2.0 0.050	1.00 1.00 1.00 1.00 10.00 10.00 10.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interference in the image of	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The MSD. The MSD. The MSD. The batch with the model of the mo	0.342 0.74 he RPD between and a second base of the second base of th	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4 ND ND -01	0.500 //SD was eptable 10.2 0.200 0.200 0.200 10.2 0.200 0.500 10.2 0.200 0.200	0.05 0.2 0.005 0.005 0.050 0.50 2.0 0.050 0.050	1.00 1.00 1.00 1.00 10.00 10.00 10.00
Date Analyzed: (99.4 104 acceptance limits for the sis due to matrix interference of the sister of t	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch we ference. The batch we for 130 70 - 130	0.342 0.74 he RPD between and a second base of the second bas of the second base of the second base of the second base of the	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4 ND ND	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500 10.2 0.200	0.05 0.2 0.005 0.005 0.050 0.50 2.0 0.050	1.00 1.00 1.00 1.00 10.00 10.00 10.00
i	Batch: BXD0462 Date Analyzed: 0 Batch: BXD0533 Date Analyzed: 0 120 Dele recovery was outsided a secont of QC acceptance on. The QC batch was personal or secont of the property of the prop	## Rec RPD Limits RPD	## Rec RPD Limits RPD Max Result	Batch: BXD0462 Date Analyzed: 04/13/2023 85 - 115 ND S5 - 115 S5 - 115	## Rec RPD Limits RPD Max Result Source Conc Spk Value LCS - EPA 200.7 (cont.)	## Rec RPD Limits RPD Max Result Source Conc Spk Value MRL

Page 22 of 33

www.ChemtechFord.com

QC Report for Work Order (WO) - 23D0472 RPD Max Analyte % Rec RPD Limits Result Source Conc Spk Value MRL DF Matrix Spike - EPA 200.7 (cont.) QC Sample ID: BXD0256-MS2 Batch: BXD0256 QC Source Sample: 23D0472-01 Date Prepared: 04/07/2023 Date Analyzed: 04/10/2023 1.00 Boron, Total 92.2 70 - 1303.70 3.24 0.500 0.05 70 - 130 342 Calcium, Total 314 374 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. Chromium, Total 113 70 - 130 0.291 0.066 0.200 0.005 1.00 70 - 130 Lithium, Total 107 1.78 1.56 0.200 0.005 1.00 QC Sample ID: BXD0462-MS1 Batch: BXD0462 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/12/2023 Date Analyzed: 04/13/2023 97.9 70 - 130 0.220 Barium, Total 0.024 0.200 0.005 1.00 70 - 130 0.50 0.03 0.500 0.05 1.00 Boron, Total 101 Calcium, Total 109 70 - 130 32.6 21.5 10.2 0.2 1.00 Chromium, Total 101 70 - 130 0.207 0.006 0.200 0.005 1.00 Lithium. Total 104 70 - 130 0.213 0.006 0.200 0.005 1.00 QC Sample ID: BXD0462-MS2 Batch: BXD0462 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/12/2023 Date Analyzed: 04/13/2023 Barium, Total 93.6 70 - 130 0.208 0.021 0.200 0.005 1.00 Boron, Total 91.8 70 - 130 1.06 0.60 0.500 0.05 1.00 70 - 130 Calcium, Total 95.7 33.4 23.7 10.2 0.2 1.00 Chromium, Total 95.8 70 - 130 0.203 0.011 0.200 0.005 1.00 Lithium, Total 99.2 70 - 130 0.442 0.244 0.200 0.005 1.00 Batch: BXD0533 QC Sample ID: BXD0533-MS1 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/13/2023 Date Analyzed: 04/14/2023 90.5 70 - 130 0.205 0.024 0.200 0.005 1.00 Barium, Total Boron, Total 95.8 70 - 1300.48 ND 0.500 0.05 1.00 83.8 70 - 130 52.6 44.1 10.2 0.2 1.00 Calcium, Total Chromium, Total 99.8 70 - 130 0.200 0.0008 0.200 0.005 1.00 70 - 130 0.251 0.008 0.200 0.005 1.00 Lithium, Total 121 QC Sample ID: BXD0533-MS2 Batch: BXD0533 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/13/2023 Date Analyzed: 04/14/2023 Barium, Total 104 70 - 130 0.209 ND 0.200 0.005 1.00 102 70 - 130 0.51 ND 0.500 0.05 Boron, Total 1.00 Calcium, Total 103 70 - 130 10.5 ND 10.2 0.2 1.00 Chromium, Total 93.6 70 - 130 0.187 ND 0.200 0.005 1.00 Lithium, Total 92.0 70 - 130 0.184 ND 0.200 0.005 1.00 Matrix Spike Dup - EPA 200.7 QC Sample ID: BXD0255-MSD1 Batch: BXD0255 QC Source Sample: 23D0472-10 Date Prepared: 04/07/2023 Date Analyzed: 04/10/2023 20 Barium, Total 77.2 3.79 70 - 130 0.161 0.007 0.200 0.005 1.00 Boron, Total 115 2.51 70 - 130 20 1.02 0.45 0.500 0.05 1.00 347 7.90 70 - 130 20 293 Calcium, Total 328 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD.

3.34

2.60

100

190

70 - 130

70 - 130

20

20

0.201

2.07

CtF WO#: **23D0472** www.ChemtechFord.com

Chromium, Total

Lithium, Total

1.00

1.00

0.005

0.005

0.001

1.69

0.200

0.200

Analyte	QC R	eport for	Work Limit		(WO) -	23D0472 Result	Source Conc	Spk Value	MRL	DF
Allalyte		atrix Spik					Source Conc	Spk value	IVIIXL	ы
QC Sample ID: BXD0255-MSD2		3XD0255				le: XXXXX	XX-XX			
Date Prepared: 04/07/2023	Date Ar	alyzed: 04/		-	1					
Barium, Total	98.8	0.352	70 - 1		20	0.340	0.143	0.200	0.005	1.00
Boron, Total	102	0.811	70 - 1		20	0.74	0.22	0.500	0.05	1.00
QM-RPD - The recovery was outside acce	eptance lir	nits for the	MS and	or MSE). The RF	D between	the MS and M	SD was		
acceptable and indicates the recovery is										
recovery of the LCS and the RPD.										
Calcium, Total	103	0.277	70 - 1		20	31.0	20.5	10.2	0.2	1.00
Chromium, Total	103	0.770	70 - 1 70 - 1		20 20	0.207	0.001	0.200	0.005	1.00 1.00
Lithium, Total	100	0.359				0.279	0.078	0.200	0.005	1.00
QC Sample ID: BXD0256-MSD1		3XD0256			ce Samp	le: XXXXX	XX-XX			
Date Prepared: 04/07/2023		alyzed: 04/								
Barium, Total	98.9	2.55	70 - 1		20	0.271	0.073	0.200	0.050	10.00
Boron, Total	112	4.20	70 - 1		20	0.56	ND	0.500	0.50	10.00
Calcium, Total	109	2.56	70 - 1		20	75.6	64.4	10.2	2.0	10.00
Chromium, Total	106	2.34	70 - 1		20	0.211	ND	0.200	0.050	10.00
Lithium, Total	87.5	3.92	70 - 1		20	0.175	ND	0.200	0.050	10.00
QC Sample ID: BXD0256-MSD2	Batch: I	3XD0256	(QC Soui	ce Samp	le: 23D0472	2-01			
Date Prepared: 04/07/2023	Date Ar	alyzed: 04/	10/2023	3						
Barium, Total	101	0.390	70 - 1	130	20	0.231	0.029	0.200	0.005	1.00
Boron, Total	110	2.35	70 - 1	130	20	3.79	3.24	0.500	0.05	1.00
Calcium, Total	359	1.23	70 - 1		20	379	342	10.2	0.2	1.00
QM-4X - The spike recovery was outside							•			
times or greater the spike concentration. Tacceptance limits.	The QC ba	atch was ac	cepted I	based o	n LCS ar	nd/or LCSD	recoveries with	nin the		
Chromium, Total	116	2.28	70 - 1	130	20	0.298	0.066	0.200	0.005	1.00
Lithium, Total	118	1.19	70 - 1		20	1.80	1.56	0.200	0.005	1.00
QC Sample ID: BXD0462-MSD1	Datah: I	BXD0462	- (C Sour		le: XXXXX				
Date Prepared: 04/12/2023		alyzed: 04/		•	ce Samp	ic. AAAAA	ΛΛ-ΛΛ			
*		•			20	0.040	0.004	0.000	0.005	4.00
Barium, Total	94.8 99.2	2.87 1.56	70 - 1 70 - 1		20	0.213 0.50	0.024 0.03	0.200	0.005	1.00 1.00
Boron, Total Calcium, Total	98.3	3.37	70 - 1		20 20	31.5	21.5	0.500 10.2	0.05 0.2	1.00
Chromium, Total	97.8	2.74	70 - 1		20	0.202	0.006	0.200	0.2	1.00
Lithium, Total	99.4	3.88	70 - 1		20	0.205	0.006	0.200	0.005	1.00
QC Sample ID: BXD0462-MSD2		BXD0462								
_					ce Samp	le: XXXXX	ΛΛ-ΛΛ			
Date Prepared: 04/12/2023		alyzed: 04/			00	0.040	0.004	0.000	0.005	4.00
Barium, Total	95.5	1.86	70 - 1		20	0.212	0.021	0.200	0.005	1.00
Boron, Total	94.9	1.47	70 - 1		20	1.08	0.60	0.500	0.05	1.00
Calcium, Total Chromium, Total	101 98.4	1.63 2.58	70 - 1 70 - 1		20 20	34.0 0.208	23.7 0.011	10.2 0.200	0.2 0.005	1.00 1.00
Lithium, Total	103	1.55	70 - 1		20	0.449	0.244	0.200	0.005	1.00
								0.200	0.000	1.00
QC Sample ID: BXD0533-MSD1		BXD0533		-	ce Samp	le: XXXXX	XX-XX			
Date Prepared: 04/13/2023		alyzed: 04/								
Barium, Total	96.0	5.23	70 - 1		20	0.216	0.024	0.200	0.005	1.00
Boron, Total	101	5.17	70 - 1		20	0.50	ND	0.500	0.05	1.00
Calcium, Total	95.6	2.26	70 - 1		20	53.8	44.1	10.2	0.2	1.00
Chromium, Total	98.1	1.66	70 - 1		20	0.197	0.0008	0.200	0.005	1.00
Lithium, Total	119	1.89	70 - 1		20	0.246	0.008	0.200	0.005	1.00
QC Sample ID: BXD0533-MSD2		3XD0533			ce Samp	le: XXXXX	XX-XX			
Date Prepared: 04/13/2023		alyzed: 04/	14/2023	3						
Barium, Total	88.6	16.4	70 - 1	130	20	0.177	ND	0.200	0.005	1.00
CtF WO#: 23D0472										

Page 24 of 33

www.ChemtechFord.com

QC Report for Work Order	(WO) - 23D0472
--------------------------	-----	-------------

Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	Ma	atrix Spil	ke Dup - EF	PA 200.7 (cont.)				
QC Sample ID: BXD0533-MSD2	Batch: I	3XD0533	QC S	ource Samp	le: XXXX	XXX-XX			
Date Prepared: 04/13/2023	Date Ar	alyzed: 04	/14/2023						
Boron, Total	87.6	14.9	70 - 130	20	0.44	ND	0.500	0.05	1.00
Calcium, Total	87.8	16.0	70 - 130	20	9.0	ND	10.2	0.2	1.00
Chromium, Total	94.6	1.06	70 - 130	20	0.189	ND	0.200	0.005	1.00
Lithium, Total	93.0	1.08	70 - 130	20	0.186	ND	0.200	0.005	1.00

CtF WO#: **23D0472** www.ChemtechFord.com

QC Report for Work Order (WO) - 23D0472

Angluto	% Rec RPD	Limits RPI	•	Source Conc	Spk Value	MDI	DF
Analyte				Source Conc	Spk Value	MRL	DF
		lank - EPA 200.	0				
QC Sample ID: BXD0258-BLK1	Batch: BXD0258						
Date Prepared: 04/07/2023	Date Analyzed: 04	/10/2023					
Antimony, Total			ND			0.0005	1.00
Arsenic, Total			ND			0.0005	1.00
Beryllium, Total			ND			0.0005	1.00
Cadmium, Total			ND			0.0002	1.00
Cobalt, Total			ND			0.0005	1.00
Lead, Total			ND			0.0005	1.00
Molybdenum, Total			ND			0.0005	1.00
Selenium, Total			ND			0.0005	1.00
Thallium, Total			ND			0.0002	1.00
QC Sample ID: BXD0282-BLK1	Batch: BXD0282						
Date Prepared: 04/10/2023	Date Analyzed: 04	/10/2023					
Antimony, Total	·		ND			0.0005	1.00
Arsenic, Total			ND			0.0005	1.00
Beryllium, Total			ND			0.0005	1.00
Cadmium, Total			ND			0.0002	1.00
Cobalt, Total			ND			0.0002	1.00
Lead, Total			ND			0.0005	1.00
Molybdenum, Total			ND			0.0005	1.00
Selenium, Total			ND			0.0005	1.00
Thallium, Total			ND			0.0002	1.00
	ı	CS - EPA 200.8				0.000_	
QC Sample ID: BXD0258-BS1	Batch: BXD0258						
Date Prepared: 04/07/2023	Date Analyzed: 04	/10/2023					
Antimony, Total	105	85 - 115	0.042		0.0400	0.0005	1.00
Arsenic, Total	100	85 - 115	0.042		0.0400	0.0005	1.00
Beryllium, Total	104	85 - 115	0.042		0.0400	0.0005	1.00
-	103	85 - 115	0.041		0.0400	0.0003	1.00
Cadmium, Total Cobalt, Total	103					0.0002	
·		85 - 115	0.040		0.0400		1.00
Lead, Total	100	85 - 115	0.040		0.0400	0.0005	1.00
Molybdenum, Total	102	85 - 115	0.041		0.0400	0.0005	1.00
Selenium, Total	103	85 - 115	0.041		0.0400	0.0005	1.00
Fhallium, Total	104	85 - 115	0.042		0.0400	0.0002	1.00
QC Sample ID: BXD0282-BS1	Batch: BXD0282						
Date Prepared: 04/10/2023	Date Analyzed: 04	/10/2023					
Antimony, Total	99.4	85 - 115	0.040		0.0400	0.0005	1.00
Arsenic, Total	99.1	85 - 115	0.040		0.0400	0.0005	1.00
Beryllium, Total	101	85 - 115	0.040		0.0400	0.0005	1.00
Cadmium, Total	96.6	85 - 115	0.039		0.0400	0.0002	1.00
Cobalt, Total	96.8	85 - 115	0.039		0.0400	0.0005	1.00
_ead, Total	96.3	85 - 115	0.039		0.0400	0.0005	1.00
Molybdenum, Total	98.8	85 - 115	0.040		0.0400	0.0005	1.00
Selenium, Total	98.3	85 - 115	0.039		0.0400	0.0005	1.00
Гhallium, Total	104	85 - 115	0.042		0.0400	0.0002	1.00
	Matr	x Spike - EPA 2	8.00				
QC Sample ID: BXD0258-MS1	Batch: BXD0258	QC Source	Sample: 23D0472	-01			
Date Prepared: 04/07/2023	Date Analyzed: 04		•				
Antimony, Total	94.5	70 - 130	0.038	0.0003	0.0400	0.0005	1.00
Arsenic, Total	92.2	70 - 130	0.038	0.001	0.0400	0.0005	1.00
Beryllium, Total	96.3	70 - 130	0.039	ND	0.0400	0.0050	10.00
CtF WO#: 23D0472	-						
CIF VVO#. Z3DU4/Z						D -	

Page 26 of 33

www.ChemtechFord.com

	QC Re	port for Work Ord	der (WO) - 2	23D0472	!			
Analyte	% Rec	RPD Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	M	latrix Spike - EPA	200.8 (cor	nt.)				
QC Sample ID: BXD0258-MS1	Batch: BX	KD0258 QC S	Source Sampl	e: 23D047	72-01			
Date Prepared: 04/07/2023	Date Anal	lyzed: 04/10/2023	1					
Cadmium, Total	99.0	70 - 130		0.040	0.0002	0.0400	0.0002	1.00
Cobalt, Total	97.6	70 - 130		0.052	0.013	0.0400	0.0005	1.00
Lead, Total	94.6	70 - 130		0.040	0.002	0.0400	0.0005	1.00
Molybdenum, Total	106	70 - 130		0.047	0.004	0.0400	0.0005	1.00
Selenium, Total	94.1	70 - 130		0.041	0.003	0.0400	0.0005	1.00
Thallium, Total	97.9	70 - 130		0.039	0.0002	0.0400	0.0002	1.00
QC Sample ID: BXD0258-MS2	Batch: BX	KD0258 QC S	Source Sampl	e: 23D047	72-10			
Date Prepared: 04/07/2023	Date Anal	lyzed: 04/10/2023						
Antimony, Total	106	70 - 130		0.043	0.0004	0.0400	0.0005	1.00
Arsenic, Total	93.6	70 - 130		0.040	0.003	0.0400	0.0005	1.00
Beryllium, Total	91.8	70 - 130		0.037	ND	0.0400	0.0050	10.00
Cadmium, Total	96.4	70 - 130		0.039	0.0003	0.0400	0.0002	1.00
Cobalt, Total	95.5	70 - 130		0.042	0.004	0.0400	0.0005	1.00
Lead, Total	94.8	70 - 130		0.038	0.0001	0.0400	0.0005	1.00
Molybdenum, Total	104	70 - 130		0.043	0.0009	0.0400	0.0005	1.00
Selenium, Total	94.3	70 - 130		0.056	0.019	0.0400	0.0005	1.00
Thallium, Total	98.5	70 - 130		0.040	0.0004	0.0400	0.0002	1.00
QC Sample ID: BXD0282-MS1	Batch: BX	KD0282 QC S	Source Sampl	e: XXXX	XXX-XX			
Date Prepared: 04/10/2023	Date Anal	lyzed: 04/10/2023						
Antimony, Total	104	70 - 130		0.042	0.0001	0.0400	0.0005	1.00
Arsenic, Total	105	70 - 130		0.043	0.0006	0.0400	0.0005	1.00
Beryllium, Total	105	70 - 130		0.042	ND	0.0400	0.0005	1.00
Cadmium, Total	99.0	70 - 130		0.040	ND	0.0400	0.0002	1.00
Cobalt, Total	96.2	70 - 130		0.039	0.0002	0.0400	0.0005	1.00
Lead, Total	94.8	70 - 130		0.038	0.0001	0.0400	0.0005	1.00
Molybdenum, Total	105	70 - 130		0.043	0.001	0.0400	0.0005	1.00
Selenium, Total	108	70 - 130		0.045	0.001	0.0400	0.0005	1.00
Thallium, Total	103	70 - 130		0.041	ND	0.0400	0.0002	1.00
QC Sample ID: BXD0282-MS2	Batch: BX	KD0282 QC S	Source Sampl	e: XXXX	XXX-XX			
Date Prepared: 04/10/2023	Date Anal	lyzed: 04/10/2023						
Antimony, Total	99.9	70 - 130		0.047	0.007	0.0400	0.0005	1.00
Arsenic, Total	99.4	70 - 130		0.067	0.027	0.0400	0.0005	1.00
Beryllium, Total	102	70 - 130		0.041	ND	0.0400	0.0005	1.00
Cadmium, Total	95.1	70 - 130		0.039	0.001	0.0400	0.0002	1.00
Cobalt, Total	94.2	70 - 130		0.038	0.0004	0.0400	0.0005	1.00
Lead, Total	92.6	70 - 130		0.040	0.002	0.0400	0.0005	1.00
Molybdenum, Total	101	70 - 130		0.044	0.003	0.0400	0.0005	1.00
Selenium, Total	101	70 - 130		0.042	0.002	0.0400	0.0005	1.00
Th 10: T. 4 - 1	404	70 400		0.040	0.000	0.0400	0.0000	4 00

70 - 130

0.042

0.002

0.0400

0.0002

1.00

101

CtF WO#: **23D0472** www.ChemtechFord.com

Thallium, Total

റ്റ	Report fo	r Work	Order	(WO	- 23D0472
QU.	IXEPULL IO	I WYOIK	Oluei		, - <u>2</u> 3D0412

Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		ВІ	lank - EPA	245.1					
QC Sample ID: BXD0353-BLK1	Batch: B	XD0353							
Date Prepared: 04/11/2023	Date Ana	alyzed: 04/	/11/2023						
Mercury, Total					ND			0.00015	1.00
		L	.CS - EPA	245.1					
QC Sample ID: BXD0353-BS1	Batch: B	XD0353							
Date Prepared: 04/11/2023	Date Ana	alyzed: 04/	/11/2023						
Mercury, Total	105		85 - 115		0.00526		0.00500	0.00015	1.00
		Matri	x Spike - E	PA 245.1					
QC Sample ID: BXD0353-MS1	Batch: B	XD0353	QC S	ource Samp	le: 23D047	2-01			
Date Prepared: 04/11/2023	Date Ana	alyzed: 04/	/11/2023						
Mercury, Total	104		75 - 125		0.00521	ND	0.00500	0.00015	1.00
		Matrix S	Spike Dup	- EPA 245	.1				
QC Sample ID: BXD0353-MSD1	Batch: B	XD0353	QC S	ource Samp	le: 23D047	2-01			
Date Prepared: 04/11/2023	Date Ana	alyzed: 04/	/11/2023						
Mercury, Total	100	3.71	75 - 125	20	0.00502	ND	0.00500	0.00015	1.00

Analyte	QC Repor	t for Work Order (W	O) - 23D0472 Max Result	Source Conc	Spk Value	MRL	DF
, u.a., c	70.100	Blank - EPA 300.0		004.00 00.10	opit raido		Ξ.
QC Sample ID: BXD0289-BLK1	Batch: BXD0						
Date Prepared: 04/10/2023	Date Analyze						
Chloride	2 400 1 22442 / 200	O 1/ 1 0/ 2 0 2 0	ND			1.00	1.00
Fluoride			ND			0.100	1.00
Sulfate			ND			1.00	1.00
QC Sample ID: BXD0313-BLK1	Batch: BXD0	313					
Date Prepared: 04/10/2023	Date Analyze	d: 04/11/2023					
Chloride			ND			1.00	1.00
Fluoride			ND			0.100	1.00
Sulfate			ND			1.00	1.00
QC Sample ID: BXD0346-BLK1	Batch: BXD0	346					
Date Prepared: 04/11/2023	Date Analyze	d: 04/11/2023					
Chloride			ND			1.00	1.00
QC Sample ID: BXD0969-BLK1	Batch: BXD09	969					
Date Prepared: 04/20/2023	Date Analyzed	d: 04/20/2023					
Fluoride			ND			0.100	1.00
Sulfate			ND			1.00	1.00
		LCS - EPA 300.0					
QC Sample ID: BXD0289-BS1	Batch: BXD0	289					
Date Prepared: 04/10/2023	Date Analyze	d: 04/10/2023					
Chloride	96.9	90 - 110	48.4		50.0	1.00	1.00
Fluoride	96.3	90 - 110	4.82		5.00	0.100	1.00
Sulfate	95.9	90 - 110	48.0		50.0	1.00	1.00
QC Sample ID: BXD0313-BS1	Batch: BXD0	313					
Date Prepared: 04/10/2023	Date Analyze	d: 04/10/2023					
Chloride	96.7	90 - 110	48.3		50.0	1.00	1.00
Fluoride	98.8	90 - 110	4.94		5.00	0.100	1.00
Sulfate	97.0	90 - 110	48.5		50.0	1.00	1.00
QC Sample ID: BXD0346-BS1	Batch: BXD0	346					
Date Prepared: 04/11/2023	Date Analyzed	d: 04/11/2023					
Chloride	98.2	90 - 110	49.1		50.0	1.00	1.00
QC Sample ID: BXD0969-BS1	Batch: BXD0	969					
Date Prepared: 04/20/2023	Date Analyze	d: 04/20/2023					
Fluoride	102	90 - 110	5.08		5.00	0.100	1.00
Sulfate	101	90 - 110	50.6		50.0	1.00	1.00
	N	latrix Spike - EPA 30	00.0				
QC Sample ID: BXD0289-MS1	Batch: BXD02	QC Source S	Sample: 23D0472	-01			
Date Prepared: 04/10/2023	Date Analyze	d: 04/10/2023					
Chloride	93.4	80 - 120	1150	212	1000	110	1.00
Fluoride	96.9	80 - 120	96.9	ND	100	11.0	1.00
Sulfate	50.3	80 - 120	8940	8440	1000	110	1.00
QM-4X - The spike recovery was outs times or greater the spike concentration acceptance limits.							
QC Sample ID: BXD0289-MS2	Batch: BXD02	289 QC Source S	Sample: XXXXX	XX-XX			
Date Prepared: 04/10/2023	Date Analyze	-	1				
Chloride	92.3	80 - 120	126	33.9	100	11.0	1.00
Fluoride	97.4	80 - 120	9.74	ND	10.0	1.10	1.00

CtF WO#: 23D0472 www.ChemtechFord.com

	QC F	Report for	Work Orde	er (WO) - :	23D0472				
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		Matrix Sp	oike - EPA :	300.0 (cor	nt.)				
QC Sample ID: BXD0289-MS2	Batch:	BXD0289	QC Sc	ource Sampl	le: XXXX	XXX-XX			
Date Prepared: 04/10/2023	Date A	nalyzed: 04/	10/2023						
Sulfate	88.2		80 - 120		146	57.8	100	11.0	1.00
QC Sample ID: BXD0313-MS1	Batch:	BXD0313	QC Sc	ource Sampl	le: XXXX	XXX-XX			
Date Prepared: 04/10/2023	Date A	nalyzed: 04/	/11/2023	•					
Chloride	186		80 - 120		18000	16200	1000	110	1.00
QM-4X - The spike recovery was outside times or greater the spike concentration. acceptance limits.						•			
Fluoride	83.6		80 - 120		83.6	ND	100	11.0	1.00
Sulfate	104		80 - 120		3180	2130	1000	110	1.00
QC Sample ID: BXD0313-MS2	Batch:	BXD0313	QC Sc	ource Sampl	le: XXXX	XXX-XX			
Date Prepared: 04/10/2023	Date A	nalyzed: 04/	11/2023						
Chloride	76.4		80 - 120		834	453	500	55.0	1.00
QM-010 - The MS recovery was outside				cate Spike a	acceptance	e limits. The bat	tch was		
accepted based on the acceptability of the		the batch S	•		50.4	ND	50.0	F F0	4.00
Fluoride Sulfate	100 7.36		80 - 120 80 - 120		50.1 4750	ND 4710	50.0 500	5.50 55.0	1.00
QM-4X - The spike recovery was outside		centance lin		S and/or MS				55.0	1.00
times or greater the spike concentration. acceptance limits.									
	D-4-1-	DVD0246	00.0	C1	L. VVVV	VVV VV			
QC Sample ID: BXD0346-MS1		BXD0346	_	ource Sampl	ie: AAAA	AAA-AA			
Date Prepared: 04/11/2023		nalyzed: 04/			4050	450	4000	440	4.00
Chloride	89.6		80 - 120		1350	453	1000	110	1.00
QC Sample ID: BXD0346-MS2		BXD0346	-	ource Sampl	le: XXXX	XXX-XX			
Date Prepared: 04/11/2023		nalyzed: 04/							
Chloride	88.9		80 - 120		27900	19000	10000	1100	1.00
QC Sample ID: BXD0346-MS3	Batch:	BXD0346	QC Sc	ource Sampl	le: XXXX	XXX-XX			
Date Prepared: 04/11/2023	Date A	nalyzed: 04/	11/2023						
Chloride	12.7		80 - 120		21100	21000	500	55.0	1.00
QM-4X - The spike recovery was outside									
times or greater the spike concentration. acceptance limits.	The QC b	atch was ac	ccepted based	d on LCS an	id/or LCSE	recoveries with	nin the		
QC Sample ID: BXD0346-MS4	Ratch:	BXD0346	OC Sc	ource Sampl	e XXXX	XXX-XX			
Date Prepared: 04/11/2023		nalyzed: 04/	_	ource sampi	ic. 71717171				
Chloride	-162	naryzed. 04/	80 - 120		16700	17600	500	55.0	1.00
QM-4X - The spike recovery was outside		centance lim		S and/or MS				55.0	1.00
times or greater the spike concentration.		•				•			
acceptance limits.			•						
QC Sample ID: BXD0969-MS1	Batch:	BXD0969	QC Sc	ource Sampl	le: XXXX	XXX-XX			
Date Prepared: 04/20/2023	Date A	nalyzed: 04/	/20/2023						
Fluoride	97.3	•	80 - 120		1.05	0.076	1.00	0.110	1.00
Sulfate	113		80 - 120		104	93.0	10.0	1.10	1.00
		Matrix S	Spike Dup -	EPA 300	.0				
QC Sample ID: BXD0289-MSD1	Batch:	BXD0289		ource Sampl		/2-01			
Date Prepared: 04/10/2023		nalyzed: 04/	_	Sampi	200011	_ 01			
Chloride	92.3	0.912	80 - 120	20	1140	212	1000	110	1.00
Fluoride	95.8	1.16	80 - 120	20	95.8	ND	1000	11.0	1.00
Sulfate	44.6	0.644	80 - 120	20	8880	8440	1000	110	1.00
	•				-				

CtF WO#: 23D0472 www.ChemtechFord.com QC Report for Work Order (WO) - 23D0472

RPD Max

Source Conc

MRL

Spk Value

DF

Limits

% Rec

RPD

Matrix Spike Dup - EPA 300.0 (cont.) QC Sample ID: BXD0289-MSD1 Batch: BXD0289 QC Source Sample: 23D0472-01 Date Prepared: 04/10/2023 Date Analyzed: 04/10/2023 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. QC Sample ID: BXD0289-MSD2 Batch: BXD0289 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/10/2023 Date Analyzed: 04/10/2023 80 - 120 20 126 33.9 100 11.0 1.00 Chloride 92.4 0.113 Fluoride 99.3 1.99 80 - 120 20 9.93 ND 10.0 1.10 1.00 Sulfate 88.7 0.312 80 - 120 20 146 57.8 100 11.0 1.00 QC Sample ID: BXD0313-MSD1 Batch: BXD0313 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/10/2023 Date Analyzed: 04/11/2023 Chloride 209 20 18200 16200 1000 110 1.00 1.30 80 - 120 93.7 80 - 120 20 ND Fluoride 93.7 100 11.0 1.00 Sulfate 104 80 - 120 20 3170 2130 1000 110 1.00 0.111 QC Sample ID: BXD0313-MSD2 Batch: BXD0313 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/10/2023 Date Analyzed: 04/11/2023 Chloride 85.0 5.04 80 - 120 20 878 453 500 1.00 55.0 98.5 1.73 80 - 120 20 49.2 ND 50.0 5.50 Fluoride 1.00 Sulfate 117 10.9 80 - 120 20 5290 4710 500 55.0 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits QC Sample ID: BXD0346-MSD1 Batch: BXD0346 QC Source Sample: XXXXXXXXXXXX Date Prepared: 04/11/2023 Date Analyzed: 04/11/2023 Chloride 90.0 0.277 80 - 120 20 1350 453 1000 110 1.00 Batch: BXD0346 QC Source Sample: XXXXXXXXXXXX QC Sample ID: BXD0346-MSD2 Date Prepared: 04/11/2023 Date Analyzed: 04/11/2023 Chloride 82.7 2.28 80 - 120 20 27200 19000 10000 1100 1.00 Batch: BXD0346 QC Sample ID: BXD0346-MSD3 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/11/2023 Date Analyzed: 04/11/2023 Chloride 80 - 120 20 21000 500 55.0 16.9 0.101 21100 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits QC Sample ID: BXD0346-MSD4 Batch: BXD0346 QC Source Sample: XXXXXXXXXXX Date Analyzed: 04/11/2023 Date Prepared: 04/11/2023 Chloride -161 0.0333 80 - 120 20 16800 17600 500 55.0 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. QC Sample ID: BXD0969-MSD1 Batch: BXD0969 QC Source Sample: XXXXXXXXXXXX Date Prepared: 04/20/2023 Date Analyzed: 04/20/2023 Fluoride 99.9 2.41 80 - 120 20 1.07 0.076 1.00 0.110 1.00 114 0.0942 80 - 120 20 Sulfate 104 93.0 10.0 1.10 1.00

CtF WO#: **23D0472** www.ChemtechFord.com

Analyte

	QC Re	port for Work	Order (WO) - 2	23D0472				
Analyte	% Rec	RPD Limit	• •	Result	Source Conc	Spk Value	MRL	DF
		Blank - S	M 2540 C					
QC Sample ID: BXD0259-BLK1	Batch: BX	KD0259						
Date Prepared: 04/07/2023	Date Anal	lyzed: 04/07/2023						
Total Dissolved Solids (TDS)				ND			10	1.00
QC Sample ID: BXD0292-BLK1	Batch: BX	KD0292						
Date Prepared: 04/10/2023	Date Anal	lyzed: 04/10/2023						
Total Dissolved Solids (TDS)				ND			10	1.00
QC Sample ID: BXD0850-BLK1	Batch: BX	KD0850						
Date Prepared: 04/20/2023	Date Anal	lyzed: 04/20/2023						
Total Dissolved Solids (TDS)		•		ND			10	1.00
		Duplicate -	SM 2540 C					
QC Sample ID: BXD0259-DUP1	Batch: BX	KD0259 (C Source Sampl	e: 23D047	2-01			
Date Prepared: 04/07/2023	Date Anal	lyzed: 04/07/2023	•					
Total Dissolved Solids (TDS)		6	10	11200	11900		100	1.00
QC Sample ID: BXD0259-DUP2	Batch: BX	KD0259 (C Source Sampl	e: 23D047	2-02			
Date Prepared: 04/07/2023	Date Anal	lyzed: 04/07/2023	-					
Total Dissolved Solids (TDS)		2	10	12500	12800		100	1.00
QC Sample ID: BXD0292-DUP1	Batch: BX	KD0292 (C Source Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/10/2023	Date Anal	lyzed: 04/10/2023	•					
Total Dissolved Solids (TDS)		0.7	10	1710	1720		20	1.00
QC Sample ID: BXD0292-DUP2	Batch: BX	KD0292 C	C Source Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/10/2023	Date Anal	lyzed: 04/10/2023	1					
Total Dissolved Solids (TDS)		3	10	900	876		20	1.00
QC Sample ID: BXD0850-DUP1	Batch: BX	KD0850 C	C Source Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/20/2023		lyzed: 04/20/2023	1					
Total Dissolved Solids (TDS)		2	10	1170	1190		20	1.00
QC Sample ID: BXD0850-DUP2	Batch: BX	KD0850 C	C Source Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/20/2023	Date Anal	lyzed: 04/20/2023	1					
Total Dissolved Solids (TDS)		0.5	10	880	876		20	1.00
•		LCS - SI	M 2540 C					
QC Sample ID: BXD0259-BS1	Batch: BX	KD0259						
Date Prepared: 04/07/2023		lyzed: 04/07/2023						
Total Dissolved Solids (TDS)	101	90 - 1	10	404		400	20	1.00

Batch: BXD0292

Batch: BXD0850

105

95

Date Analyzed: 04/10/2023

Date Analyzed: 04/20/2023

90 - 110

90 - 110

420

380

CtF WO#: **23D0472** www.ChemtechFord.com

QC Sample ID: BXD0292-BS1

Date Prepared: 04/10/2023

Date Prepared: 04/20/2023

Total Dissolved Solids (TDS)

Total Dissolved Solids (TDS)

QC Sample ID: BXD0850-BS1

400

400

20

20

1.00

1.00

OC	Report	for W	ork Ord	der (WO) - 23D0472
Q.C	IXCPOIL	101 11	01 K 0 1 (101 (110	- L UDUT! L

Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		Dupli	cate - SM	4500 H-B					
QC Sample ID: BXD0241-DUP1	Batch: 1	3XD0241	QC S	Source Sampl	e: 23D047	72-01			
Date Prepared: 04/07/2023	Date Ar	alyzed: 04/	07/2023						
рН		0.675		3	7.4	7.4		0.1	1.00
SPH - Sample submitted past method	d specified hol	ding time.							
QC Sample ID: BXD0242-DUP1	Batch: 1	3XD0242	QC S	Source Sampl	e: XXXX	XXX-XX			
Date Prepared: 04/07/2023	Date Ar	alyzed: 04/	07/2023						
рН		0.685		3	7.3	7.3		0.1	1.00
SPH - Sample submitted past method	d specified hole	dina time.							

CtF WO#: **23D0472** www.ChemtechFord.com

5/18/2023

Work Order: 23D0470 Project: Hunter Power Plant CCR

Pacificorp - Environmental Remediation
Attn: Brad Giles
1000 S Highway 10
Castle Dale, UT 84513

Client Service Contact: 801.262.7299

The analyses presented on this report were performed in accordance with the National Environmental Laboratory Accreditation Program (NELAP) unless noted in the comments, flags, or case narrative. If the report is to be used for regulatory compliance, it should be presented in its entirety, and not be altered.

Approved By:

Melissa Connolly, Project Manager

MeliCa

9632 South 500 West Sandy, Utah 84070 801.262.7299 Main 866.792.0093 Fax www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-2

Matrix: Water

Lab ID: 23D0470-01

Date Sampled: 4/6/23 11:30 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	0.58	pCi/L	0.26	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.26	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.27	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.7	pCi/L	0.40	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.40	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.24	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 2 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

Date Sampled: 4/5/23 18:55

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-4

Matrix: Water

Lab ID: 23D0470-02

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum				
	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	Analysis Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.49	pCi/L	0.17	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.17	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.24	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.34	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.34	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.21	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 3 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-5R

Matrix: Water

Lab ID: **23D0470-03**

Date Sampled: 4/5/23 18:20 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	0.84	pCi/L	0.30	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.30	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.33	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.50	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.50	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.28	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 4 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

ELF-6R Sample ID:

Matrix: Water

Lab ID: 23D0470-04

Date Sampled: 4/5/23 17:40 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.27	pCi/L	0.22	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.22	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.20	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.0	pCi/L	0.36	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.36	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.21	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 5 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-7

Matrix: Water

Lab ID: **23D0470-05**

Date Sampled: 4/5/23 19:40 Sampled By: Bradley Giles/Dennis Vanderbeek

	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	Analysis Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.74	pCi/L	0.24	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.24	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.30	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.41	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.41	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.24	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 6 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-8

Matrix: Water

Lab ID: 23D0470-06

Date Sampled: 4/5/23 16:15 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	1.1	pCi/L	0.18	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.18	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.35	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	0.99	pCi/L	0.48	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.48	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.26	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 7 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-9

Matrix: Water

Lab ID: **23D0470-07**

Date Sampled: 4/6/23 9:50 Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum Reporting		Preparation	Analysis	
	Result	<u>Units</u>	<u>Limit</u>	Method	Date/Time	Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.55	pCi/L	0.31	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.31	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.29	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.45	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.45	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.26	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 8 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-11

Matrix: Water

Lab ID: 23D0470-08

Date Sampled: 4/5/23 15:20 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	Analysis Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.64	pCi/L	0.22	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.22	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.28	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.9	pCi/L	0.42	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.42	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.25	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 9 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-12

Matrix: Water

Lab ID: **23D0470-09**

Date Sampled: 4/6/23 17:00 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	<u>Flag(s)</u>
Radiochemistry							
Radium-226	0.94	pCi/L	0.28	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.28	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.35	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	2.6	pCi/L	0.39	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.39	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.25	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 10 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-13

Matrix: Water

Lab ID: **23D0470-10**

Date Sampled: 4/6/23 15:45

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum Reporting		Preparation	<u>Analysis</u>	
	Result	<u>Units</u>	<u>Limit</u>	Method	Date/Time	Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.90	pCi/L	0.18	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.18	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.32	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	2.5	pCi/L	0.55	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.55	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.33	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 11 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: **ELF-14**

Matrix: Water

Lab ID: 23D0470-11

Date Sampled: 4/6/23 14:30 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	0.86	pCi/L	0.29	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.29	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.33	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	2.4	pCi/L	0.44	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.44	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.27	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 12 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

1000 S Highway 10 Castle Dale, UT 84513

Brad Giles Receipt: 4/7/23 12:31 @ 1.1 °C Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

PO#:

Sample ID: **ELF-15**

Matrix: Water Lab ID: **23D0470-12**

Date Sampled: 4/6/23 15:10 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	<u>Flag(s)</u>
Radiochemistry							
Radium-226	0.93	pCi/L	0.21	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.21	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.32	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.38	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.38	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.22	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 13 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

1000 S Highway 10 Castle Dale, UT 84513

Brad Giles

Date Reported: 5/18/2023 Project Name: Hunter Power Plant CCR

Receipt: 4/7/23 12:31 @ 1.1 °C

PO#:

Sample ID: **ELF-16**

Matrix: Water Lab ID: **23D0470-13**

Date Sampled: 4/6/23 12:15 Sampled By: Bradley Giles/Dennis Vanderbeek

· · · · · · · · · · · · · · · · · · ·				• •			
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Radiochemistry							
Radium-226	1.2	pCi/L	0.26	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.26	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.37	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	0.66	pCi/L	0.52	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.52	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.28	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 14 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

Castle Dale, UT 84513

1000 S Highway 10

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: Duplicate - (CCR)

Matrix: Water

Lab ID: 23D0470-14

Date Sampled: 4/5/23 0:00 Sampled By: Bradley Giles/Dennis Vanderbeek

•							
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	Analysis Date/Time	Flag(s)
Radiochemistry							
Radium-226	1.1	pCi/L	0.17	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.17	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.34	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.0	pCi/L	0.44	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.44	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.24	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 15 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

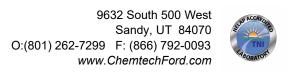
Project Name: Hunter Power Plant CCR

Sample ID: Field Blank - (CCR)

Matrix: Water Lab ID: 23D0470-15

Date Sampled: 4/6/23 9:50 Sampled By: Bradley Giles/Dennis Vanderbeek

	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	<u>Flag(s)</u>
Radiochemistry							
Radium-226	0.29	pCi/L	0.29	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.29	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.23	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	2.0	pCi/L	0.41	EPA 904.0	5/9/23	5/13/23	SL-62
Radium-228 LLD	0.41	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.26	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62


Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 16 of 19 www.ChemtechFord.com

Chemtech-Ford Laboratories

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation Brad Giles 1000 S Highway 10 Castle Dale, UT 84513

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

PO#:

Project Name: Hunter Power Plant CCR

Report Footnotes

Abbreviations

 $ND = Not \ detected \ at \ the \ corresponding \ Minimum \ Reporting \ Limit \ (MRL).$

1 mg/L = one milligram per liter or 1 mg/kg = one milligram per kilogram = 1 part per million.

1 ug/L = one microgram per liter or 1 ug/kg = one microgram per kilogram = 1 part per billion.

1 ng/L = one nanogram per liter or 1 ng/kg = one nanogram per kilogram = 1 part per trillion.

On calculated parameters, there may be a slight difference between summing the rounded values shown on the report vs the unrounded values used in the calculation.

Flag Descriptions

SL-62 = Analysis performed by Pace Analytical National, Mount Juliet, TN 37122

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 17 of 19

CHEMTECH - FORD ANALYTICAL LABORATORY

CHAIN OF CUSTODY

CHEMIE	CH - FORD ANALYTICAL	LABURAT	URY															,	ZHAI	IN OF		310	זט		
COMPANY:	PacifiCorp Environmenta	l Remediati	on		BILLIN	NG AD	DRE	SS:				е	mail	invoi	ce to Br	adley	/ Gile	s				- 1			
ADDRESS:	1407 West North Temple St	e 270			BILLING	G CITY,	/STAT	E/ZIP:		E 5.				a								A	A		
CITY/STATE/ZIP:	Salt Lake City, Ut 8414	0	100		PURCH	ASE O	RDER	#:	1								- 5	- 2	31.4						
PHONE #:	(435) 748-6576	FAX:	- vg	(h. 1900 (d. k.)			* '		72	in gr							-	- 5 I	73.	(CHEM	ITEC	H-F	OR	D
CONTACT:	Bradley Giles	PROJECT:	Hunter Pow	er Plant CCR	_																LAB	BORA	TORI	E S	
EMAIL:	brad.giles@pacificorp.com	n	í			TURI	NARO	UND F	REQUI	RED:*			Q	C Lev	/el 3 (10) bus	iness	day	s)						
						* Exp	edited to	urnarour	nd subje	ct to add	itional c	harge	and provide				N. Respect					No. of the last	COTTON		A Section
							i i	T T			2000		THE RESIDENCE AND ADDRESS.	S REC	QUESTED		8						Bact	teria	200
23	P0470	LIENT SAMPLE INFO	DRMATION			Containers	A2540C	ride E300.0	A4500-H B	il Metals: Sb, As, Ba, Be, B	Total Metals: CD, Ca, Cr, Co, Pb	Total Metals: Li, Mo, Se, Tl, Hg	Total Metals: E200.7 / E200.8 / E245.1	Cloride / Sulfate E300.0			Radium A7500-RA; Radium 226 & 228	(separate & combined)				oliform + E. coli (Present/Absent)	Total Coliform + E. coli (Enumerated)	HPC (Plate Count)	Only
Carrier and an art and a second	LOCATION / IDENTIFICATION	DATE	TIME	MATRIX	Field: Residual Chlorine	# of	TDS	Fluoride	표	Total	Tota	Tota	Total	Clori			Radi	(seb				Total Colifor	rotal C	нРС (Р	E. Coli Only
	1. ELF-1D	-	-	w		4	x	х	x	х	x	х	х	x			x								
01	2. ELF-2	4/6/2023	11:30	w		4	x	x	x	х	x	х	х	x			х								
	3. ELF-3	-	-	w		4	x	x	x	х	x	x	x	x			х								
02	4 ELF-4	4/5/2023	18:55	w		4	x	x	x	х	x	х	х	х			х								
03	5. ELF-5R	4/5/2023	18:20	w		4	x	x	х	х	x	х	х	x			х								
04	6. ELF-6R	4/5/2023	17:40	w		4	х	x	х	х	х	х	х	x			х								
05	7. ELF-7	4/5/2023	19:40	w	,	4	x	х	x	х	x	х	х	x			х		-						
06	8. ELF-8	4/5/2023	16:15	w	4	4	х	х	x	х	x	х	х	x			х								
07	9. ELF-9	4/6/2023	9:50	w		4	х	х	х	х	x	х	x	х			х								
	_{10.} ELF-10	-	-	w		4	х	х	х	х	х	х	х	x			х								
+ I2	Sampled by: Bradley Giles & Dennis \	Vanderbeek	Sampled by: [signatur		- (社)	٠,							1	ON	CE	NOT	ON ICI	E	Ter	mp (C°):	1	. [fa	1	
i i	Special Instructions: Relinquished by: [signature]		***	Date/Time		Teorgia	and but	(signati				う ₋			les receive			C° ma	ay be re	ejected.	d		A1.		
. 9	1 20 X July	1"	' -	4-7-23	12:31			· ·	_		1		/	į į					Date/Tim	7/1	13		12:	31	
	Relinquished by: [signature]	Rei		Date/Time	Re .	Receiv	red by:	signati	rej					-34g	i i i i i i i i i i i i i i i i i i i				Date/Tim	ne /			104		
	Relinquished by: [signature]	Restroy,	ning Thomas 1	Date/Time	man and and and and and and and and and a	Receiv	ved by:	[sign	1	Ab(2)	129	8	Λ	211	46	-	M	12	7		12		, epi	j. w
	CHEMTECH-FORD 9632 South 500 West Sandy, UT 84070	801.262.7299 PHON 866.792.0093 FAX www.ChemtechFor	th Sou West	1	72Au 150 1563 (50	Paym	nent Te	erms ess.	()	Custo Conta COC a	dy Sea iners I and La	als Pres Intact bels M	sent	14.72 6 24.10 0	COC Inc	Contain luded mplete	ners		()H ()Ta	Headspace Temperate Received	ture Blan within H	nk Hold	op de	ec.	460.04

CHEMTECH - FORD ANALYTICAL LABORATORY

Sandy, UT 84070

www.ChemtechFord.com

CHAIN OF CUSTODY

racincorp Environment	lai Keineulati	on		BILLI	NG AE	DRE	SS:					eman	IIIVOIC	e to Bra	aley G	nes					À.		
1407 West North Temple	Ste 270			BILLING	G CITY,	/STAT	ZIP:					2	7 . F.							- 4			
Salt Lake City, Ut 841	140			PURCH	IASE O	RDER	# :						×										
(435) 748-6576	FAX:	n K K		10									F 1						CHE	МТЕ	CH-	FOF	D
Bradley Giles	PROJECT:	Hunter Pow	er Plant CCR																LA	BOR	ATOR	IES	
brad.giles@pacificorp.co	om				TUR	NARO	JND R	EQUI	RED:*			C	QC Leve	13 (10	busine	ss da	ays)						
					* Exp	edited to	rnaroun	d subjec	ct to add	itional d	harge	en and and				e marata	ag la basa	10 PM 20 PM	No.	100			M.SKOS
												TES	TS REQU	JESTED	II o	o II		T			Bac	teria	
20470					tainers	A2540C	E300.0	A4500-H B	etals: Sb, As, Ba, Be, B	etals: CD, Ca, Cr, Co, Pb	stals: Ll, Mo, Se, Tl, Hg	E200.7 / E200.8 /	Sulfate E300.0		226.8.	8. combined)	ಶ∥			n + E. coli (Present/Absent)	n + E. coli (Enumerated)	ount)	
	CLIENT SAMPLE INFO	RMATION			f Con		oride		tal Me	al Me	tal Me	al Met	ride /		a ii	to re	Dala			Colifor	Coliforn	(Plate Co	E. Coli Only
LOCATION / IDENTIFICATION	DATE	TIME	MATRIX	Field: Residual Chlorine	#	2	문	H	Į,	P	P	Tot Tot	8		Back	3	20			Tota	Tota	HPC	E. C.
1. ELF-11	4/5/2023	15:20	w		4	x	x	x	x	x	x	x	x		×								
_{2.} ELF-12	4/6/2023	17:00	w		4	x	x	x	x	x	x	x	x		х								
3. ELF-13	4/6/2023	15:45	w		4	x	х	x	х	x	x	x	x		×								
4. ELF-14	4/6/2023	14:30	w		4	х	х	х	х	x	х	х	х		×								
5. ELF-15	4/6/2023	15:10	w		4	x	х	х	х	х	x	х	х		×								
₆ ELF-16	4/6/2023	12:15			4	х	х	х	х	х	х	х	x		×					T			
, ELF-17	-	-			4	x	х	Χ.	х	x	х	х	x		×					1	T		
0														\top		\top	1	+	\top	\dagger	T		
9. Duplicate - (CCR)	4/5/2023	-	w		4	х	х	х	х	х	х	х	х	\top	x	+	+			T			
Field Blank - (CCR)	4/6/2023	9:50	w		4	х	х	х	х	x	х	х	х		x					1			
Sampled by: Bradley Giles & Denni	is Vanderbeek	Sampled by: [signatu						1		I Jac	26		ON ICI	7	NOT ON	ICE)» T	emp (C°):]	_1			T
Special Instructions:									. 5			(Cartala	/						-/-	-		
(130)			141										CHARLES NO.										
Refinquished by: [signature]		, and	Date/Time		Receiv	ved by:	signatu	re	1	/	/	1	7				Date	Time /				0	i)
Relinquished by: [signature]			1-7-23 Date/Time	12:31	Receiv	ed hv	Signatu	rel -	1	/		_					Patr	////	15		12	3	
	. * 					/											Date	·····et	8				
Relinquished by: [signature]	· · · · · · · · · · · · · · · · · · ·	100 (2)	Date/Time	t He	Receiv	ved by:	signatu	re]	Ďate/Tir	3.4			1.77				Date/	Time	11 SAG	1 11	Tipe "		
	Salt Lake City, Ut 84: (435) 748-6576 Bradley Giles brad.giles@pacificorp.co LOCATION / IDENTIFICATION 1. ELF-11 2. ELF-12 3. ELF-13 4. ELF-14 5. ELF-15 6. ELF-16 7. ELF-17 8. 9. Duplicate - (CCR) Sampled by: Signature] Relinquished by: Signature]	Salt Lake City, Ut 84140	Salt Lake City, Ut 84140 (435) 748-6576 FAX:	Salt Lake City, Ut 84140	Salt Lake City, Ut 84140 Quarter Composition Compo	Salt Lake City, Ut 84140 Quarter Project: Hunter Power Plant CCR	Salt Lake City, Ut 84140	Salt Lake City, Ut 84140 (435) 748-6576 FAX:	Salt Lake City, Ut 84140	Salt Lake City, Ut 84140 (435) 748-6576 FAX:	Salt Lake City, Ut 84140 (435) 748-6576 FAX:	Salt Lake City, Ut 84140 (435) 748-6576 FAX:	Salt Lake City, Ut 84140 (435) 748-6576 FAX: Hunter Power Plant CCR PROJECT: Hunter Power Plant CCR TURNAROUND REQUIRED:* Company of the project of the pro	Salt Lake City, Ut 84140 (435) 748-6576 FAX:	### PACKET SAMPLE INFORMATION CLIENT SAMPLE INFORMATION DATE TIME MATRIX Florid Breading F	Salt Lake City, Ut 84140 PROJECT: Hunter Power Plant CCR	Salt Lake City, Ut 84140 Salt Lake City, Ut	Salt Lake City, Ut 84140 Salt Lake City, Ut	### BILLING CITY/STATE/ZIP. Salt Lake City, Ut 84140	Salt Lake City, Ut 84140 Salt Lake City, Ut	### Salt Lake City, Ut 84140 ### CASS 748-6576 FAX:	Salt Lake City, Ut 84140 Cas5 768 FARCE Salt Lake City, Ut 8	Salt Lake City, Ut 84140 Cast Free C

ATTACHMENT B:

Field Summary Report – October 2023 Event

Facility Name: Hunter Power Plant – CCR Landfill

Event Description: Assessment Monitoring

Event Dates: October 23, 2023

Field Personnel: Brad Giles, Dennis Vanderbeek

ACTIVITY SUMMARY. PacifiCorp personnel arrived onsite October 23, 2023 and performed groundwater sampling at Hunter CCR Landfill. Prior to collecting samples, field instruments were calibrated, followed by the collection of water levels in the CCR monitoring wells. After recording water levels, the wells were purged in accordance with the EPA low-flow method. Field parameters were monitored during well purging in accordance with the site-specific sampling and analysis plan (SAP). Once field parameters met the SAP stabilization requirements, groundwater samples were collected for Appendix III and Appendix IV constituents. All calibration data and field measurements were recorded on the WET electronic field form. The wells that underwent sampling during this sampling event included:

- ELF-10
- ELF-11
- ELF-12
- ELF-13
- ELF-14ELF-1D
- ELF-2
- ELF-3
- ELF-4

- ELF-5R
- ELF-6R
- ELF-7
- ELF-8
- ELF-9
- ELF-15
- ELF-16
- ELF-17

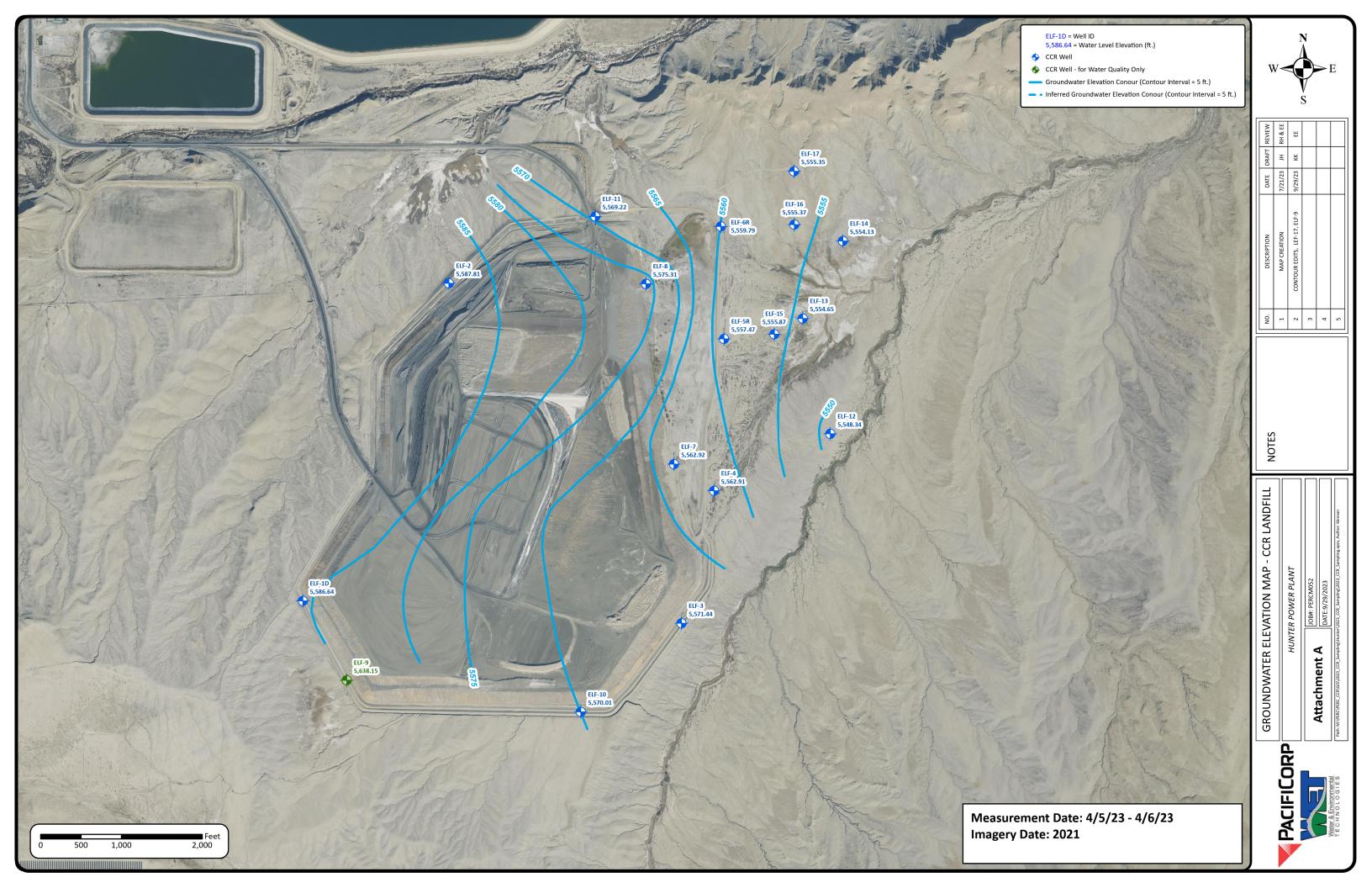
The following details dates for conducting field work and post-field work data processing:

• Date fieldwork completed: 10/23/2023

Dates unvalidated lab data received: 11/9/2023 & 12/15/2023

• Data validation completion date: 12/19/2023

After collection, the samples were preserved in accordance with the SAP, placed on ice, chain of custody forms were completed, and the samples were transported to Chemtech-Ford in Sandy, Utah. Samples arrived at Chemtech-Ford on 10/26/2023. Chemtech-Ford subcontracted Radium analyses to Pace Analytical in Mount Juliet, Tennessee. The following information is attached to this summary as a supplement:


- Attachment A: Groundwater Contour Map
- Attachment B: Data Validation Summary
- Attachment C: Statistical Analysis
- Attachment D: Field Data Sheets
- Attachment E: Laboratory Analytical Reports

SAP DEVIATIONS. Wells ELF-3, ELF-10, ELF-17 and ELF-1D did not have enough water to sample.

Attachment A:

Groundwater Contour Map

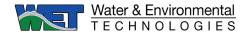
Attachment B:

Data Validation Summary

Data Verification/Validation Checklist and Summary Report

	PROJECT AND LABORATORY INFORMATION
Project/Task/Sub-Task #:	PAC-HTRCCR-M052
Site & Location:	Hunter Power Plant – Castle Dale, UT
Sample Collection Date(s):	April 5-7, 2023
Laboratory & Location:	Chemtech-Ford Laboratories – Sandy, UT
	Pace Analytical – Mount Juliet, TN
Sample Delivery Group (SDG):	2023 Spring
Work Order (WO):	23D0472
Extraction/Prep Date(s):	NA
Analysis Date(s):	April 7 – May 13, 2023
Laboratory Report Date(s):	April 24, 2023 (Chemtech-Ford)
	May 17, 2023 (Pace Analytical)
Data Validator:	Richelle Carney
Data Validation Date(s):	August 8, 2023
Data Validation Reviewer:	Janelle Garza
Data Validation Review Date(s):	September 1, 2023

	SDG/WO											
Sample ID	Lab ID	Sample Date	Sample Time	Matrix	Notes							
ELF-2	23D0472-01/12D0470-01	4/6/2023	11:30	Aqueous								
ELF-4	23D0472-02/12D0470-02	4/5/2023	18:55	Aqueous								
ELF-5R	23D0472-03/12D0470-03	4/5/2023	18:20	Aqueous								
ELF-6R	23D0472-04/12D0470-04	4/5/2023	17:40	Aqueous								
ELF-7	23D0472-05/12D0470-05	4/5/2023	19:40	Aqueous								
ELF-8	23D0472-06/12D0470-06	4/5/2023	16:15	Aqueous								
ELF-9	23D0472-07/12D0470-07	4/6/2023	9:50	Aqueous								
ELF-11	23D0472-08/12D0470-08	4/5/2023	15:20	Aqueous								
ELF-12	23D0472-09/12D0470-09	4/6/2023	17:00	Aqueous								
ELF-13	23D0472-10/12D0470-10	4/6/2023	15:45	Aqueous								
ELF-14	23D0472-11/12D0470-11	4/6/2023	14:30	Aqueous								
ELF-15	23D0472-12/12D0470-12	4/6/2023	15:10	Aqueous								
ELF-16	23D0472-13/12D0470-13	4/6/2023	12:15	Aqueous								
Duplicate - (CCR)	23D0472-14/12D0470-14	4/5/2023	12:00	Aqueous	ELF-8 Duplicate							
Field Blank - (CCR)	23D0472-15/12D0470-15	4/6/2023	9:50	Deionized Water	Field Blank							


METHOD(S)/ANALYSES							
A2540 C	Total Dissolved Solids (TDS)						
A4500-H B	pH						
E200.7/8: Total Metals	Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Lead, Lithium, Molybdenum, Selenium, Thallium						
E245.1	Mercury						
E300.0	Chloride & Sulfate & Fluoride						
E903.0/9315	Radium-226						
904/9320	Radium-228						

	QUALIFIER DEFINITIONS								
U	The analyte was analyzed for but was not detected above the level of the adjusted detection limit or quantitation limit, as appropriate.								
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.								
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.								
J-	The result is an estimated quantity, but the result may be biased low.								
J+	The result is an estimated quantity, but the result may be biased high.								
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.								

Quality (DEQ) k plan (WP) ly 2018)	N/A N/A							
k plan (WP)	N/A N/A							
	N/A							
	N/A							
	N/A							
ly 2018)								
ly 2018)								
referenced/resourced.								
Water & Environmental Technologies (WET) Data Validation (DV): Standard Operating Guidelines (SOG) Inorga Radioanalytical, & High Resolution								
0	NI/A							
Organic	N/A							
Asbestos	N/A							
	Χ							
	N/A							
No								

Review (SMDR) referenced/resourced:	^		
Select the applicable USEPA Guideline for Data Review referenced/resourced:	High Resolution	Asbestos	N/A
Was the Ideba National Engineering and Engineering	Vaa	Na	X
Was the Idaho National Engineering and Environmental Laboratory (INEEL) Radioanalytical DV Guide referenced/resourced? If no, enter any/all radioanalytical DV SOG/SOP referenced/resourced:	Yes X	No	N/A
		-	
CHECKLIST			
Field QA/QC			
Was field documentation provided and complete?	Yes	No	N/A
was neid documentation provided and complete:	X		
Were calibration checks within project stabilization criteria (or other	Yes	No	N/A
applicable range)?	X		
Was shain of sustably (COC) desumentation assurate and semulate?	Yes	No	N/A
Was chain-of-custody (COC) documentation accurate and complete?	X		
More all planned complex ship to be callested?	Yes	No	N/A
Were all planned samples able to be collected?	X		
ELF-1D, ELF-3, ELF-10, and ELF-17 were dry and unable to be sampled. This is completion total.	reflected in the s	ample delivery g	roup
Were samples submitted within a reasonable time frame to meet	Yes	No	N/A
extraction/prep and/or analytical hold times (HT)? If no, detail below.		X	
The laboratory flagged all pH results for hold time exceedance. The hold time	e for pH is 15 min	utes. It is not feas	sible to
laboratory-analyze samples within 15 minutes of collection. Stabilized field pl	H measurements	are provided in fi	eld
documentation. All analytical pH results were qualified as estimated (J).		•	
❖ TDS in ELF-13 was qualified as estimated low (J-) due to analysis 13.8 days	after collection, >	7-day hold time.	
More camples submitted received by the laboratory in good condition?	Yes	No	N/A
Were samples submitted received by the laboratory in good condition?	X		
		1	
	Yes	No	N/A

Were samples received by the laboratory within temperature and pH requirements? If no, detail below.	X		
Were volatile samples collected with zero headspace, or was enough	Yes	No	N/A
volume available for analysis without using any containers with bubbles? If no, detail below.			Х
	Yes	No	N/A
Were field duplicate (FD) samples required?	X	NO	IV/A
Were FD samples collected at the correct frequency? If no, all field data	Yes	No	N/A
points are qualified as estimated (J/UJ) due to lack of field precision QA/QC (FDX).	X		
Were FD relative percent difference (RPD) results at or below control	Yes	No	N/A
limits (CLs)? If no, detail below.		Χ	

ELF-9 (original) and Duplicate – (CCR) (duplicate): representing all samples

- Lithium RPD was 41.1%, >20% CL. The original and duplicate sample results were >5xRL.
 - Field Blank (CCR) was qualified as estimated (UJ) due to a ND result.
 - All remaining samples were qualified as estimated (J) due to detected results.
- Chloride RPD was 27.5%, >20% CL. The original and duplicate sample results were >5xRL.
 - Field Blank (CCR) was qualified as estimated (UJ) due to a ND result.
 - All remaining samples were qualified as estimated (J) due to detected results.
 - ELF-12, ELF-13, ELF-14, ELF-15, ELF-16, and Duplicate (CCR) were more specifically qualified as estimated low (J-) due to low MS recovery.
- Radium 228 RPD was 97.9%, >20% CL.
 - ➤ No qualification required due to a mean difference <3 (1.5).

Was field decontamination of sampling equipment required?	Yes	No	N/A
was new decontainination of sampling equipment required?		X	
Were equipment rinse blank (ERB) samples required?	Yes	No	N/A
were equipment rinse blank (EKB) samples required?		Х	
Were ERB samples collected at the correct frequency? If no, all field data	Yes	No	N/A
points are qualified (J/UJ) as estimated due to lack of field QA/QC (ERBX).			X
Were all ERB results non-detect (ND)? If no, detail below.	Yes	No	N/A
vere all END results non-detect (ND): If no, detail below.			X
Were field blank (FB) samples required?	Yes	No	N/A
vvere nera biank (FD) samples required:	X		
Were FB samples collected at the correct frequency? If no, all data is	Yes	No	N/A
qualified as estimated due to lack of field QA/QC (FBX).	X		
Were all FB results ND? If no, detail below.	Yes	No	N/A
Wele all FD lesuits ND ! II IIU, uetall below.		Х	
Fight Blook (OOD) was south and the			_

Field Blank – (CCR): representing all samples

- TDS was detected at 14 mg/L, ≥RL of 10 mg/L.
 - No qualification was required for any samples due to all results ≥10xFB.
- Radium-226 was detected at 0.294 pCi/l, ≥2σ, >0, and >MDC (DL).
 - > ELF-16 was qualified as an estimated detection (J) due to a result >MDC (DL), a mean difference >2, and a difference factor <10.
 - ELF-16 was qualified as an estimated ND (J) due to MB detection. The J qualifier will override the UJ qualifier.
 - > All remaining samples were qualified as estimated ND (UJ) due to results >MDC (DL), mean differences between 0 and 2, and difference factors <10.
- Radium-228 was detected at 2.03 pCi/l, ≥2σ, >0, and >MDA.
 - > ELF-6R, ELF-8, ELF-16, and Duplicate (CCR) were qualified as estimated detections (J) due to results >MDC (DL), mean differences >2, and difference factors <10.
 - All remaining samples were qualified as estimated ND (UJ) due to results >MDC (DL), mean differences between 0 and 2, and difference factors <10.

Word trip blank (TP) complex required (valetiles analyses)?	Yes	No	N/A
Were trip blank (TB) samples required (volatiles analyses)?		X	
Were TB samples submitted as required (one per shipping container)? If	Yes	No	N/A
no, all data is qualified as estimated due to lack of TB (TBX).			Х

	Yes	No	N/A
Other issues? If yes, detail below.		X	1071

Field QA/QC Summary

Out of 330 total data points:

- 256 data points (77.6%) remain unqualified.
- Out of 74 data points (22.4%) qualified as estimated:
 - 16 data points (21.6% of qualified, 4.8% of total) were due to HT exceedances.
 - No data points were due to preservation (temperature and/or pH) issues.
 - 28 data points (37.8% of qualified, 8.5% of total) were due to blank contamination.
 - 30 data points (40.5% of qualified, 9.1% of total) were due to poor replication.
- No data points were rejected.

Laboratory QA/QC			
Did the laboratory use appropriate methods to extract/prep and analyze all	Yes	No	N/A
samples within HT?	X		
Were there any results reported below the RL or in exceedance of (E) or	Yes	No	N/A
over (O) instrument calibration? If yes, detail below.		X	
Other issues? If yes, detail below.	Yes	No	N/A
Other issues: if yes, detail below.	X		
The laboratory did not complete Radium 226+228 as instructed. This is reflected	in the work order	r completion tota	l
Laboratory Blanks			
Were TB results ND? If no, detail below.	Yes	No	N/A
Were 1D results ND: If no, detail below.			X
Were method blank (MB) samples analyzed at a frequency of one per 20	Yes	No	N/A
samples or one per batch?	X		
Were MB results ND? If no, detail below.	Yes	No	N/A
Wele Mid leading Md: II ilo, detail below.		X	

- ❖ Method 903.0/9315
 - ➤ Batch WG2050046: all samples
 - Radium-226 was detected at 0.413 pCi/l, ≥2σ, >0, and >MDC (DL).
 - All samples were qualified as estimated ND (UJ) due to results >MDC (DL), mean differences between 0 and 2, and difference factors <10.
 - ♦ ELF-16 was qualified as an estimated detection (J) due to the FB detection. The J qualifier will override the UJ qualifier.
- ❖ Method 904/9320
 - Batch WG2056321: all samples except Field Blank (CCR)
 - Radium-228 was detected at 0.280 pCi/l, ≥2σ, >0, and >MDC (DL).
 - ELF-16 was qualified as estimated ND (UJ) due to a result >MDC (DL), a mean difference between 0 and 2, and difference factor <10.
 - ♦ ELF-16 was qualified as an estimated detection (J) due to the FB detection. The J qualifier will override the UJ qualifier.
 - All remaining samples were qualified as estimated detections (J) due to results >MDC (DL), mean differences
 2, and difference factors <10.
 - ♦ All samples except ELF-6R, ELF-8, ELF-16, and Duplicate (CCR) were qualified as estimated ND (UJ) due to the FB detection. The J qualifier will override the UJ qualifier.

Laboratory Accuracy			
Were initial/continuing calibration verification (ICV/CCV) analyses	Yes	No	N/A
performed at the appropriate frequency?	Х		
Were ICV/CCV percent recoveries within CLs? If no, detail below.	Yes	No	N/A
were icv/ccv percent recoveries within cls? If no, detail below.	Х		
Were laboratory fortified blanks (LFB) / control samples (LCS) analyzed at	Yes	No	N/A
a frequency of one per 20 samples or one per batch?	Х		
Were LFB/LCS percent recoveries within CLs? If no, detail below.	Yes	No	N/A
were LFB/LC3 percent recoveries within CLS? If no, detail below.		Χ	

N/A

- ❖ Method E200.7
 - ▶ Batch BXD0533: Duplicate (CCR) and Field Blank (CCR)
 - Barium was recovered at 120%, >115% upper CL.
 - Duplicate (CCR) was qualified as estimated high (J+) due to a detected result.
 - Field Blank (CCR) did not require qualification due to a ND result.
 - Calcium was recovered at 119%, between the upper CL of 115% and the expanded upper CL of 140%.
 - Duplicate (CCR) was qualified as estimated high (J+) due to a detected result.
 - Field Blank (CCR) did not require qualification due to a ND result.

Were matrix spike (MS) samples analyzed at a frequency of one per 20	Yes	No	N/A
samples or one per batch?	X		
Were MS percent recoveries within CLs? If no, detail below.	Yes	No	N/A
were mo percent recoveries within ous! If no, detail below.		X	

- ❖ Method 200.7
 - Batch BXD0255: ELF-4, ELF-5R, ELF-6R, ELF-7, ELF-9, ELF-11, ELF-12, ELF-13, ELF-14, ELF-15, and ELF-16
 - 23D0472-10: ELF-13
 - Calcium was recovered at 347% (MSD), >130% upper CL.
 - ♦ No qualification was required due to a parent sample result ≥4x the spike concentration.
 - Lithium was recovered at 163% (MS) and 190% (MSD), >130% upper CL.
 - ♦ No qualification was required due to a parent sample result ≥4x the spike concentration.
 - ➤ Batch BXD0256: ELF-2
 - 23D0472-01: ELF-2
 - Calcium was recovered at 314% (MS) and 359% (MSD), >130% upper CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.
- Method 300.0
 - ▶ Batch BXD0289: ELF-2, ELF-4, ELF-5R, ELF-6R, ELF-7, ELF-8, and ELF-9
 - 23D0472-01: ELF-2
 - Sulfate was recovered at 50.3% (MS) and 44.6% (MSD), <80% lower CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.
 - Batch BXD0313: ELF-12, ELF-13, ELF-14, ELF-15, ELF-16, Duplicate (CCR) and Field Blank (CCR)
 - 23D0430-01: unassociated work order
 - Chloride was recovered at 186% (MS) and 209% (MSD), >120% upper CL with QC ID BXD0313-MS(D)1. The parent sample result was ≥4x the spike concentration, thus no qualification was required.
 - Chloride was recovered at 76.4% (MS), <80% lower CL with QC ID BXD0313-MS(D)2. The parent sample result was <4x the spike concentration.
 - Field Blank (CCR) was qualified as estimated (UJ) due to a ND result.
 - ♦ All remaining samples were qualified as estimated low (J-) due to detected results.
 - Sulfate was recovered at 7.36% (MS), <80% lower CL and <35% expanded lower CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.
 - ➤ Batch BXD0346: ELF-11
 - 23C2043-02: unassociated work order
 - Chloride was recovered at 12.7% (MS) and 16.9% (MSD), <80% lower CL and <35% expanded lower CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.
 - Chloride was recovered at -162% (MS) and -161% (MSD), <80% lower CL and <35% expanded lower CL.
 - No qualification was required due to a parent sample result ≥4x the spike concentration.

 Yes No

Were surrogate recoveries within CLs (organics only)? If no, detail below.	Yes	NO	N/A
were surrogate recoveries within CLS (organics only)? If no, detail below.			X
Laboratory Precision			
Were laboratory duplicates analyzed at a frequency of one per 20 samples	Yes	No	N/A
or one per batch, either through laboratory sample duplicates (LSD), LCS	Y		
duplicates (LCSD), or MS duplicates (MSD)?	^		
Were laboratory duplicate RPD results at or below CLs? If no, detail	Yes	No	N/A
below.		Χ	

- Method E903/9315
 - Batch WG2050046: all samples
 - L1604336-18: Field Blank CCR
 - Radium-226 RPD was 83.2%, >20% CL.
 - ♦ No qualification was required due to a mean difference <3 (0.84).</p>
- Method E904/9320

- ➤ Batch WG2056321: all samples except Field Blank CCR
 - L1604336-01: unassociated sample delivery group
 - Radium-228 RPD was 200%, >20% CL.
 - No qualification required due to a laboratory-calculated RER <3 (1.33).
- Batch WG2057687: Field Blank CCR
 - L1604350-01: unassociated work group
 - Radium-228 RPD was 200%, >20% CL.
 - ♦ No qualification required due to a laboratory-calculated RER <3 (1.22).

Were serial dilution (SD) samples analyzed at a frequency of one per 20	Yes	No	N/A
samples or one per batch (metals only)?		X	
Were SD RPD results at or below CLs? If no, detail below.	Yes	No	N/A
Were 3D RFD results at or below CLS? If IIO, detail below.			X

Laboratory QA/QC Summary

Out of 330 total data points:

- 292 data points (88.5% of total) remain unqualified.
- Out of 38 data points (11.5% of total) qualified as estimated:
 - No data points were due to detections below the RL or above the instrument upper calibration value or estimated values.
 - 29 data points (76.3% of qualified, 8.8% of total) were due to laboratory blank contamination.
 - 9 data points (23.7% of qualified, 2.7% of total) were due to poor accuracy (high LCS and low MS recoveries).
 - No data points were due to poor precision.
- No data points were rejected.

OVERALL SUMMARY

Data Quality

Out of 330 total data points:

- 253 data points (76.7%) remain unqualified and are considered quantitative.
- Out of 77 data points (23.3%) qualified as estimated and assigned as qualitative:
 - 74 data points (96.1% of qualified, 22.4% of total) due to field QA/QC.
 - 36 data points (46.8% of qualified, 10.9% of total) due to laboratory QA/QC.
- · No data points were rejected.

Completeness

Out of 19 samples planned, 4 wells were dry and unable to be sampled, so 15 samples were completed. This sample delivery group is 78.9% complete. This is not reflective of quality.

Out of 120 analyses planned, the lab failed to complete Radium 226+228 analysis, so 105 analyses were completed. This work order is 87.5% complete. This is not reflective of quality.

Attachment C:

Statistical Analysis

CONTENTS

1.0	INT	RODUC'	TION	1
• •	DD D		DVD 171 1311 VALVA	
2.0	PRE		ARY DATA ANALYSIS	
	2.1	Data A	Analysis Techniques	2
		2.1.1	Mean	2
		2.1.2	Standard Deviation	2
		2.1.3	Coefficient of Variance	2
		2.1.4	Quartiles and the Five Number Summary	
	2.2	Visual	Tools	3
		2.2.1	Histograms	3
		2.2.2	Dot Plots	
		2.2.3	Outliers	5
		2.2.4	Treatment of Non-Detects	
	2.3	Summ	ary Results	6
3.0	UPC	RADIE	NT AND DOWNGRADIENT WELL COMPARISON	12
	3.1	Groun	dwater Protection Standards	12
		3.1.1	Normal Distribution	
		3.1.2	Upper Tolerance Limits and Groundwater Protection Standard	
4.0	CON	ICLUSIO	ONS	16
5.0	DEE	EDENC	ES	17
5.0	KLT	LICEINC	ட்ப	1 /

LIST OF FIGURES

- Figure C.1. Histogram of fluoride data from the CCR Landfill upgradient wells
- Figure C.2. Dot plot of fluoride data the CCR Landfill upgradient wells
- Figure C.3. Histograms and dot plots for the upgradient Ash Landfill data
- Figure C.4. Background upper tolerance limit plots for the CCR Landfill

LIST OF TABLES

- Table C.1. Summary statistics for the CCR Landfill upgradient wells
- Table C.2. Five-number summary for the CCR Landfill upgradient wells
- Table C.3. Shapiro-Wilk Test for the CCR Landfill upgradient wells
- Table C.4. Comparison of downgradient wells to the Groundwater Protection Standard

1.0 INTRODUCTION

This appendix contains a statistical analysis of the data collected from the groundwater monitoring network for the CCR Landfill at the Hunter Power Plant in Castle Dale, Utah. Methods used to evaluate compliance vary depending on the characteristics of the upgradient well data. Upgradient well data were analyzed for outliers, normality, non-detects, and other characteristics that affect the comparison measures. A comprehensive statistical analysis is presented along with a discussion of the methods used to compare upgradient and downgradient water quality. Table C.1 lists the upgradient and downgradient wells that are used in this analysis. Note that if a well appears in Table C.1 and not in the tables and figures in this appendix it means that no samples were able to be collected from that well.

Table C.1. Upgradient and downgradient wells for the CCR Landfill.

Upgradient Well	Downgradient Well
ELF-1D	ELF-3
ELF-2	ELF-4
ELF-9	ELF-5R
ELF-10	ELF-6R
	ELF-7
	ELF-8
	ELF-11
	ELF-12
	ELF-13
	ELF-14
	ELF-15
	ELF-16
	ELF-17

2.0 PRELIMINARY DATA ANALYSIS

The primary purpose of this statistical analysis is to establish background values from the upgradient well data and compare these to the downgradient well data to determine if the downgradient water quality has been / remains impacted by the CCR Landfill. Familiarity with numerical and distributional characteristics of the upgradient wells aids in computing appropriate limits and in correctly interpreting those limits. This section contains a statistical summary of the upgradient well data. It is essential to understand the statistical characteristics of the data, prior to making the upgradient / downgradient well comparison. This understanding helps to ensure the appropriate calculations have been done and comparisons are completed using the proper statistical measures. The mean, standard deviation, quartiles, and other statistical quantities and corresponding graphs are presented in the following sections.

2.1 Data Analysis Techniques

The following sections summarize the statistical tools and techniques, used to evaluate upgradient well data from the CCR Landfill.

2.1.1 Mean

One measure of primary interest is the center of the data. The average (\bar{x}), or the mean, is the most commonly used measure of the central tendency of the data. However, it can be heavily influenced by outliers and by asymmetric data. The mean is calculated using Equation (1):

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{1}$$

Where:

 \overline{x} = mean

n = number of observations

 $x_i = i^{th}$ observation.

2.1.2 Standard Deviation

Another quantity of interest is the spread of the data. The standard deviation (*s*) is the most commonly used measure of spread, as it is easy to interpret and is used in many other statistical methods. Because it is calculated using the average, it is also sensitive to outliers and affected by data that are not symmetric. The standard deviation is calculated using Equation (2):

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$
 (2)

Where:

s = standard deviation

n = number of observations

 $x_i = i^{th}$ observation

 \bar{x} = mean of the observations.

2.1.3 Coefficient of Variance

The coefficient of variance (CV) is a relative measure of variation in the sample data which expresses the standard deviation relative to the mean. The CV is expressed as a percentage and

provides a direct comparison to the standard deviations of two different data sets. It is important to note the mean of the data may be very close to or very far away from zero and the spread may be independent of the distance from the mean to zero. Therefore, no firm guidelines have been established for interpreting the CV.

The CV was calculated for each detected analyte in each data grouping using Equation (3):

$$CV = \frac{s}{\overline{X}} \times 100\% \tag{3}$$

Where:

s = standard deviation

 \bar{X} = mean of the observations

2.1.4 Quartiles and the Five Number Summary

The five-number summary is a set of five numbers that are used to assess the spread of the data. It consists of the minimum value, first quartile, median, third quartile, and maximum of the data value. The first quartile is the 25th percentile of the data, the median is the 50th percentile of the data, and the third quartile is the 75th percentile of the data. The 25th percentile of the data is the number such that 25% of the data are less than that number and 75% of the data are above the 25th percentile. The median and third quartiles are found in a similar manner.

2.2 Visual Tools

It is difficult to review numerical summary statistics and identify the degree of symmetry or normality of data without the aid of visual tools. In completing the statistical analysis for the CCR Landfill, histograms and dot plots were developed for each of the analytes with at least one detectable observation. All graphs were developed using the R Statistical Package (R Core Team 2023).

2.2.1 Histograms

Histograms display the distribution and symmetry of the data. The data are displayed in such a way, that deviations from a normal (i.e., bell shaped) distribution can easily be observed. Outliers are also often identifiable in a histogram. Histograms for the upgradient wells were generated using both non-detects and detected results. The method detection limits (MDL) are plotted on the histogram with a blue line to show which observations are non-detects.

If an analyte has more than one MDL there will be more than one blue line on the histogram. Figure C.1 below is a histogram of fluoride data for the upgradient wells for the CCR Landfill. It is provided here to illustrate data distribution using a histogram. All of the histograms used to examine the analytes from the CCR Landfill upgradient well data, are provided at the end of this appendix in Figure C.3.

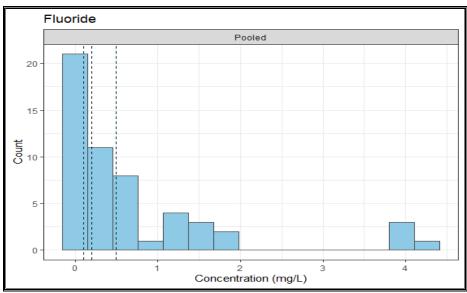


Figure C.1. Histogram of fluoride data from the CCR Landfill upgradient wells.

2.2.2 Dot Plots

A dot plot is a graphical tool used to determine the spread of the data and to look for outliers. Each measured concentration is plotted on the graph so that non-detects and outliers are clearly visible. The MDL for non-detects are shown as green points on the plot. Figure C.2 uses the same fluoride data points used to develop the Figure C.1. Several of the points are non-detects and the concentrations in well ELF-10 are larger than those in the other wells. All of the dot plots used to examine the CCR Landfill upgradient well data are provided at the end of this appendix in Figure C.3.

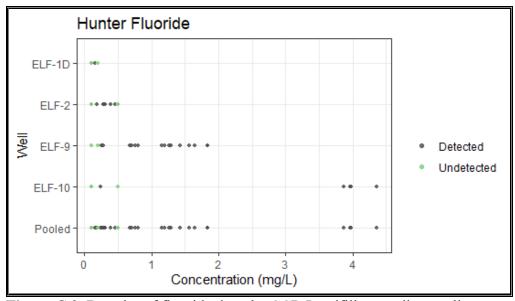


Figure C.2. Dot plot of fluoride data the CCR Landfill upgradient wells

2.2.3 Outliers

Outliers are data points that are notably larger or smaller than the rest of the data set and may indicate a problem with the data point or the data set as a whole. Examples which may be indicative of outliers include: 1) a misreported or erroneous concentration, 2) analytical error(s), or 3) natural variations in groundwater concentrations. Outliers are generally not omitted from project data simply because they are outliers. Rather, the result is examined individually or by project, to ensure the outlier does not represent an erroneous result or another concern warranting either additional sampling or omission of the outlier from the data analysis. There are reasonable situations when it is appropriate to remove outliers. For example, if outliers which represent exceedingly low concentrations are used to compute background concentrations, they may result in background levels which are too conservative. Conversely, use of excessively high outlier concentrations to compute background values, may result in an overestimation of background concentrations resulting in false-negative comparisons for downgradient groundwater quality.

Outliers were detected in the arsenic, cadmium, chromium, fluoride, lead, and radium data for the CCR Landfill. However, only the arsenic and chromium outliers are extreme enough to warrant removal from the dataset. Figure C.5 shows the concentration of the arsenic outlier relative to the other observed arsenic concentrations. This outlier was not included in the Groundwater Protection Standard (GWPS) calculation because it would have resulted in an inflated GWPS. The MDLs for the non-detects in the boron upgradient data in February 2016 and August 2019 were 5 mg/L and the largest detected value was less than 4 mg/L. This is an unusually large MDL and its inclusion would have resulted in a GWPS that was larger than any concentration detected in the upgradient wells. Thus, the non-detects were removed from the upgradient boron data and are not included in any tables or graphs in this appendix. The fluoride data for the May 2022 sampling event were all non-detects with unusually high detection limits so they were not included in the analysis. Fluoride was reassessed during the Spring 2023 sampling event and detection limits were within the normally expected ranges. Thus, the fluoride non-detects from the most recent sampling event is included in the calculations in this report.

2.2.4 Treatment of Non-Detects

Non-detect values are common in environmental data. When present in data sets, non-detects produce difficulties in computing statistical metrics because reliable values cannot be assigned. Substituting a value such as the MDL or one-half of the MDL for non-detects are common practices. However, use of the detection limit, or one-half of the detection limit, can produce unstable or unreliable results (EPA 2009). Statistical methods, such as Kaplan-Meier (Helsel 2004), can be used to appropriately evaluate data sets containing significant quantities of non-detects, by producing estimates of the survival probability function for non-detects. These estimates can then be used to compute summary statistics on the data set. However, Kaplan-Meier does not perform well if more than 50% of the results are non-detects or if fewer than eight detections are available for evaluation.

The antimony, arsenic, cadmium, chromium, lead, and thallium data have more than 50% non-detects. Beryllium and mercury were not detected in any of the samples. Thus, statistical analysis cannot be done for those analytes. The cobalt, fluoride and selenium data have more than 15%

non-detects, but more than half of the data are detectable. As a result, Kaplan-Meier was used to compute means, standard deviations, and statistical limits used to compare the upgradient to downgradient water quality for cobalt, fluoride, and selenium.

2.3 Summary Results

Table C.2 provides summary statistics for the CCR Landfill upgradient well data. Although the data from the upgradient wells were combined when compared to the downgradient wells, the summary statistics presented in this section are separated by well and are presented as pooled data. The data are presented in this way, due to observed differences between the different wells for many of the analytes. These tables in conjunction with the histograms and normal-quantile plots, provide information about differences between wells and the data properties of the combined data. Note that summary statistics were only computed for analytes and wells with at least 50% detects and at least eight positive results. Analytes that were not detected in any upgradient well samples are not listed in Table C.2.

Table C.2. Summary statistics for the CCR Landfill upgradient wells

Analyte	Well	Number of Samples	Samples Detected	Median (mg/L)	Mean (mg/L)	Standard Deviatio n (mg/L)	Coefficient of Variation (%)
Antimony	ELF-1D	5	0	< 0.004	NA	NA	NA
Antimony	ELF-2	21	0	< 0.002	NA	NA	NA
Antimony	ELF-9	19	3	< 0.002	NA	NA	NA
Antimony	ELF-10	15	0	< 0.002	NA	NA	NA
Antimony	Pooled	60	3	< 0.002	NA	NA	NA
Arsenic	ELF-1D	5	0	< 0.002	NA	NA	NA
Arsenic	ELF-2	21	3	< 0.002	NA	NA	NA
Arsenic	ELF-9	19	19	0.0066	0.0067	0.0024	36
Arsenic	ELF-10	14	3	< 0.002	NA	NA	NA
Arsenic	Pooled	59	25	< 0.002	NA	NA	NA
Barium	ELF-1D	5	5	0.0103	NA	NA	NA
Barium	ELF-2	21	20	0.0102	0.0137	0.0096	70
Barium	ELF-9	19	19	0.0160	0.0330	0.0309	94
Barium	ELF-10	15	15	0.0353	0.0384	0.0214	56
Barium	Pooled	60	59	0.0136	0.0256	0.0237	93
Boron	ELF-1D	4	4	2.15	NA	NA	NA
Boron	ELF-2	20	20	3.29	3.31	0.19	6
Boron	ELF-9	17	17	1.36	1.43	0.21	15
Boron	ELF-10	14	14	1.60	1.63	0.18	11
Boron	Pooled	55	55	1.84	2.22	0.87	39
Cadmium	ELF-1D	5	0	< 0.0005	NA	NA	NA

Analyte	Well	Number of Samples	Samples Detected	Median (mg/L)	Mean (mg/L)	Standard Deviatio n (mg/L)	Coefficient of Variation (%)
Cadmium	ELF-2	21	1	< 0.0005	NA	NA	NA
Cadmium	ELF-9	19	1	< 0.0005	NA	NA	NA
Cadmium	ELF-10	15	6	< 0.0005	NA	NA	NA
Cadmium	Pooled	60	8	< 0.0005	NA	NA	NA
Calcium	ELF-1D	4	4	372	NA	NA	NA
Calcium	ELF-2	20	20	397	395	24.3	6
Calcium	ELF-9	18	18	62.5	76.2	30.9	41
Calcium	ELF-10	14	14	477	479	35.5	7
Calcium	Pooled	56	56	389	312	170	55
Chloride	ELF-1D	4	4	6760	NA	NA	NA
Chloride	ELF-2	20	20	304	329	122	37
Chloride	ELF-9	18	18	381	392	100.7	26
Chloride	ELF-10	14	14	7600	8918	2506	28
Chloride	Pooled	56	56	452	2958	4034	136
Chromium	ELF-1D	5	1	< 0.002	NA	NA	NA
Chromium	ELF-2	21	3	< 0.002	NA	NA	NA
Chromium	ELF-9	19	7	< 0.0036	NA	NA	NA
Chromium	ELF-10	15	11	0.003	0.0049	0.0039	81
Chromium	Pooled	60	22	< 0.002	NA	NA	NA
Cobalt	ELF-1D	5	1	< 0.004	NA	NA	NA
Cobalt	ELF-2	21	13	0.0048	0.0057	0.0026	45
Cobalt	ELF-9	19	5	< 0.004	NA	NA	NA
Cobalt	ELF-10	15	11	0.0043	0.0049	0.0013	27
Cobalt	Pooled	60	30	0.004	0.0047	0.002	43
Fluoride	ELF-1D	4	1	< 0.132	NA	NA	NA
Fluoride	ELF-2	19	9	< 0.103	NA	NA	NA
Fluoride	ELF-9	17	15	1.16	1.00	0.58	58
Fluoride	ELF-10	14	5	< 0.1	NA	NA	NA
Fluoride	Pooled	54	30	0.268	0.74	1.07	145
Lead	ELF-1D	5	0	< 0.002	NA	NA	NA
Lead	ELF-2	21	2	< 0.002	NA	NA	NA
Lead	ELF-9	19	4	< 0.002	NA	NA	NA
Lead	ELF-10	15	6	< 0.002	NA	NA	NA
Lead	Pooled	60	12	< 0.002	NA	NA	NA
Lithium	ELF-1D	5	5	2.19	NA	NA	NA

Analyte	Well	Number of Samples	Samples Detected	Median (mg/L)	Mean (mg/L)	Standard Deviatio n (mg/L)	Coefficient of Variation (%)
Lithium	ELF-2	21	21	1.64	2.21	1.11	50
Lithium	ELF-9	19	19	1.03	1.05	0.41	39
Lithium	ELF-10	15	15	2.17	2.35	0.99	42
Lithium	Pooled	60	60	1.61	1.88	1.02	54
Molybdenum	ELF-1D	5	5	0.0161	NA	NA	NA
Molybdenum	ELF-2	21	20	0.003	0.0031	0.0007	24
Molybdenum	ELF-9	19	19	0.106	0.0937	0.0378	40
Molybdenum	ELF-10	15	15	0.0795	0.0735	0.0393	53
Molybdenum	Pooled	60	59	0.0336	0.0504	0.0494	98
рН	ELF-1D	4	4	7.22	NA	NA	NA
рН	ELF-2	20	20	7.26	7.30	0.157	2
pН	ELF-9	18	18	7.92	7.92	0.146	2
pН	ELF-10	14	14	7.18	7.26	0.411	6
pН	Pooled	56	56	7.37	7.48	0.387	5
Radium	ELF-1D	5	5	2.2	NA	NA	NA
Radium	ELF-2	21	21	1.63	1.97	1.58	80
Radium	ELF-9	19	18	1.5	1.49	0.563	38
Radium	ELF-10	15	15	2.41	3.02	3.24	107
Radium	Pooled	60	59	1.805	2.11	1.97	94
Selenium	ELF-1D	5	0	< 0.002	NA	NA	NA
Selenium	ELF-2	21	21	0.0879	0.228	0.233	102
Selenium	ELF-9	19	4	< 0.002	NA	NA	NA
Selenium	ELF-10	15	10	0.009	0.0983	0.139	142
Selenium	Pooled	60	35	0.0042	0.106	0.181	171
Sulfate	ELF-1D	4	4	8790	NA	NA	NA
Sulfate	ELF-2	20	20	7950	7764	690	9
Sulfate	ELF-9	18	18	6500	6518	723	11
Sulfate	ELF-10	14	14	14950	14718	4789	33
Sulfate	Pooled	56	56	7950	9190	4085	44
TDS	ELF-1D	4	4	26900	NA	NA	NA
TDS	ELF-2	20	20	12000	12010	459	4
TDS	ELF-9	18	18	10550	10640	803	8
TDS	ELF-10	14	14	38000	37443	2387	6
TDS	Pooled	56	56	12000	18990	11553	61
Thallium	ELF-1D	5	0	< 0.002	NA	NA	NA

Analyte	Well	Number of Samples	Samples Detected	Median (mg/L)	Mean (mg/L)	Standard Deviatio n (mg/L)	Coefficient of Variation (%)
Thallium	ELF-2	21	1	< 0.002	NA	NA	NA
Thallium	ELF-9	19	0	< 0.002	NA	NA	NA
Thallium	ELF-10	15	0	< 0.002	NA	NA	NA
Thallium	Pooled	60	1	< 0.002	NA	NA	NA

Table C.3 provides the five-number summaries for the CCR Landfill upgradient wells. As with the summary statistics, a five-number summary was computed for each well as well as for the pooled data. If a minimum or a quartile falls within the range of non-detects it is denoted using a less-than (<) symbol. Analytes that were not detected in any of the upgradient well samples are not listed in Table C.3.

Table C.3. Five-number summary for the CCR Landfill upgradient wells.

Analyte	alyte Well		First Quartile (mg/L)	Median (mg/L)	Third Quartile (mg/L)	Maximum (mg/L)
Antimony	ELF-1D	< 0.002	< 0.004	< 0.004	< 0.004	< 0.004
Antimony	ELF-2	< 0.0005	< 0.002	< 0.002	< 0.004	< 0.004
Antimony	ELF-9	< 0.0006	< 0.002	< 0.002	< 0.004	0.004
Antimony	ELF-10	< 0.001	< 0.002	< 0.002	< 0.0033	< 0.004
Antimony	Pooled	< 0.0005	< 0.002	< 0.002	< 0.004	0.004
Arsenic	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Arsenic	ELF-2	< 0.0007	< 0.002	< 0.002	< 0.002	0.002
Arsenic	ELF-9	0.0025	0.0052	0.0066	0.0074	0.0117
Arsenic	ELF-10	< 0.002	< 0.002	< 0.002	< 0.002	0.0093
Arsenic	Pooled	< 0.0007	< 0.002	< 0.002	0.0052	0.0117
Barium	ELF-1D	0.0084	0.0085	0.0103	0.0103	0.0104
Barium	ELF-2	< 0.0084	0.0097	0.0102	0.012	0.050
Barium	ELF-9	0.0118	0.0127	0.0160	0.0379	0.102
Barium	ELF-10	0.0145	0.0195	0.0353	0.051	0.0863
Barium	Pooled	< 0.0084	0.0104	0.0136	0.0334	0.102
Boron	ELF-1D	1.94	2.06	2.15	2.20	2.23
Boron	ELF-2	2.94	3.17	3.29	3.41	3.77
Boron	ELF-9	1.16	1.31	1.36	1.50	1.91
Boron	ELF-10	1.39	1.54	1.60	1.67	2.12
Boron	Pooled	1.16	1.50	1.84	3.21	3.77
Cadmium	ELF-1D	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005

Analyte	Well	Minimum (mg/L)	First Quartile (mg/L)	Median (mg/L)	Third Quartile (mg/L)	Maximum (mg/L)
Cadmium	ELF-2	< 0.0002	< 0.0005	< 0.0005	< 0.0005	0.0010
Cadmium	ELF-9	< 0.0002	< 0.0005	< 0.0005	< 0.0005	0.0005
Cadmium	ELF-10	< 0.0005	< 0.0005	< 0.0005	0.0006	0.0011
Cadmium	Pooled	< 0.0002	< 0.0005	< 0.0005	< 0.0005	0.0011
Calcium	ELF-1D	353	363	372	381	393
Calcium	ELF-2	342	382	397	415	430
Calcium	ELF-9	48.9	57.1	62.5	86.2	166
Calcium	ELF-10	407	460	477	503	543
Calcium	Pooled	48.9	90.6	389	429	543
Chloride	ELF-1D	6430	6588	6760	6960	7200
Chloride	ELF-2	187	213	304	449	473
Chloride	ELF-9	242	320	381	460	595
Chloride	ELF-10	5710	7128	7600	11325	13100
Chloride	Pooled	187	308	452	6813	13100
Chromium	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	0.0023
Chromium	ELF-2	< 0.001	< 0.002	< 0.002	< 0.002	0.066
Chromium	ELF-9	< 0.002	< 0.002	< 0.0036	0.0054	0.0201
Chromium	ELF-10	< 0.002	< 0.002	0.003	0.0061	0.0164
Chromium	Pooled	< 0.001	< 0.002	< 0.002	0.005	0.066
Cobalt	ELF-1D	< 0.004	< 0.004	< 0.004	< 0.004	0.0054
Cobalt	ELF-2	< 0.0032	< 0.004	0.0048	0.006	0.0131
Cobalt	ELF-9	< 0.0005	< 0.004	< 0.004	0.004	0.0052
Cobalt	ELF-10	< 0.004	< 0.004	0.0043	0.0052	0.0079
Cobalt	Pooled	< 0.0005	< 0.004	0.004	0.0051	0.0131
Fluoride	ELF-1D	< 0.1	< 0.1	< 0.1315	0.1723	0.200
Fluoride	ELF-2	< 0.1	< 0.1	< 0.103	0.3515	0.500
Fluoride	ELF-9	< 0.1	0.678	1.16	1.43	1.84
Fluoride	ELF-10	< 0.1	< 0.1	<0.1	3.03	4.36
Fluoride	Pooled	< 0.1	< 0.1	0.268	0.788	4.36
Lead	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Lead	ELF-2	< 0.0005	< 0.002	< 0.002	< 0.002	0.0021
Lead	ELF-9	< 0.0005	< 0.002	< 0.002	< 0.002	0.0077
Lead	ELF-10	< 0.002	< 0.002	< 0.002	0.0028	0.012
Lead	Pooled	< 0.0005	< 0.002	< 0.002	< 0.002	0.012
Lithium	ELF-1D	1.96	2.12	2.19	2.2	2.89
Lithium	ELF-2	1.34	1.52	1.64	2.14	4.93

Analyte	Well	Minimum (mg/L)	First Quartile (mg/L)	Median (mg/L)	Third Quartile (mg/L)	Maximum (mg/L)
Lithium	ELF-9	0.724	0.792	1.03	1.08	2.48
Lithium	ELF-10	0.841	1.82	2.17	2.90	4.59
Lithium	Pooled	0.724	1.08	1.61	2.18	4.93
Molybdenum	ELF-1D	0.0087	0.0153	0.0161	0.0165	0.0207
Molybdenum	ELF-2	< 0.002	0.0027	0.003	0.0034	0.005
Molybdenum	ELF-9	0.0322	0.0614	0.106	0.123	0.158
Molybdenum	ELF-10	0.0131	0.0428	0.0795	0.111	0.124
Molybdenum	Pooled	< 0.002	0.0033	0.0336	0.100	0.158
рН	ELF-1D	7.02	7.13	7.22	7.28	7.30
рН	ELF-2	7.12	7.20	7.26	7.41	7.76
рН	ELF-9	7.51	7.87	7.92	8.03	8.19
рН	ELF-10	6.85	6.99	7.18	7.38	8.37
рН	Pooled	6.85	7.20	7.37	7.87	8.37
Radium	ELF-1D	1.09	1.23	2.2	2.63	4.4
Radium	ELF-2	0.61	0.99	1.63	2.29	8.1
Radium	ELF-9	< 0.64	1.15	1.5	1.88	2.6
Radium	ELF-10	0.46	1.67	2.41	3.14	14.2
Radium	Pooled	< 0.46	1.13	1.805	2.40	14.2
Selenium	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Selenium	ELF-2	0.0031	0.0084	0.0879	0.451	0.608
Selenium	ELF-9	< 0.0012	< 0.002	< 0.002	< 0.002	0.0095
Selenium	ELF-10	< 0.002	< 0.002	0.009	0.152	0.410
Selenium	Pooled	< 0.0012	< 0.002	0.0042	0.115	0.608
Sulfate	ELF-1D	7730	8413	8790	9380	10700
Sulfate	ELF-2	6030	7310	7950	8215	8720
Sulfate	ELF-9	5460	5855	6500	7035	8030
Sulfate	ELF-10	8610	10075	14950	19675	20700
Sulfate	Pooled	5460	6845	7950	9013	20700
TDS	ELF-1D	25000	26350	26900	27425	28700
TDS	ELF-2	11300	11675	12000	12300	13100
TDS	ELF-9	9420	10150	10550	11125	12000
TDS	ELF-10	32900	35750	38000	39350	40300
TDS	Pooled	9420	11275	12000	29750	40300
Thallium	ELF-1D	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Thallium	ELF-2	< 0.0002	< 0.002	< 0.002	< 0.002	0.002
Thallium	ELF-9	< 0.0002	< 0.002	< 0.002	< 0.002	< 0.002

Analyte	Well	Minimum (mg/L)	First Quartile (mg/L)	Median (mg/L)	Third Quartile (mg/L)	Maximum (mg/L)
Thallium	ELF-10	< 0.001	< 0.002	< 0.002	< 0.002	< 0.002
Thallium	Pooled	< 0.0002	< 0.002	< 0.002	< 0.002	0.002

3.0 UPGRADIENT AND DOWNGRADIENT WELL COMPARISON

Groundwater quality was assessed using upper tolerance limits (UTLs) and the Maximum Contaminant Levels (MCL) for each of the Appendix III and IV analytes. The data measured from the upgradient/background wells were used to compute a UTL, which serves as the background value. The larger of the UTL and MCL was used as the Groundwater Protection Standard (GWPS). Data obtained from the downgradient wells were compared point-by-point to the GWPSs to determine if the site complies with the *Final Rule*. The software package Sanitas© v.2016, was used to compute the UTLs. As part of this evaluation, groundwater data were examined for characteristics that impact how the UTL was computed. These characteristics include the:

- Number of non-detect results
- Data distribution
- Site-wide false-positive rate (SWFPR)
- Spatial and seasonal variability.

Summary statistics and other statistical characteristics of the data are discussed in the previous section. These characteristics were used to compute the appropriate UTL for each analyte.

3.1 Groundwater Protection Standards

The shape or distribution of the data was assessed to ensure that the most appropriate UTL was used for comparison purposes. The most efficient UTL is a parametric UTL that assumes the data follow a normal distribution. If the data do not follow a normal distribution, a non-parametric UTL is typically used. Thus, the data for each analyte are assessed to determine if a parametric UTL can be computed from the data. The parametric UTL is computed using the formula below:

$$IJTL = \bar{X} + \kappa \times S$$

Where:

 \bar{X} = the average of the background data

 κ = multiplier from EPA Unified Guidance, March 2009

S = standard deviation of the background data

3.1.1 Normal Distribution

Histograms and dot plots were used to visually inspect the data for deviations from normality and to determine if outliers are present. This examination reveals that outliers are present in the data. The Shapiro-Wilk test was used to assess normality in conjunction with the normal quantile plots. If the p-value associated with the test was greater than or equal to 0.05, the data are considered normally distributed and a parametric UTL was computed using the upgradient measurements. If the p-value is less than 0.05, then the maximum detected value was used as the UTL.

Note: The 0.05 p-value is not a hard and fast rule. Parametric UTLs were computed for analytes whose p-values were sufficiently close to 0.05 as determined by the Sanitas software (Sanitas 2016).

If the data for an analyte were not normally distributed, the ladder of powers method was used to determine if a reasonable transformation existed that would produce normal data. The ladder of powers tests different monotonic transformations of the data, such as the natural logarithm or square, to see if the transformed data have a normal distribution. If a transformation within the ladder of powers can be found that produces normal data, a parametric UTL was computed using the transformed data. If a transformation was identified, it was applied to both upgradient / background and downgradient groundwater data prior to comparison.

A non-parametric UTL was computed for data that are not normally distributed and cannot be transformed. The non-parametric UTL is the largest value measured in the upgradient / background wells. Table C.4 summarizes the results of the Shapiro-Wilk test for each of the Appendix III and IV analytes where at least 50% of the measurements were detects. An appropriate transformation was found for lithium, pH, and radium. Non-parametric UTLs were computed for all of the analytes except for lithium, pH, and radium.

Table C.4. Shapiro-Wilk Test for the CCR Landfill upgradient wells.

Analyte	W-Statistic	P-Value	Normal
Barium	0.7183	< 0.0001	No
Boron	0.8324	< 0.0001	No
Calcium	0.8107	< 0.0001	No
Chloride	0.6877	< 0.0001	No
Cobalt	0.7405	< 0.0001	No
Fluoride	0.6345	< 0.0001	No
Lithium	0.8728	< 0.0001	No
Cube Root of Lithium	0.9487	0.0136	Yes
Molybdenum	0.8435	< 0.0001	No
рН	0.9295	0.0028	No
Cube Root of pH	0.9325	0.0038	Yes
Radium	0.5609	< 0.0001	No
LN of Radium	0.9604	0.0490	Yes

Analyte	W-Statistic	P-Value	Normal
Selenium	0.6272	< 0.0001	No
Sulfate	0.7074	< 0.0001	No
TDS	0.7016	< 0.0001	No

3.1.2 Upper Tolerance Limits and Groundwater Protection Standard

This section contains the GWPS computed for each analyte. Table C.5 lists the UTL, MCL, and GWPS for each of the analytes in the upgradient wells. The following criteria were used for determining each GWPS:

- If more than 50% of the data were detected and have a normal distribution, a parametric UTL was computed.
- If the data were not normally distributed or more than 50% of the data were nondetects, the greater of the largest MDL and maximum detected value was used as the UTL.
- If all of the upgradient samples were non-detects, the largest MDL was used as the UTL.
- The larger of the MCL and the UTL was used as the GWPS.
- Fluoride is compared to both the MCL and the UTL if the MCL exceeds the UTL, to meet the criteria for Appendix III constituents.

Figure C.4 shows graphs that were constructed for each of the analytes that had at least one detectable measurement in the downgradient wells. The graphs illustrate the GWPS as a horizontal line with the measurements from each of the downgradient wells plotted on the same graph. Non-detects are represented by hollow gray circles on the graphs. These graphs clearly depict how the downgradient measurements compare to the GWPS. Results above the GWPS line represent values exceeding the GWPS.

As the graphs illustrate, boron, cobalt, lithium, and molybdenum exceeded site-specific background or the GWPS. Table C.5 lists site-specific background values, maximum contaminant limits MCLs, the GWPS and the wells that exceed the GWPS for each analyte. GWPS plots are not provided for analytes that were not detected in any downgradient samples.

Table C.5. Comparison of downgradient wells to the Groundwater Protection Standard

Analyte	Upper Tolerance Limit (mg/L)	Maximum Contaminant Level (mg/L)	Groundwater Protection Standard (mg/L)	Downgradient Wells that Exceed Groundwater Protection Standard
Antimony	0.004	0.006	0.006	Within Limit
Arsenic	0.0117	0.01	0.0117	Within Limit
Barium	0.102	2.0	2.0	Within Limit
Beryllium	0.0025	0.004	0.004	Within Limit
Boron ^a	3.77	NA	3.77	ELF-4, ELF-5R, ELF-6R, ELF-8, ELF-11
Cadmium	0.0011	0.0050	0.0050	Within Limit
Calcium	543	NA	543	Within Limit
Chloride	13100	NA	13100	Within Limit
Chromium	0.066	0.1000	0.1000	Within Limit
Cobalt	0.0131	0.006	0.0131	ELF-8, ELF-11
Fluoride	4.36	4.0	4.36	Within Limit
Fluoride Appendix III	4.36	NA	4.36	Within Limit
Lead	0.012	0.015	0.015	Within Limit
Lithium	4.22	0.04	4.22	ELF-6R
Mercury	0.0002	0.002	0.002	Within Limit
Molybdenum	0.158	0.100	0.158	ELF-8
pH Acidic Range	6.56	NA	6.56	Within Limit
pH Basic Range	8.48	NA	8.48	Within Limit
Radium	6.1	5.0	6.1	Within Limit
Selenium	0.608	0.050	0.608	Within Limit
Sulfate	20700	NA	20700	Within Limit
TDS	40300	NA	40300	Within Limit
Thallium	0.002	0.002	0.002	Within Limit

^a New monitoring well ELF-16 exhibited concentrations in excess of the background UTL for boron and the GWPS for lithium. ELF-16 was installed in 2022 as a boundary well for the landfill and as yet does not have eight independent measurements. As a result, it is not shown in Table C.5.

4.0 CONCLUSIONS

Groundwater data was collected from the CCR Landfill monitoring network at the Hunter Power Plant. A comprehensive data analysis was completed on the upgradient wells to ensure that comparisons between upgradient and downgradient wells were done correctly. During the Spring 2023 sampling event, statistically significant increases (SSIs) above background were noted for Appendix III constituents:

• Boron

SSIs above groundwater protection standards were noted for Appendix IV constituents:

- Cobalt
- Lithium
- Molybdenum

5.0 REFERENCES

- EPA, 2009, "Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities Unified Guidance," EPA 530/R-09-007, U.S. Environmental Protection Agency, March 2009.
- Helsel, Dennis, 2004, Nondetects and Data Analysis: Statistic for Censored Environmental Data, New York: Wiley Interscience.
- R Core Team, 2023, R: A Language and Environment for Statistical Computing, https://www.R-project.org, R Foundation for Statistical Computing, Vienna, Austria.
- Sanitas Technologies, 2016, Sanitas, www.sanitastech.com, Shawnee, Kansas.

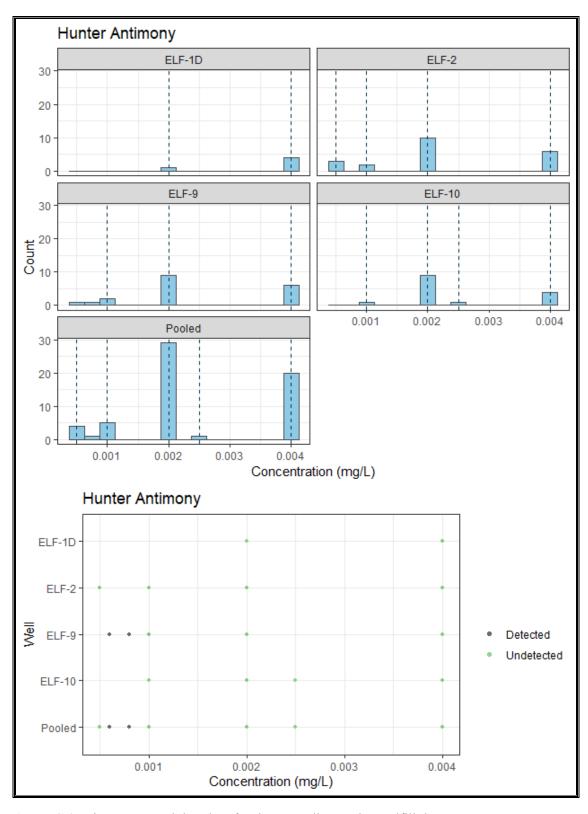


Figure C.3. Histograms and dot plots for the upgradient Ash Landfill data.

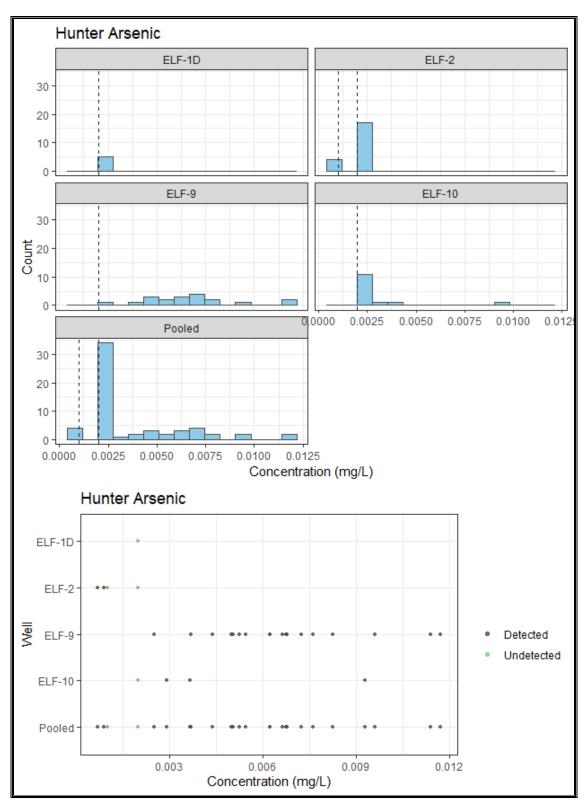


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

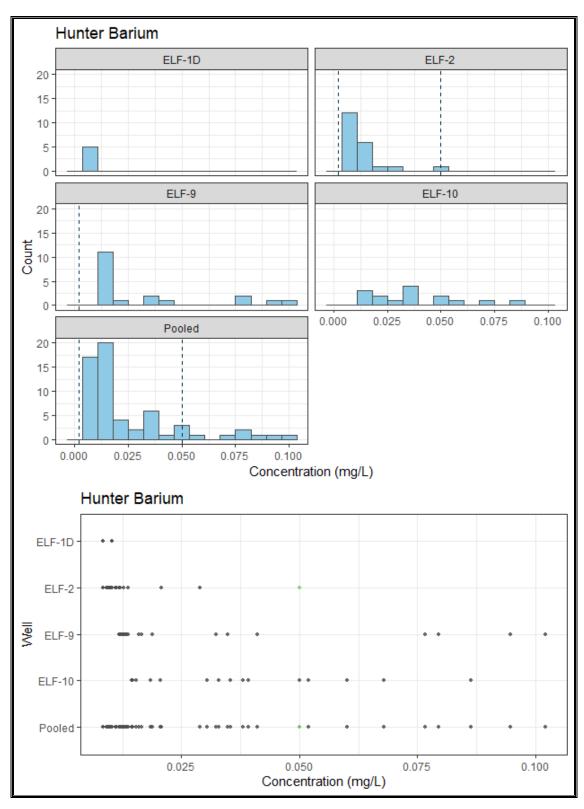


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

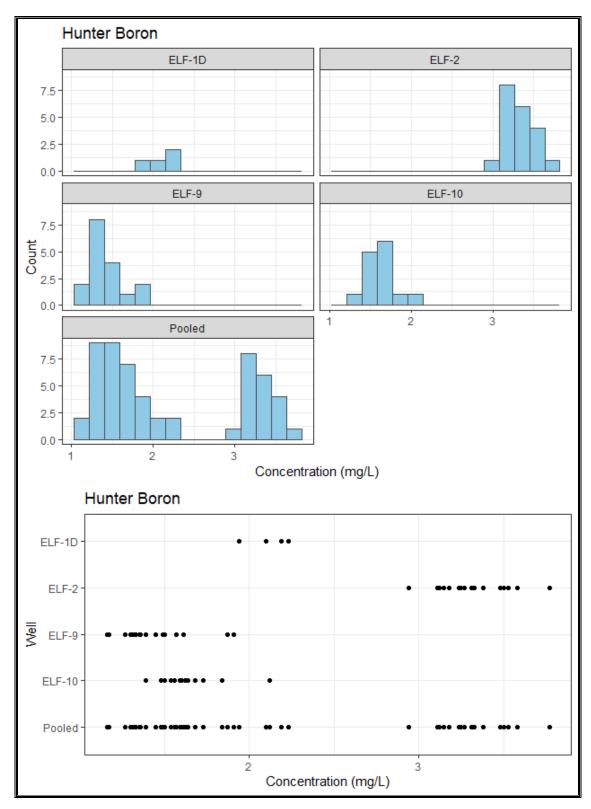


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

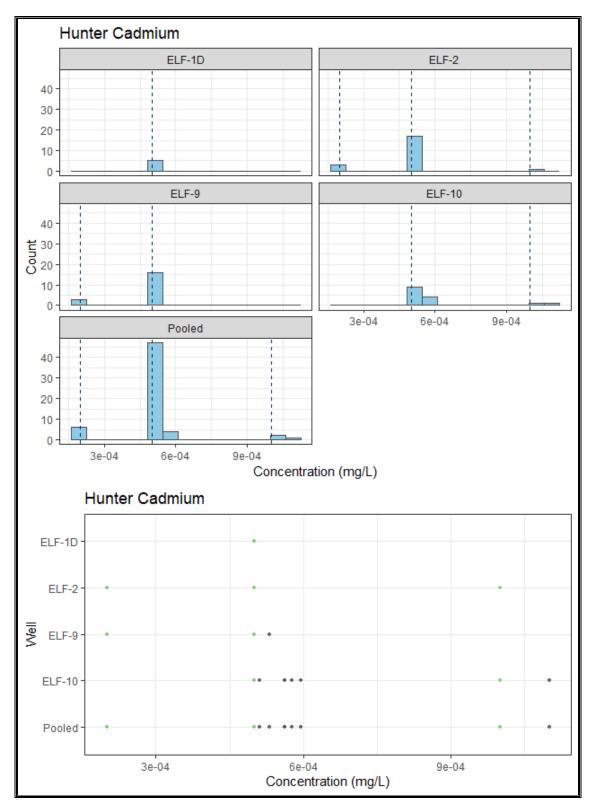


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

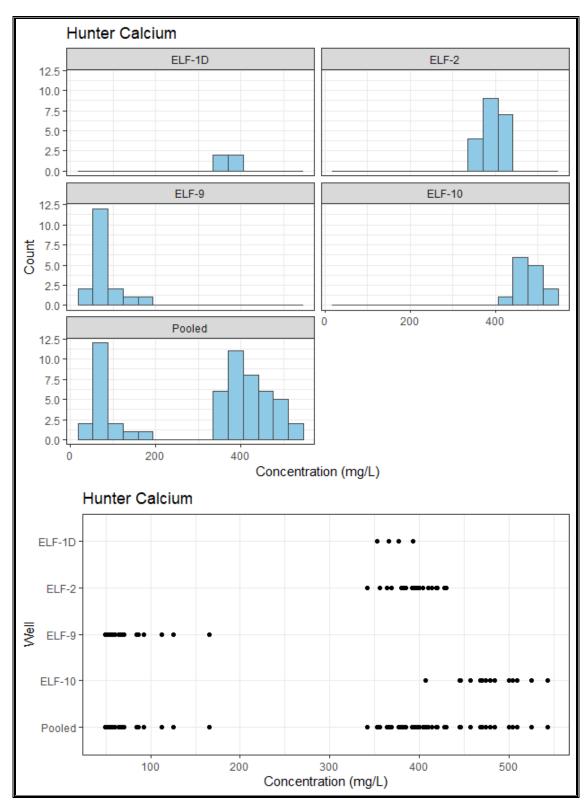


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

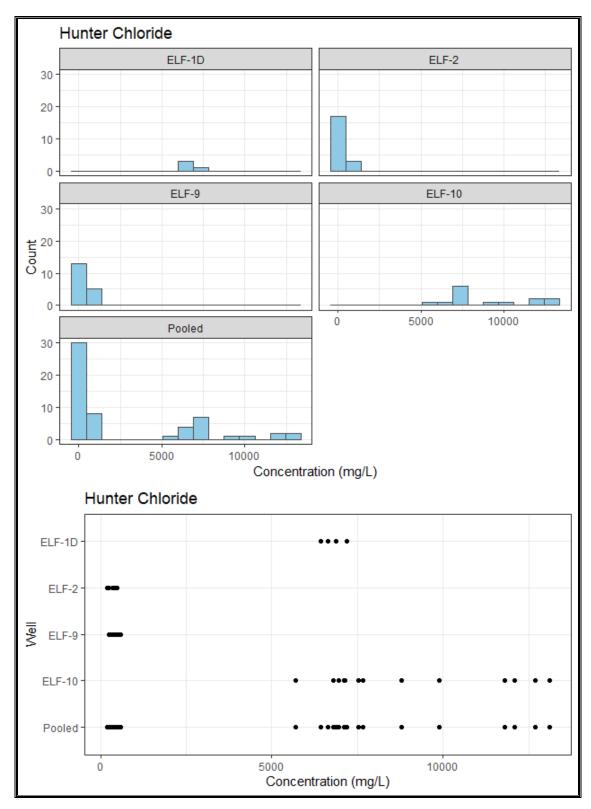


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

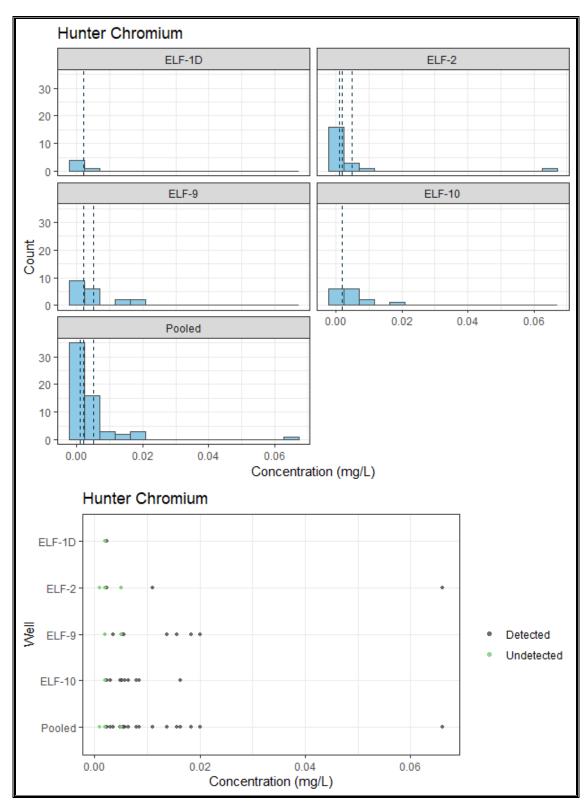


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

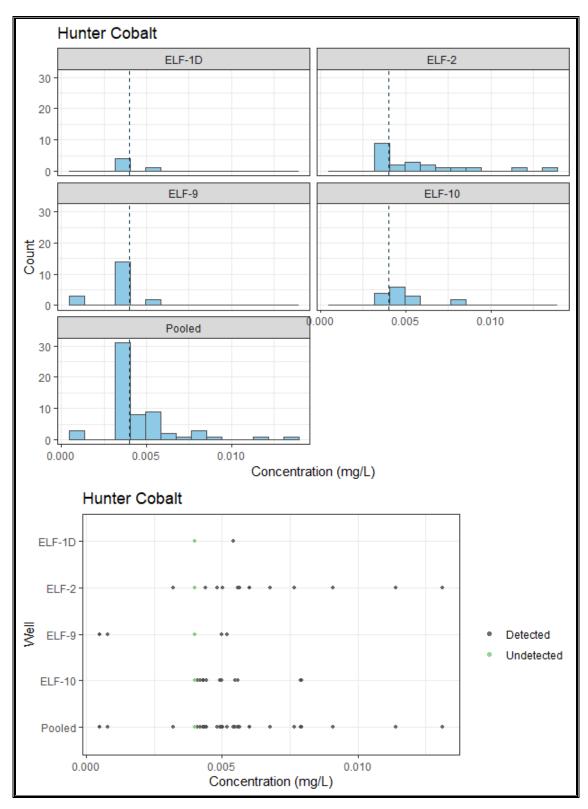


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

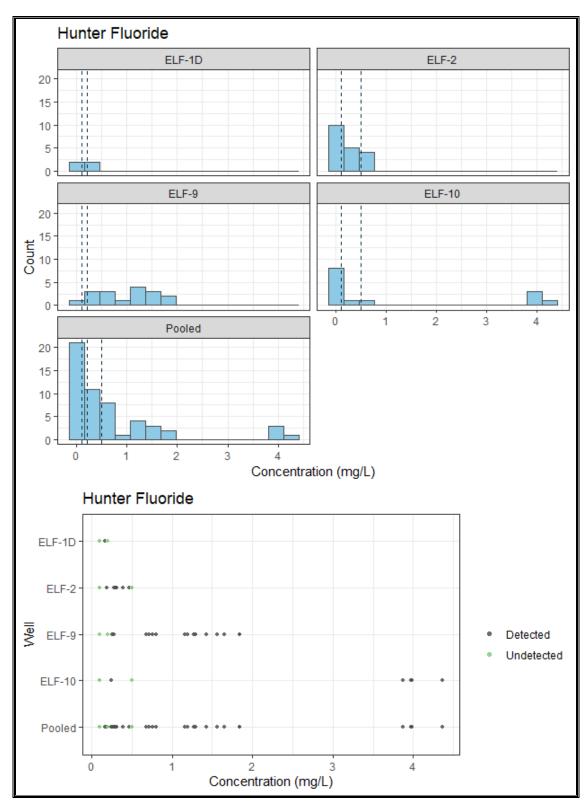


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

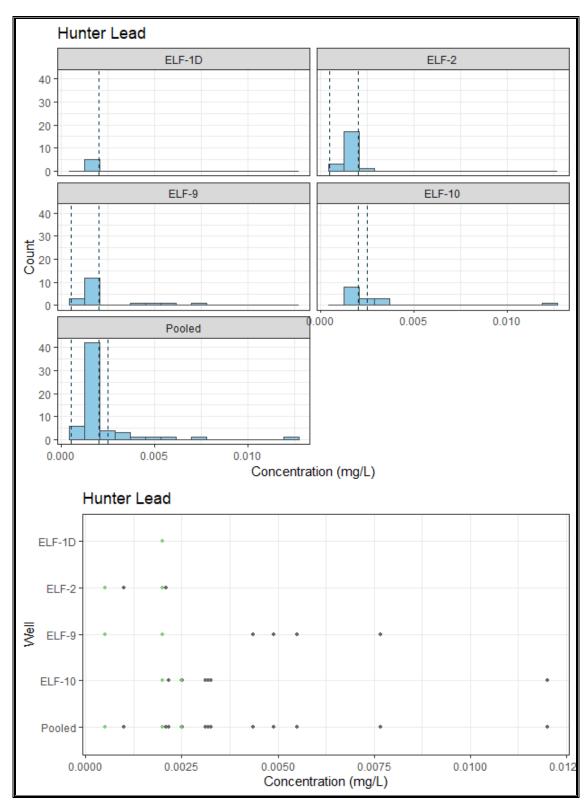


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

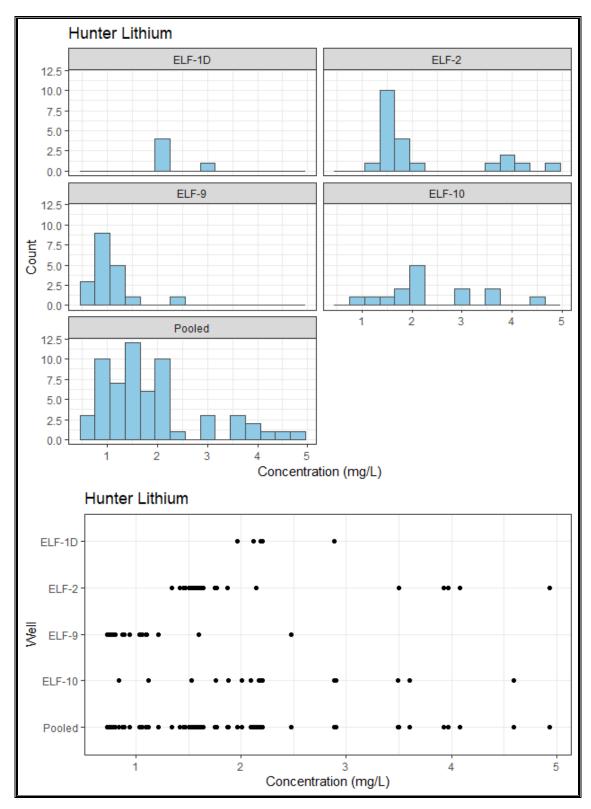


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

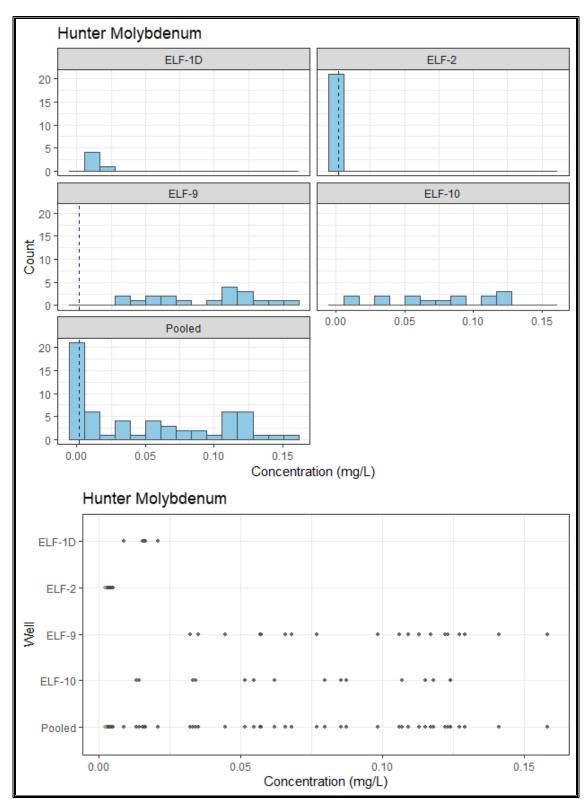


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

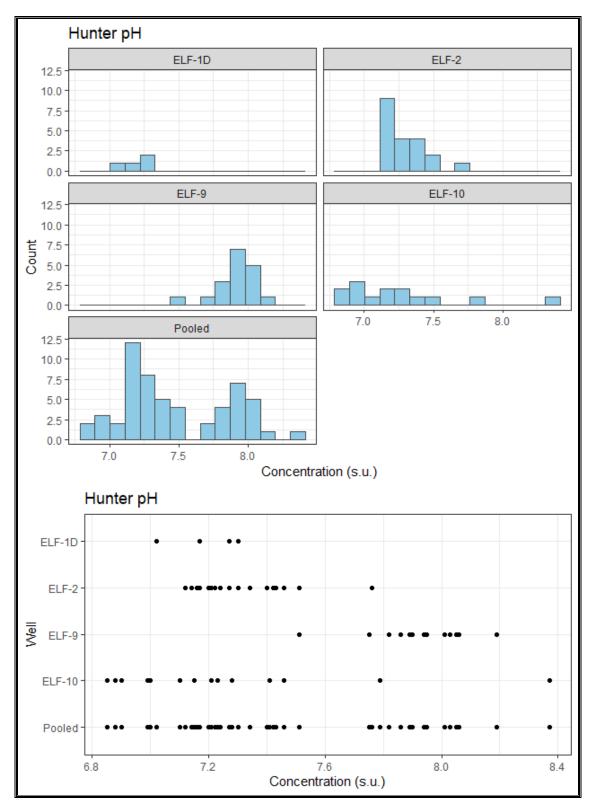


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

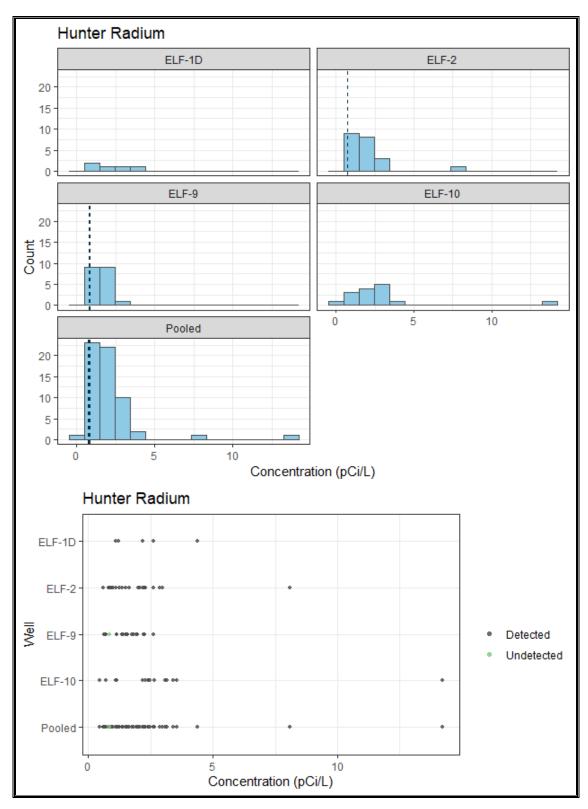


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

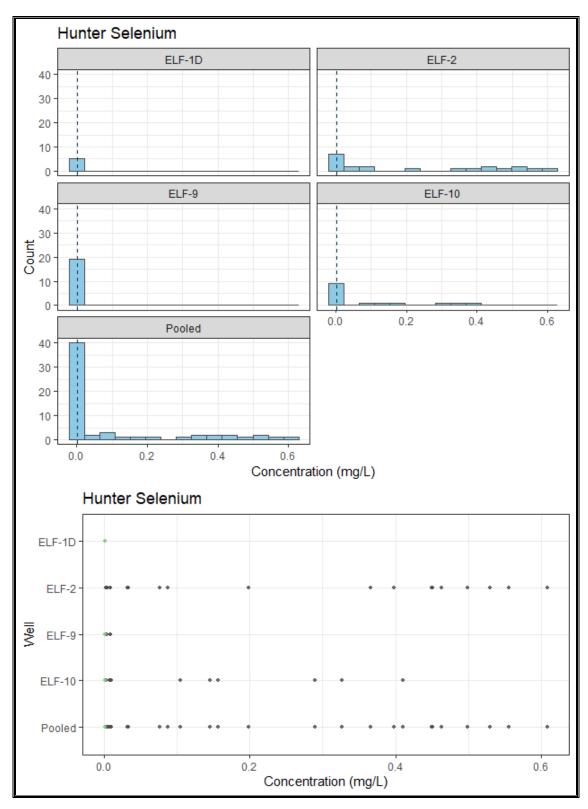


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

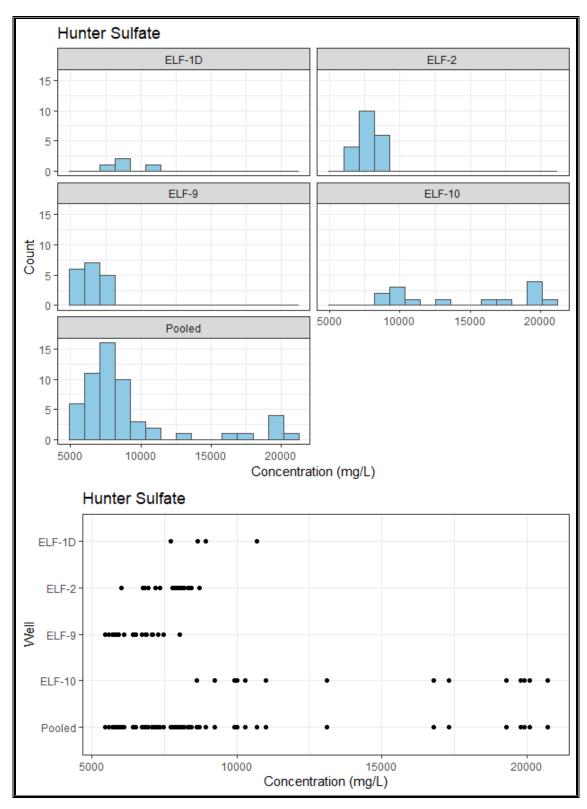


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

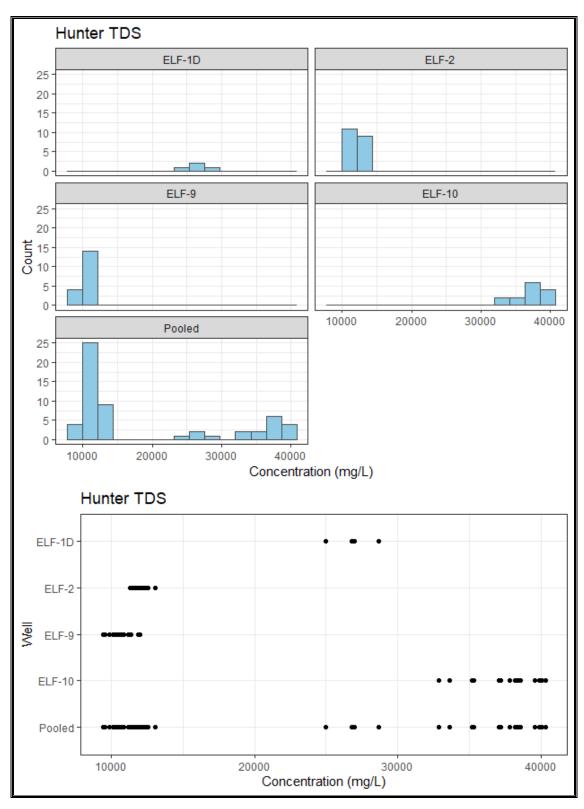


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

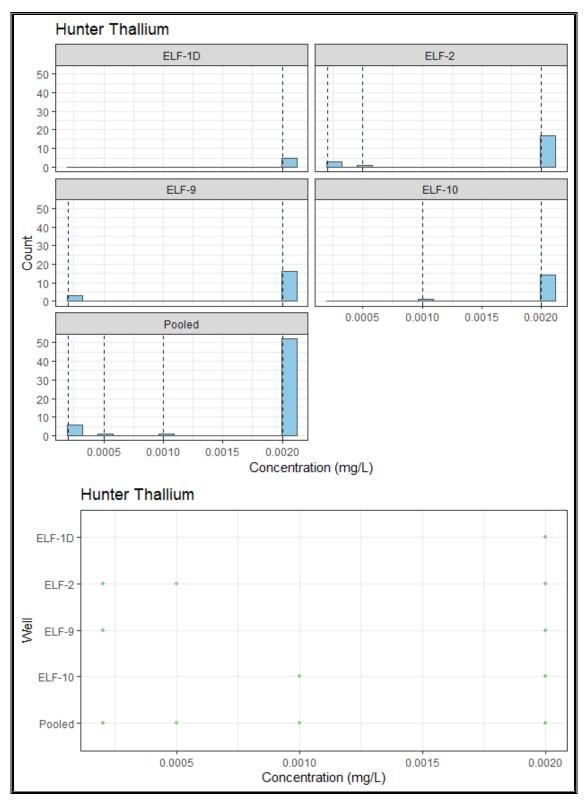


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

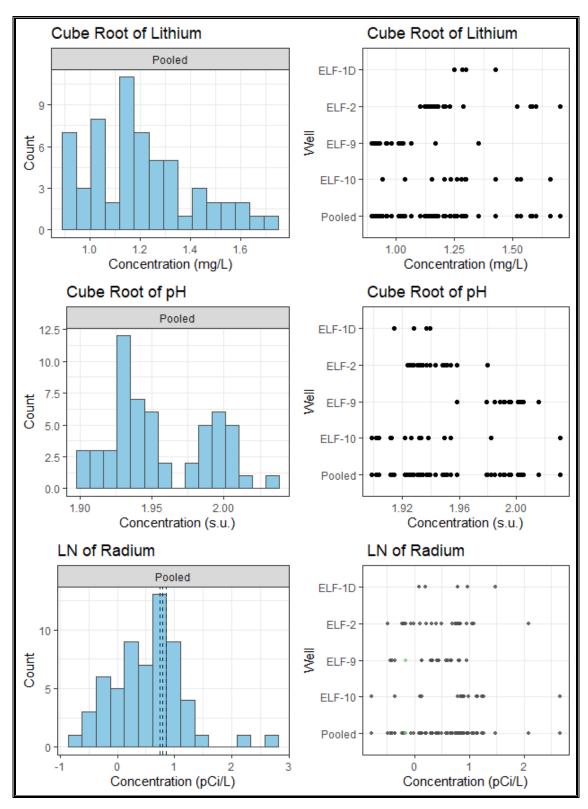


Figure C.3 (cont.). Histograms and dot plots for the upgradient Ash Landfill data.

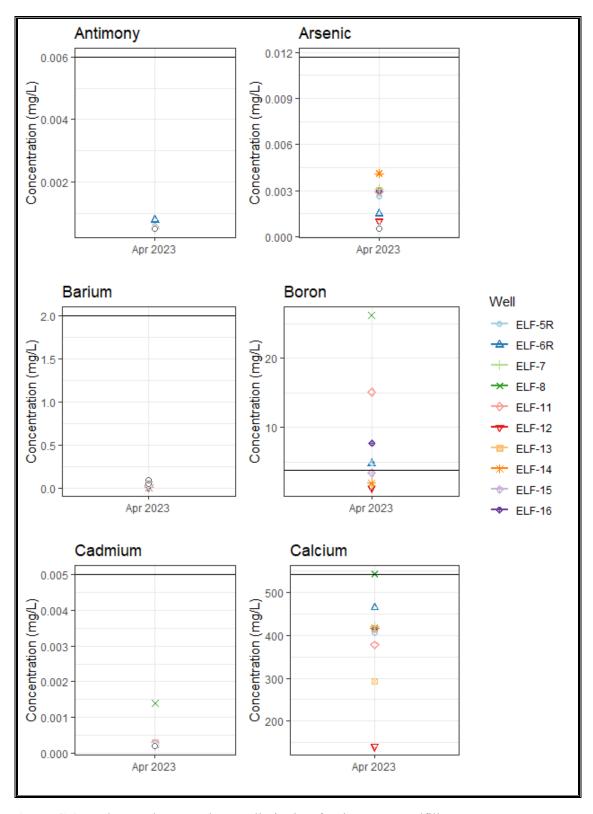


Figure C.4. Background upper tolerance limit plots for the CCR Landfill.

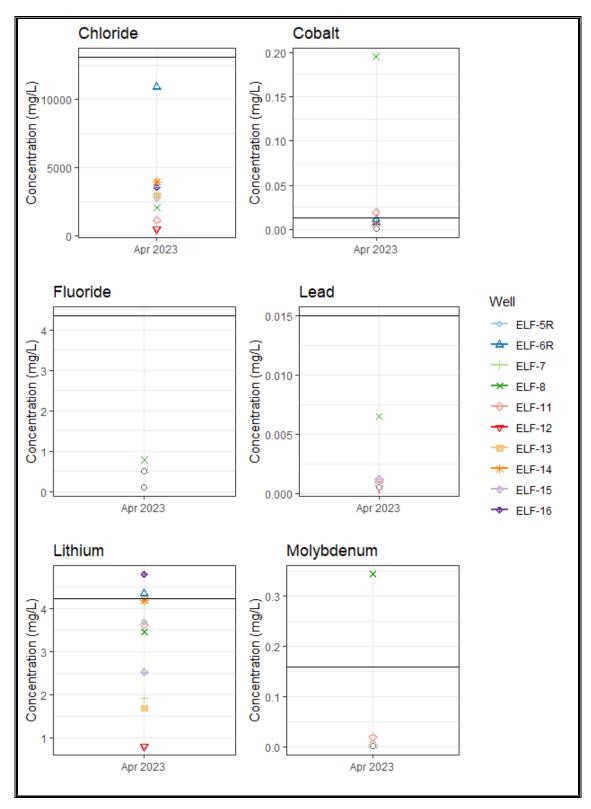


Figure C.4 (cont.). Background upper tolerance limit plots for the CCR Landfill.

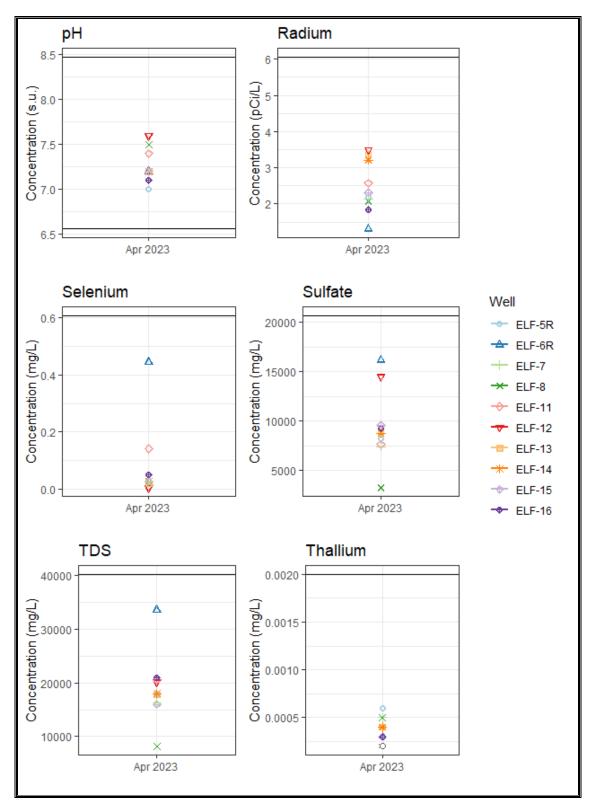


Figure C.4 (cont.). Background upper tolerance limit plots for the CCR Landfill.

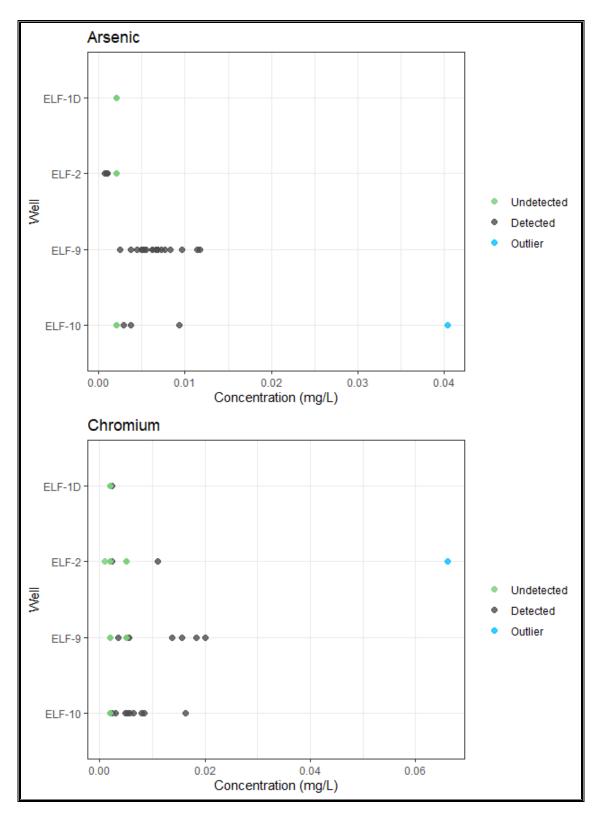


Figure C.5. Outlier plot for the Ash Landfill data.

Attachment D:

Field Data Sheets

480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-1d		
Sampling Method Low Flow Bladder Pump		Sample Date	April 6, 2023		
Decon Method	Dedicated Equipment	Sample Time			
Sampler(s) Initials DV and BG Depth to Water (ft.) 82.91					
Field Conditions	Good		·		

			FIELD PARA	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS/OF	BSERVATIONS		

No Sample. We have checked recharge in the past, Very poor. 3.6 ' water. not able to collect water.

GROUNDWATER SAMPLING FORM						
Project Name	Hunter Power Plant	Project Location	Castle Dale UT			
Job number(s)	2018.0284	Sample ID	ELF-1s			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time				
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	34.53			
Field Conditions	Good	·	•			

			FIELD PARA	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION					
APPENDIX FO	R CURRENT SAMPLE					
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
	·	COMMENTS	/OBSERVATIONS			

No Sample. 0.9 ft of water. very poor recharge.

480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM								
Project Name Hunter Power Plant Project Location Castle Dale UT								
Job number(s)	2018.0284	Sample ID	ELF-2					
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023					
Decon Method	Dedicated Equipment	Sample Time	11:30					
Sampler(s) Initials DV and BG Depth to Water (ft.) 24.21								
Field Conditions	•							

			FIELD PARAN	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,105	12.4	14,100	1.29	6.91	8	66.7
1,110	12.4	14,000	1.20	6.87	8	103
1,115	12.5	14,100	1.13	6.86	8	187
1,120	12.7	14,000	1.06	6.85	8	193
1,125	12.7	14,000	0.99	6.84	8	197

	SAMPLE COLLECTION					
APPENDIX FOR	R CURRENT SAMPLE	Not Applicable				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS/OF	BSERVATIONS			

ORP is Salinity. Started to get more turbid at sampling. Filled 4 bottles.

Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name	Hunter Power Plant	Project Location	Castle Dale UT			
Job number(s)	2018.0284	Sample ID	ELF-3			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time				
Sampler(s) Initials	33.34					
Field Conditions	Good	•	•			

			FIELD PARA	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION					
APPENDIX FO	R CURRENT SAMPLE					
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS/O	BSERVATIONS			

No Sample, 1.6' water. Very poor producer, takes > week to recharge.

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-4		
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023		
Decon Method	Dedicated Equipment	Sample Time	18:55		
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	18.59		
Field Conditions	Good	·	•		

			FIELD PARAN	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,830	10.9	15,600	1.21	6.82	9	64.3
1,835	11.0	15,600	1.02	6.80	8.9	40.4
1,840	11.0	15,600	0.93	6.80	9	17.9
1,845	11.0	15,600	0.89	6.80	9	18.4
1,850	10.9	15,600	0.83	6.80	9	18

	SAMPLE COLLECTION					
APPENDIX FO	R CURRENT SAMPLE	Not Applicable				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS	/OBSERVATIONS			

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-5R		
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023		
Decon Method	Dedicated Equipment	Sample Time	18:20		
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	21.32		
Field Conditions	Good	•	•		

			FIELD PARAM	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,755	12.2	22,500	1.09	7.04	13.3	387
1,800	12.3	22,100	1.10	6.97	13.1	169
1,805	12.4	22,100	0.99	6.96	13.1	142
1,810	12.4	22,100	0.94	6.94	13.1	138
1,815	12.5	22,100	0.90	6.94	13.1	131

	SAMPLE COLLECTION					
APPENDIX FOR	R CURRENT SAMPLE	Not Applicable				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS/OE	SERVATIONS			

GROUNDWATER SAMPLING FORM						
Project Name	Hunter Power Plant	Project Location	Castle Dale UT			
Job number(s)	2018.0284	Sample ID	ELF-6R			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023			
Decon Method	Dedicated Equipment	Sample Time	17:40			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	20.20			
Field Conditions	Good	·	•			

			FIELD PARAM	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,715	11.8	39,700	1.40	7.09	24.8	96.4
1,720	11.7	39,500	1.31	7.09	24.7	86.1
1,725	11.7	39,400	1.24	7.08	24.6	59.6
1,730	11.8	39,200	1.15	7.07	24.4	52.3
1,735	11.8	39,000	1.13	7.07	24.3	51.8

	SAMPLE COLLECTION					
APPENDIX FOR CURRENT SAMPLE Not Applicable						
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS	/OBSERVATIONS			

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name	Hunter Power Plant	Project Location	Castle Dale UT			
Job number(s)	2018.0284	Sample ID	ELF-7			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023			
Decon Method	Dedicated Equipment	Sample Time	19:40			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	16.89			
Field Conditions	Good	·				

			FIELD PARAM	METERS		
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,915	10.7	20,000	2.34	6.87	11.7	191
1,920	10.4	20,100	2.31	6.85	11.7	65.2
1,925	10.6	19,900	2.26	6.85	11.7	41.6
1,930	10.7	19,900	2.14	6.84	11.6	42.1
1,935	10.7	19,900	2.13	6.84	11.7	42

	SAMPLE COLLECTION					
APPENDIX FOR	R CURRENT SAMPLE	Not Applicable				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS			
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
3	(1) 250 mL poly	HNO3	Total metals			
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228			
4	(1) 250 mL poly	HNO3	Total metals, Total mercury			
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite			
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity			
		COMMENTS/OE	SERVATIONS			

Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-8			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023			
Decon Method	Dedicated Equipment	Sample Time	16:15			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	9.19			
Field Conditions	Good		•			

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,550	11.2	11,500	1.70	7.24	6.4	15.1
1,555	11.2	11,400	1.15	7.24	6.4	8.3
1,600	11.2	11,400	0.97	7.29	6.4	1.1
1,605	11.2	11,400	0.94	7.19	6.4	0
1,610	11.2	11,400	0.89	7.30	6.4	0

SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE	Not Applicable		
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS	
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228	
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury	
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
3	(1) 250 mL poly	HNO3	Total metals	
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228	
4	(1) 250 mL poly	HNO3	Total metals, Total mercury	
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite	
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity	
		COMMENTS	OBSERVATIONS	

ORP is Salinity. Filled 8 bottles - Dup included.

480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM							
Project Name Hunter Power Plant Project Location Castle Dale UT							
Job number(s)	2018.0284	Sample ID	ELF-9				
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023				
Decon Method	Dedicated Equipment	Sample Time	09:50				
Sampler(s) Initials DV and BG Depth to Water (ft.) 22.85							
Field Conditions	Field Conditions Good						

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
915	11.1	14,900	1.33	7.63	8.3	36.8
920	11.2	14,400	1.07	7.62	8.3	29.1
925	11.2	14,100	0.99	7.64	8.1	30.6
930	11.2	14,000	0.95	7.63	7.9	0
935	11.0	13,600	0.92	7.62	7.5	0
940	11.2	12,600	1.01	7.48	7.1	0
945	11.2	12,400	1.06	7.46	6.9	0

	SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE	Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS/OF	BSERVATIONS		

ORP is Salinity. Filled 4 bottles w/sample and 4 bottles w/di water for field blank.

Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-10			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time				
Sampler(s) Initials DV and BG Depth to Water (ft.) 50.56						
Field Conditions	Good	•				

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS/O	BSERVATIONS		

1.44 water. From past experince, very poor recharge. No Sample.

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-11			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 5, 2023			
Decon Method	Dedicated Equipment	Sample Time	15:20			
Sampler(s) Initials	28.10					
Field Conditions	Good	•	•			

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,455	12.5	21,500	3.86	7.17	12.8	196
1,500	12.5	21,700	2.99	7.14	12.9	185
1,505	12.5	21,700	2.86	7.13	12.9	181
1,510	12.5	21,800	2.80	7.12	13	170
1,515	12.5	21,800	2.71	7.12	13	166

	SAMPLE COLLECTION				
APPENDIX FO	OR CURRENT SAMPLE	Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS	/ORSERVATIONS		

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-12			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time	17:00			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	21.65			
Field Conditions	Good		·			

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,635	12.4	22,300	1.26	7.45	13.2	138
1,640	12.4	22,300	1.10	7.44	13.2	64
1,645	12.4	22,400	1.02	7.43	13.3	53
1,650	12.4	22,400	1.00	7.42	13.3	48.5
1,655	12.4	22,500	0.97	7.42	13.3	48.1

SAMPLE COLLECTION					
APPENDIX FOR CURRENT SAMPLE		Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
COMMENTS/ORSERVATIONS					

GROUNDWATER SAMPLING FORM						
Project Name Hunter Power Plant Project Location Castle Dale UT						
Job number(s)	2018.0284	Sample ID	ELF-13			
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023			
Decon Method	Dedicated Equipment	Sample Time	15:45			
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	4.78			
Field Conditions	Good	·				

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,525	9.5	21,200	0.99	6.95	12.4	0.9
1,530	9.5	21,200	1.02	6.93	12.4	0
1,535	9.5	21,100	1.03	6.92	12.4	0
1,540	9.5	21,100	1.02	6.92	12.4	0

SAMPLE COLLECTION					
APPENDIX FOR CURRENT SAMPLE		Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
COMMENTS/ORSERVATIONS					

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-14		
Sampling Method	Low Flow Bladder Pump	Sample Date	April 6, 2023		
Decon Method	Dedicated Equipment	Sample Time	14:30		
Sampler(s) Initials	DV and BG	Depth to Water (ft.)	6.78		
Field Conditions	Good	•			

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,410	9.9	23,500	1.43	7.12	13.9	72.9
1,415	9.8	23,500	1.22	7.12	13.9	54.3
1,420	9.7	23,500	1.26	7.13	13.9	54.1
1,425	9.7	23,500	1.21	7.12	13.9	53.5

	SAMPLE COLLECTION				
APPENDIX FOR	R CURRENT SAMPLE	Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS/OE	SERVATIONS		

ORP is Salinity Filled 4 bottles

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701 Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM							
Project Name	Hunter Power Plant	Project Location	Castle Dale UT				
Job number(s)	2018.0284	Sample ID	ELF-15				
Sampling Method Low Flow Bladder Pump		Sample Date	April 6, 2023				
Decon Method	Dedicated Equipment	Sample Time	15:10				
Sampler(s) Initials DV and BG Depth to Water (ft.) 7.94							
Field Conditions	·						

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,445	10.5	21,800	1.36	7.03	12.8	17.1
1,450	10.5	21,800	1.20	6.98	12.9	64.2
1,455	10.6	21,800	1.21	6.96	12.8	42.5
1,500	10.6	21,800	1.12	6.96	12.9	19.6
1,505	10.6	21,800	1.13	6.95	12.9	22.1

	SAMPLE COLLECTION				
APPENDIX FO	OR CURRENT SAMPLE	Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS	/OBSERVATIONS		

ORP is Salinity. Filled 4 bottles.

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-16		
Sampling Method Low Flow Bladder Pump		Sample Date	April 6, 2023		
Decon Method	Dedicated Equipment	Sample Time	12:15		
Sampler(s) Initials DV and BG Depth to Water (ft.) 14.43					
Field Conditions	Good	·	•		

	FIELD PARAMETERS					
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)
1,150	12.8	26,400	1.17	7.19	16	36.4
1,155	12.8	26,500	1.11	7.18	16	30.8
1,200	12.1	24,000	1.40	7.08	14.4	31
1,205	12.0	24,100	1.23	7.07	14.4	30.3
1,210	11.9	24,000	1.10	7.07	14.4	29.8

	SAMPLE COLLECTION				
APPENDIX FO	OR CURRENT SAMPLE	Not Applicable			
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS	/OBSERVATIONS		

ORP is salinity. Filled 4 bottles.

Consulting Scientists and Engineers 480 East Park Street Butte, Montana 59701

Phone: 406-782-5220 Fax: 406-723-1537

GROUNDWATER SAMPLING FORM					
Project Name	Hunter Power Plant	Project Location	Castle Dale UT		
Job number(s)	2018.0284	Sample ID	ELF-17		
Sampling Method Low Flow Bladder Pump		Sample Date	April 6, 2023		
Decon Method	Dedicated Equipment	Sample Time			
Sampler(s) Initials Dv and BG Depth to Water (ft.) 29.65					
Field Conditions	Good	·	<u> </u>		

FIELD PARAMETERS						
TIME (min)	WATER TEMP (C)	SC (uS)	DO (mg/l)	pH (s.u.)	ORP (mv)	TURBIDITY (NTU)

	SAMPLE COLLECTION				
APPENDIX FO	R CURRENT SAMPLE				
APPENDIX	CONTAINERS	PRESERVATIVES	ANALYTES/COMMENTS		
3&4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
3&4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
3&4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3&4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
3	(1) 250 mL poly	HNO3	Total metals		
3	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
3	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
4	(1) 1/2 gal poly	HNO3	Radium 226 + 228		
4	(1) 250 mL poly	HNO3	Total metals, Total mercury		
4	(1) 250 mL poly	H2SO4	Nitrate + Nitrite		
4	(1) 1-L poly	None	TDS, pH, anions, fluoride, alkalinity		
		COMMENTS/OF	BSERVATIONS		

Near Dry. No sample.

Attachment E:

Laboratory Analytical Reports

4/24/2023

Work Order: 23D0472 Project: Hunter Power Plant CCR

Pacificorp - Environmental Remediation
Attn: Brad Giles
1000 S Highway 10
Castle Dale, UT 84513

Client Service Contact: 801.262.7299

The analyses presented on this report were performed in accordance with the National Environmental Laboratory Accreditation Program (NELAP) unless noted in the comments, flags, or case narrative. If the report is to be used for regulatory compliance, it should be presented in its entirety, and not be altered.

Approved By:

Melissa Connolly, Project Manager

MeliCa

9632 South 500 West Sandy, Utah 84070 801.262.7299 Main 866.792.0093 Fax www.ChemtechFord.com

Pacificorp - Environmental Remediation

Project: Hunter Power Plant CCR **Project Manager:** Brad Giles

Laboratory ID	Sample Name
23D0472-01	ELF-2
23D0472-02	ELF-4
23D0472-03	ELF-5R
23D0472-04	ELF-6R
23D0472-05	ELF-7
23D0472-06	ELF-8
23D0472-07	ELF-9
23D0472-08	ELF-11
23D0472-09	ELF-12
23D0472-10	ELF-13
23D0472-11	ELF-14
23D0472-12	ELF-15
23D0472-13	ELF-16
23D0472-14	Duplicate - (CCR)
23D0472-15	Field Blank - (CCR)

Work Order Report Narrative

Sample Preparation

All samples were prepared within method specified holding times, except as noted on the report. No preparation issues were noted.

Method Blanks

All blank values were within method acceptance criteria. No blank values exceeded the minimum reporting limit for any analysis in this work order.

Laboratory Control Samples

All laboratory control samples were within method acceptance criteria.

Method Spikes

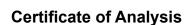
All method spike recoveries were within method acceptance criteria, except as noted by qualifying flags.

Method Spike Duplicates

All method spike duplicates were within method acceptance criteria, except as noted by qualifying flags.

Corrective Actions

There are no corrective actions associated with this work order.


Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com

Serving the Intermountain West Since 1953

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-2

Matrix: Water

Lab ID: 23D0472-01

Date Sampled: 4/6/23 11:30

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum		P 4:	4 1 .	
	Result	<u>Units</u>	Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	212	mg/L	5.00	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pН	7.4	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:46	SPH
Sulfate	8440	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	11900	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0010	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.029	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0010	EPA 200.8	4/7/23	4/10/23	
Boron, Total	3.24	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	342	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	0.066	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0131	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0021	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.56	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0041	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0033	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 3 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

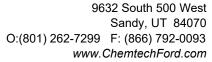
Project Name: Hunter Power Plant CCR

Sample ID: ELF-4

Matrix: Water

Lab ID: **23D0472-02**

Date Sampled: 4/5/23 18:55 Sampled By: Bradley Giles/Dennis Vanderbeek


Bate campica: II of 20 10100				campica By: Diadicy C			
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	<u>Flag(s)</u>
Inorganic							
Chloride	2350	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pH	7.1	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:47	SPH
Sulfate	6200	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	12800	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0015	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.012	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	4.79	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0004	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	463	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0069	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.80	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0023	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0150	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0006	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 4 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-5R

Matrix: Water

Lab ID: **23D0472-03**

Date Sampled: 4/5/23 18:20

Sampled By: Bradley Giles/Dennis Vanderbeek


<u> </u>				. , ,			
	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Inorganic							
Chloride	3650	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pH	7.0	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:51	SPH
Sulfate	8190	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	17900	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0006	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0026	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.017	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	4.75	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	407	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0042	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0006	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	3.69	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0042	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0323	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0006	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

Page 5 of 33 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

les

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

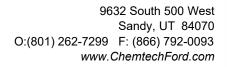
Sample ID: ELF-6R

Matrix: Water

Lab ID: 23D0472-04

Date Sampled: 4/5/23 17:40

Sampled By: Bradley Giles/Dennis Vanderbeek


	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Inorganic							
Chloride	10900	mg/L	500	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
рН	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:51	SPH
Sulfate	16200	mg/L	500	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	33600	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0008	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0015	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	ND	mg/L	0.100	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	4.74	mg/L	1.00	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	465	mg/L	4.0	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.100	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0113	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0007	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	4.35	mg/L	0.100	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0016	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.445	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 6 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

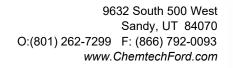
Project Name: Hunter Power Plant CCR

Sample ID: ELF-7

Matrix: Water

Lab ID: 23D0472-05

Date Sampled: 4/5/23 19:40 Sampled By: Bradley Giles/Dennis Vanderbeek


p							
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	<u>Flag(s)</u>
Inorganic							
Chloride	3050	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
рН	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:52	SPH
Sulfate	7420	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	16300	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0031	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.009	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	1.61	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	421	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0048	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.91	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0019	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0287	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0005	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 7 of 33

Serving the Intermountain West Since 1953

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-8

Matrix: Water

Lab ID: 23D0472-06

Date Sampled: 4/5/23 16:15		Sampled By: Bradley Giles/Dennis Vanderbeek							
	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)		
Inorganic									
Chloride	2040	mg/L	100	EPA 300.0	4/10/23	4/10/23			
Fluoride	0.787	mg/L	0.500	EPA 300.0	4/10/23	4/10/23			
pH	7.5	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:52	SPH		
Sulfate	3250	mg/L	100	EPA 300.0	4/10/23	4/10/23			
Total Dissolved Solids (TDS)	8160	mg/L	100	SM 2540 C	4/7/23	4/7/23			
Metals									
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23			
Arsenic, Total	0.0030	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23			
Barium, Total	0.011	mg/L	0.005	EPA 200.7	4/12/23	4/17/23			
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23			
Boron, Total	26.2	mg/L	0.05	EPA 200.7	4/12/23	4/17/23			
Cadmium, Total	0.0014	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23			
Calcium, Total	543	mg/L	0.2	EPA 200.7	4/12/23	4/17/23			
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/12/23	4/17/23			
Cobalt, Total	0.195	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23			
Lead, Total	0.0065	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23			
Lithium, Total	3.46	mg/L	0.005	EPA 200.7	4/12/23	4/17/23			
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23			
Molybdenum, Total	0.343	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23			
Selenium, Total	0.0175	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23			
Thallium, Total	0.0005	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23			

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

Page 8 of 33 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-9

Matrix: Water

Lab ID: **23D0472-07**

Date Sampled: 4/6/23 9:50 Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum Reporting		<u>Preparation</u>	<u>Analysis</u>	
	<u>Result</u>	<u>Units</u>	<u>Limit</u>	<u>Method</u>	<u>Date/Time</u>	<u>Date/Time</u>	Flag(s)
Inorganic							
Chloride	242	mg/L	5.00	EPA 300.0	4/10/23	4/10/23	
Fluoride	0.754	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pH	7.9	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:53	SPH
Sulfate	5730	mg/L	100	EPA 300.0	4/10/23	4/10/23	
Total Dissolved Solids (TDS)	9540	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0008	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0025	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.016	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	1.31	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	86.8	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0005	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.09	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0322	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0012	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 9 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

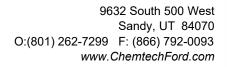
Project Name: Hunter Power Plant CCR

Sample ID: ELF-11

Matrix: Water

Lab ID: 23D0472-08

Date Sampled: 4/5/23 15:20 Sampled By: Bradley Giles/Dennis Vanderbeek


			Minimum		D 4:		
	Result	<u>Units</u>	Reporting <u>Limit</u>	Method	Preparation Date/Time	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	1120	mg/L	20.0	EPA 300.0	4/11/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/10/23	
pН	7.4	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:54	SPH
Sulfate	7610	mg/L	500	EPA 300.0	4/20/23	4/20/23	
Total Dissolved Solids (TDS)	20500	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.020	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	15.1	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	378	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0192	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0010	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	3.62	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0185	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.141	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 10 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

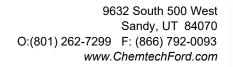
Project Name: Hunter Power Plant CCR

Sample ID: **ELF-12**

Matrix: Water

Lab ID: **23D0472-09**

Date Sampled: 4/6/23 17:00 Sampled By: Bradley Giles/Dennis Vanderbeek


			Minimum		P 4:		
	Result	<u>Units</u>	Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	484	mg/L	5.00	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pН	7.6	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:54	SPH
Sulfate	14500	mg/L	500	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	20200	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0010	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.013	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	1.25	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	141	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0005	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	0.808	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0046	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

Page 11 of 33 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-13

Matrix: Water

Lab ID: **23D0472-10**

Date Sampled: 4/6/23 15:45 Sampled By: Bradley Giles/Dennis Vanderbeek


	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Inorganic							
Chloride	2950	mg/L	20.0	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.100	EPA 300.0	4/20/23	4/20/23	
pН	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:55	SPH
Sulfate	8750	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	17800	mg/L	100	SM 2540 C	4/20/23	4/20/23	APH-R
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0030	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	ND	mg/L	0.050	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0010	EPA 200.8	4/7/23	4/10/23	
Boron, Total	ND	mg/L	0.50	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	293	mg/L	2.0	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.050	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0043	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	1.69	mg/L	0.050	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0009	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0188	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0004	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 12 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

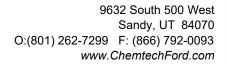
Project Name: Hunter Power Plant CCR

Sample ID: ELF-14

Matrix: Water

Lab ID: 23D0472-11

Date Sampled: 4/6/23 14:30 Sampled By: Bradley Giles/Dennis Vanderbeek


<u>'</u>				. , ,			
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	<u>Flag(s)</u>
Inorganic							
Chloride	3930	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pH	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:56	SPH
Sulfate	8780	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	18000	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0041	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.010	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	1.93	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	417	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0062	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	4.19	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0034	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0275	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0004	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 13 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

les

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-15

Matrix: Water

Lab ID: 23D0472-12

Date Sampled: 4/6/23 15:10

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum		.		
	Result	<u>Units</u>	Reporting <u>Limit</u>	Method	Preparation <u>Date/Time</u>	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	2820	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pН	7.2	pH Units	0.1	SM 4500 H-B	4/7/23 13:52	4/7/23 14:56	SPH
Sulfate	9590	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	16000	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0005	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0029	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.024	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	3.38	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	416	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0042	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	0.0012	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	2.53	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0025	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0256	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 14 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-16

Matrix: Water

Lab ID: 23D0472-13

Date Sampled: 4/6/23 12:15

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum				
	D 14	WT *4	Reporting Limit	M a l	Preparation	<u>Analysis</u> Date/Time	EL ()
Inougania	Result	<u>Units</u>	Limit	<u>Method</u>	<u>Date/Time</u>	Date/Time	Flag(s)
Inorganic Chloride	3540	mg/L	100	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pH	7.1	pH Units	0.300	SM 4500 H-B	4/7/23 13:53	4/7/23 15:04	SPH
Sulfate	9270	•	100	EPA 300.0	4/10/23	4/11/23	SFII
		mg/L					
Total Dissolved Solids (TDS)	20900	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	0.0005	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Arsenic, Total	0.0030	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Barium, Total	0.012	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Boron, Total	7.74	mg/L	0.05	EPA 200.7	4/7/23	4/10/23	
Cadmium, Total	0.0002	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	
Calcium, Total	414	mg/L	0.2	EPA 200.7	4/7/23	4/10/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Cobalt, Total	0.0063	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Lithium, Total	4.80	mg/L	0.005	EPA 200.7	4/7/23	4/10/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.0038	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Selenium, Total	0.0495	mg/L	0.0005	EPA 200.8	4/7/23	4/10/23	
Thallium, Total	0.0003	mg/L	0.0002	EPA 200.8	4/7/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 15 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

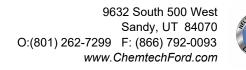
Project Name: Hunter Power Plant CCR

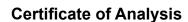
Sample ID: Duplicate - (CCR)

Matrix: Water

Lab ID: **23D0472-14**

Date Sampled: 4/5/23 0:00 Sampled By: Bradley Giles/Dennis Vanderbeek


			Minimum				
	Result	Units	Reporting Limit	Method	<u>Preparation</u> Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Inorganic	Kesuit	Onits	<u> </u>	Methou	<u>Bate/Time</u>	Date/Time	riag(s)
Chloride	2690	mg/L	500	EPA 300.0	4/10/23	4/11/23	
Fluoride	0.811	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pH	7.4	pH Units	0.1	SM 4500 H-B	4/7/23 13:53	4/7/23 15:05	SPH
Sulfate	3920	mg/L	500	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	8360	mg/L	100	SM 2540 C	4/7/23	4/7/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Arsenic, Total	0.0026	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Barium, Total	0.010	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Boron, Total	26.2	mg/L	0.05	EPA 200.7	4/13/23	4/14/23	
Cadmium, Total	0.0016	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23	
Calcium, Total	469	mg/L	0.2	EPA 200.7	4/13/23	4/14/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Cobalt, Total	0.197	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Lead, Total	0.0060	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Lithium, Total	5.25	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	0.355	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Selenium, Total	0.0174	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Thallium, Total	0.0005	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23	


Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 16 of 33

Serving the Intermountain West Since 1953

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

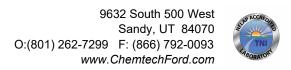
Date Reported: 4/24/2023

Project Name: Hunter Power Plant CCR

Sample ID: Field Blank - (CCR)

Matrix: Water Lab ID: 23D0472-15

Date Sampled: 4/6/23 9:50 Sampled By: Bradley Giles/Dennis Vanderbeek


			Minimum Reporting		D	A 1	
	Result	<u>Units</u>	<u>Limit</u>	Method	Preparation Date/Time	Analysis Date/Time	Flag(s)
Inorganic							
Chloride	ND	mg/L	1.00	EPA 300.0	4/10/23	4/11/23	
Fluoride	ND	mg/L	0.500	EPA 300.0	4/10/23	4/11/23	
pH	5.7	pH Units	0.1	SM 4500 H-B	4/7/23 13:53	4/7/23 15:11	SPH
Sulfate	ND	mg/L	1.00	EPA 300.0	4/10/23	4/11/23	
Total Dissolved Solids (TDS)	14	mg/L	10	SM 2540 C	4/10/23	4/10/23	
Metals							
Antimony, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Arsenic, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Barium, Total	ND	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Beryllium, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Boron, Total	ND	mg/L	0.05	EPA 200.7	4/13/23	4/14/23	
Cadmium, Total	ND	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23	
Calcium, Total	ND	mg/L	0.2	EPA 200.7	4/13/23	4/14/23	
Chromium, Total	ND	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Cobalt, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Lead, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Lithium, Total	ND	mg/L	0.005	EPA 200.7	4/13/23	4/14/23	
Mercury, Total	ND	mg/L	0.00015	EPA 245.1	4/11/23	4/11/23	
Molybdenum, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Selenium, Total	ND	mg/L	0.0005	EPA 200.8	4/10/23	4/10/23	
Thallium, Total	ND	mg/L	0.0002	EPA 200.8	4/10/23	4/10/23	

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 17 of 33

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation Brad Giles 1000 S Highway 10 Castle Dale, UT 84513

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 4/24/2023

PO#:

Project Name: Hunter Power Plant CCR

Report Footnotes

Abbreviations

ND = Not detected at the corresponding Minimum Reporting Limit (MRL).

1 mg/L = one milligram per liter or 1 mg/kg = one milligram per kilogram = 1 part per million.

1 ug/L = one microgram per liter or 1 ug/kg = one microgram per kilogram = 1 part per billion.

1 ng/L = one nanogram per liter or 1 ng/kg = one nanogram per kilogram = 1 part per trillion.

On calculated parameters, there may be a slight difference between summing the rounded values shown on the report vs the unrounded values used in the calculation.

Flag Descriptions

APH-R = This sample was originally analyzed within the EPA-recommended holding time. The reported value was obtained from a confirmatory re-analysis that was performed outside of that holding time.

SPH = Sample submitted past method specified holding time.

Project Name: Hunter Power Plant CCR CtF WO#: 23D0472

www.ChemtechFord.com Page 18 of 33

CHEMTECH - FORD ANALYTICAL LABORATORY

CHAIN OF CUSTODY

COMPANY:	PacifiCorp Environmental	Remediati	on		BILLIN	IG AD	DRE	SS:				eı	mail i	invoid	e to E	radle	y Gile	s					1		
ADDRESS:	1407 West North Temple Sto				BILLING	CITY,	/STATI	E/ZIP:																	
CITY/STATE/ZIP:	Salt Lake City, Ut 8414	0			PURCHA	ASE O	RDER	#:																	
PHONE #:	(435) 748-6576	_FAX:			_																			FOR	D
CONTACT:	Bradley Giles	PROJECT:	Hunter Pow	er Plant CCR	<u>l</u>																LA	ABOR	ATOR	IIES	
EMAIL:	brad.giles@pacificorp.com	1						UND R	100				Q	C Lev	el 3 (1	.0 bus	iness	days	s)						
						* Exp	edited tu	ırnaroun	d subje	t to add	itional c	harge	TEST	S PEO	UESTEI							(B) (B)	D-	cteria	
								A PRESENT						JILLO		T	228					0.0	Da	cteria	
										8	Pb	Hg	E245.1				∞								
										Be,	Co,	⊨`					226					ont)			
										, Ba,	, C,	, Se,	/ E200.8 /	E300.0			dium	ed)				t/Abs	erated)		
								0	н В	, As,), Ca,	Mo,	N 11	- 11			A; Ra	combined)				coli (Present/Absent)	Enume		
			0			lers	A2540C	E300.0	A4500-H	s: Sb,	s: CD,	s: Li,	E200.	Sulfate			0-R/					coli	. soli (
2300	1472		KADS	on 23	500470	Containers	A25	l I	A45	etal	Metals:	Metals:	tals:	/Su			A750	te &				H +	H + E	Count)	
Lab Use Only	CL CL	IENT SAMPLE INFO	我的我们相同特色的影響的問題			Ş	.,	Fluoride		Total Metals:	al M	al M	Total Metals:	Cloride /			Radium A7500-RA; Radium	(separate				Total Coliform	Total Coliform + E. coli (Enumerated)	HPC (Plate Count)	E. Coli Only
	LOCATION / IDENTIFICATION	DATE	TIME	MATRIX	Field: Residual Chlorine	# of	TDS	문	표	Tot	Total	Total	Tot	ဗိ			Rad	es)				Total	Total	HPC	E. Co
	1. ELF-1D		-	w		4	x	x	x	x	x	x	x	x			x								
01	2. ELF-2	4/6/2023	11:30	w		4	x	x	x	x	x	x	x	x			x								
	3. ELF-3	-	•	w		4	x	х	x	x	х	x	х	х			х								
02	4. ELF-4	4/5/2023	18:55	w		4	х	х	х	х	х	х	х	х			х								
03	5. ELF-5R	4/5/2023	18:20	w		4	х	х	х	х	х	х	х	х			х								
0A	6. ELF-6R	4/5/2023	17:40	w		4	х	х	х	х	х	х	х	х			х								
05	7. ELF-7	4/5/2023	19:40	w		4	х	х	x	х	х	х	х	х			х								
Olo	8. ELF-8	4/5/2023	16:15	w		4	х	х	x	х	х	х	х	х			х								
07	9. ELF-9	4/6/2023	9:50	w		4	х	х	x	х	х	х	х	х			x								
	_{10.} ELF-10	-	-	w		4	х	х	x	х	x	х	х	x	-		х								
	sampled by: Bradley Giles & Dennis V	/anderbeek	Sampled by: [signature	e]									1	ONIC	E	NOT	ONIC	E	Te	mp (C	°):	1.			
	Special Instructions:													Sampl	es recei	ved ou	tside tl	he EPA	A reco	mmen	ded				
															peratur										
	Relinquished by: [signature]			Date/Time	12.21	Recei	ved by:	(signatu	ire]	/	/	1	7			2010-2017			Date/Ti	ime	43		1-	721	
	Relinquished by: [signature]			4-7-23 Date/Time	12:31	Recei	ved by:	[signate	re]	_	-								Date/Ti		07		10	231	
	Delta mishadhu (simahur)			Data/Time				- Talan	_	•															
	Relinquished by: [signature]			Date/Time		recei	ved by:	Sign		mple	Receir	ot Con	dition	A	21	191	e	M	17	179	1				
	CHEMTECH-FORD	801.262.7299 PHONI 866.792.0093 FAX				Payn	nent Te	rms	_			als Pre		_) Corre	t Conta	ainers		()	Heads	pace Pre	esent (\	/OC)	c	rney's
	9632 South 500 West Sandy, UT 84070	www.ChemtechFor	d.com							Conta		Intact bels M	latel) COC (erature B				
										Recei			atch) Suffici			lume		ecked b	ed within by:			19 of	33

CHEMTECH - FORD ANALYTICAL LABORATORY

CHAIN OF CUSTODY

COMPANY:	PacifiCorp Environmental	Remediati	on		BILLIN	IG AE	DDRE	SS:				е	mail	invo	ice t	o Bra	dley	Giles	s				1	À		
ADDRESS:	1407 West North Temple Ste	270			BILLING	CITY,	/STAT	E/ZIP:																		
CITY/STATE/ZIP:	Salt Lake City, Ut 84140)			PURCH	ASE O	RDER	#:															7			
PHONE #:	(435) 748-6576	FAX:			-																(HEN	ITE	H-F	OR	D
CONTACT:	Bradley Giles	PROJECT:	Hunter Pow	er Plant CCR	-																			TORI		
EMAIL:	brad.giles@pacificorp.com	- !			-	TUR	NARO	UND F	REQUI	RED:*			c	QC Le	vel 3	(10	busi	ness	days)						
					-	* Exp	edited to	urnarour	nd subje	ct to add	itional c	harge	nyomin	war phys	at several	KOSPOTENSON	IENERIUM.		Emer Site		TO THE RESERVE THE TAX IN THE TAX		a moneya	and the latest the lat	To Miller	
								I						TS RE	QUES	TED		80 II						Bact	eria	
2300	472					Containers	A2540C	e <i>E300.0</i>	A4500-H B	Total Metals: Sb, As, Ba, Be, B	Total Metals: CD, Ca, Cr, Co, Pb	Total Metals: Ll, Mo, Se, Tl, Hg	tals: E200.7 / E200.8 / E245.1	Cloride / Sulfate E300.0				Radium A7500-RA; Radium 226 & 228	te & combined)				rm + E. coli (Present/Absent)	rm + E. coli (Enumerated)	Count)	
Lab Use Only	CLI	IENT SAMPLE INFO	PRMATION			Ş	S	Fluoride		tal N	tal M	tal M	Total Metals:	ride			1	Hin	separate				Fotal Coliform +	Total Coliform + E.	HPC (Plate Count)	E. Coli Only
L PI	LOCATION / IDENTIFICATION	DATE	TIME	MATRIX	Field: Residual Chlorine	b #	TDS	문	표	유	٩	P	Þ	ฮั				Ra Š	es	\bot	_		Tota	Tota	HPC	ы
58	1. ELF-11	4/5/2023	15:20	w		4	X	X	X	х	х	X	X	X				X								
09	2. ELF-12	4/6/2023	17:00	w		4	x	x	x	x	х	x	x	x				x								
10	3. ELF-13	4/6/2023	15:45	w		4	x	x	x	x	x	x	x	x				x								
	4. ELF-14	4/6/2023	14:30	w		4	x	x	x	x	x	x	x	x				x								
12	_{5.} ELF-15	4/6/2023	15:10	w		4	х	x	x	х	х	x	х	х				x								
13	6. ELF-16	4/6/2023	12:15	w		4	х	х	х	х	х	x	х	х				х								
	_{7.} ELF-17	-	-	w		4	х	х	х	х	х	х	х	х				х								
	8																		\top	\top						
14	9. Duplicate - (CCR)	4/5/2023	-	w		4	x	х	x	х	х	х	х	х				х			1					
1415	10. Field Blank - (CCR)	4/6/2023	9:50	w		4	х	x	x	х	х	х	х	х				х								
	Sampled by: Bradley Giles & Dennis V	anderbeek	Sampled by: [signature	e]			•				a v		,	ON	ICE		NOT	N ICE		Ten	np (C°)	1	. 1			
	Special Instructions:			To the							_				SELN E						nmende ejected.					
	Relinquished by: [signature]	7		Date/Time -7-23 Date/Time	12:31		ved by:	/	,	1			-							Date/Tim	7/2	3		12	31	
	namiqualied by, [alginature]			Date/ Time		recen	ved by:	reignati	arej	_										rate/III	ne				•	
	Relinquished by: [signature]			Date/Time		Receiv	ved by:	[signatu	ure]										C	Date/Tim	ne					
	CHEMTECH-FORD	801.262.7299 PHON	E				T-			20 4	046	1.50/:					100/									٠.

9632 South 500 West Sandy, UT 84070 866.792.0093 FAX www.ChemtechFord.com

nyment Terms are net 30 days OAC. 1.5% interest charge per month (18% per annum). Client agress to pay collection costs and attorney's fees.

	QC Repo	rt for Work Order (W	VO) - 23D0472			
Analyte	% Rec R	PD Limits RPI	D Max Result Source Conc	Spk Value	MRL	DF
		Blank - EPA 200.	7			
QC Sample ID: BXD0255-BLK1	Batch: BXD	0255				
Date Prepared: 04/07/2023	Date Analyz	ed: 04/10/2023				
Barium, Total	·		ND		0.005	1.00
Boron, Total			ND		0.05	1.00
Calcium, Total			ND		0.2	1.00
Chromium, Total			ND		0.005	1.00
Lithium, Total			ND		0.005	1.00
	D / 1 DVD	0056	ND		0.000	1.00
QC Sample ID: BXD0256-BLK1	Batch: BXD					
Date Prepared: 04/07/2023	Date Analyz	ed: 04/10/2023				
Barium, Total			ND		0.005	1.00
Boron, Total			ND		0.05	1.00
Calcium, Total			ND		0.2	1.00
Chromium, Total			ND		0.005	1.00
Lithium, Total			ND		0.005	1.00
QC Sample ID: BXD0462-BLK1	Batch: BXD	0462				
Date Prepared: 04/12/2023	Date Analyz	ed: 04/13/2023				
Barium, Total	•		ND		0.005	1.00
Boron, Total			ND		0.05	1.00
Calcium, Total			ND		0.2	1.00
Chromium, Total			ND		0.005	1.00
Lithium, Total			ND		0.005	1.00
	Batch: BXD	0522				
QC Sample ID: BXD0533-BLK1						
Date Prepared: 04/13/2023	Date Analyz	ed: 04/14/2023	NB		0.005	4.00
Barium, Total			ND		0.005	1.00
Boron, Total			ND		0.05	1.00
Calcium, Total			ND		0.2	1.00
Chromium, Total			ND		0.005	1.00
Lithium, Total			ND		0.005	1.00
		LCS - EPA 200.7	•			
QC Sample ID: BXD0255-BS1	Batch: BXD	0255				
Date Prepared: 04/07/2023		ed: 04/10/2023				
Barium, Total	99.7	85 - 115	0.199	0.200	0.005	1.00
Boron, Total	98.1	85 - 115	0.49	0.500	0.05	1.00
Calcium, Total	99.6	85 - 115	10.2	10.2	0.03	1.00
Chromium, Total	99.6 105	85 - 115	0.210	0.200	0.2	1.00
Lithium, Total	105	85 - 115 85 - 115	0.210	0.200	0.005	1.00
			0.203	0.200	0.003	1.00
QC Sample ID: BXD0256-BS1	Batch: BXD					
Date Prepared: 04/07/2023	•	ed: 04/10/2023				
Barium, Total	101	85 - 115	0.202	0.200	0.005	1.00
Boron, Total	99.6	85 - 115	0.50	0.500	0.05	1.00
Calcium, Total	101	85 - 115	10.3	10.2	0.2	1.00
Chromium, Total	106	85 - 115	0.212	0.200	0.005	1.00
Lithium, Total	99.3	85 - 115	0.199	0.200	0.005	1.00
QC Sample ID: BXD0462-BS1	Batch: BXD	0462				
Date Prepared: 04/12/2023		ed: 04/13/2023				
•	92.6		0.195	0.200	0.005	1.00
Barium, Total		85 - 115	0.185	0.200	0.005	
Boron, Total	92.6	85 - 115 85 - 445	0.46	0.500	0.05	1.00
Calcium, Total	95.7	85 - 115	9.8	10.2	0.2	1.00
Chromium, Total	95.7	85 - 115	0.191	0.200	0.005	1.00
Lithium, Total	96.2	85 - 115	0.192	0.200	0.005	1.00
CtF WO#: 23D0472						
WWW Chamtach Ford com					D. ^	4 -4 00

www.ChemtechFord.com Page 21 of 33

QC Report for Work Order (WO) - 23D0472
----------------------------	---------------

-	•	•	_			
			Source Conc	Spk Value	MRL	DF
	•	nt.)				
Batch: BXD0462	2					
Date Analyzed: (04/13/2023					
	85 - 115	ND			0.005	1.00
	85 - 115	ND			0.05	1.00
	85 - 115	0.01			0.2	1.00
		ND			0.005	1.00
	85 - 115	ND			0.005	1.00
Batch: BXD0533	3					
Date Analyzed: (04/14/2023					
120	85 - 115	0.241		0.200	0.005	1.00
	de acceptance limits.		ch was accep			
,	'	,				
106	85 - 115	0.53		0.500	0.05	1.00
119	85 - 115	12.1		10.2	0.2	1.00
le recovery was outsid	de acceptance limits.	The analytical bat	ch was accep	oted based or	1	
						1.00
				0.200	0.005	1.00
Mat	trix Spike - EPA 2	00.7				
Batch: BXD0255	5 QC Source S	Sample: 23D0472	-10			
Date Analyzed: (04/10/2023					
74.2	70 - 130	0.155	0.007	0.200	0.005	1.00
110	70 - 130	1.00	0.45	0.500	0.05	1.00
103	70 - 130	303	293	10.2	0.2	1.00
96.6	70 - 130	0.194	0.001	0.200	0.005	1.00
						1.00
Batch: BXD025	5 OC Source S	Sample: XXXXX	XX-XX			
		r				
Date Analyzed: (04/10/2023	•	0.143	0.200	0.005	1.00
		0.342 0.74	0.143 0.22	0.200 0.500	0.005 0.05	1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the street of the street	04/10/2023 70 - 130 70 - 130 ne MS and/or MSD. The ference. The batch was	0.342 0.74 he RPD between vas accepted base	0.22 the MS and Med on the acce	0.500 /ISD was eptable	0.05	1.00
Date Analyzed: (99.4 104 acceptance limits for th	04/10/2023 70 - 130 70 - 130 ne MS and/or MSD. Ti	0.342 0.74 he RPD between	0.22 the MS and M	0.500 MSD was		
Date Analyzed: (99.4 104 acceptance limits for the street of the street	04/10/2023 70 - 130 70 - 130 ne MS and/or MSD. The ference. The batch was	0.342 0.74 he RPD between vas accepted base	0.22 the MS and Med on the acce	0.500 /ISD was eptable	0.05	1.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interference) 103	04/10/2023 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch was recommended.	0.342 0.74 he RPD between vas accepted base 31.1	0.22 the MS and Med on the accordance 20.5	0.500 MSD was eptable	0.05	1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the sistem of the sistem	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch w 70 - 130 70 - 130 70 - 130	0.342 0.74 he RPD between vas accepted base 31.1 0.209	0.22 the MS and Med on the accordance 20.5 0.001 0.078	0.500 MSD was eptable 10.2 0.200	0.05 0.2 0.005	1.00
Date Analyzed: (99.4 104 acceptance limits for the six due to matrix interference of the six of th	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The batch with the	0.342 0.74 he RPD between a vas accepted base 31.1 0.209 0.278	0.22 the MS and Med on the accordance 20.5 0.001 0.078	0.500 MSD was eptable 10.2 0.200	0.05 0.2 0.005	1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the sis due to matrix interference in the sister of	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The batch with the	0.342 0.74 he RPD between a vas accepted base 31.1 0.209 0.278	0.22 the MS and Med on the accordance 20.5 0.001 0.078	0.500 MSD was eptable 10.2 0.200	0.05 0.2 0.005	1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interference of the image of	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch w 70 - 130 70 - 130 70 - 130 6 QC Source S 04/10/2023	0.342 0.74 he RPD between vas accepted base 31.1 0.209 0.278 Sample: XXXXX	0.22 the MS and Med on the accordance 20.5 0.001 0.078	0.500 //SD was eptable 10.2 0.200 0.200	0.05 0.2 0.005 0.005	1.00 1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interference of the image of	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch was 70 - 130 70 - 130 70 - 130 6 QC Source St 70 - 130 70 - 130	0.342 0.74 he RPD between a vas accepted base 31.1 0.209 0.278 Sample: XXXXX	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX	0.500 //SD was eptable 10.2 0.200 0.200	0.05 0.2 0.005 0.005	1.00 1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interformation of the image	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The MSD. The MSD. The batch with the state of the batch with the state of	0.342 0.74 he RPD between a vas accepted base 31.1 0.209 0.278 Sample: XXXXX	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500	0.05 0.2 0.005 0.005 0.050 0.50	1.00 1.00 1.00 1.00 10.00 10.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interformation of the image	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The MSD. The batch with the batch	0.342 0.74 he RPD between a series accepted base 31.1 0.209 0.278 Sample: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500 10.2	0.05 0.2 0.005 0.005 0.050 0.50 2.0	1.00 1.00 1.00 1.00 10.00 10.00 10.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interformation of the image	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. Tilerence. The batch were represented by the ference of the state of the s	0.342 0.74 he RPD between and a second base of the second bas of the second base of the second base of the second base of the	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4 ND ND	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500 10.2 0.200	0.05 0.2 0.005 0.005 0.050 0.50 2.0 0.050	1.00 1.00 1.00 1.00
Date Analyzed: (99.4 104 acceptance limits for the sis due to matrix interference of the sister of t	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch we ference. The batch we for 130 70 - 130	0.342 0.74 he RPD between vas accepted base 31.1 0.209 0.278 Sample: XXXXX 0.278 0.58 77.5 0.216	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4 ND ND	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500 10.2 0.200	0.05 0.2 0.005 0.005 0.050 0.50 2.0 0.050	1.00 1.00 1.00 1.00 10.00 10.00 10.00
Date Analyzed: (99.4 104 acceptance limits for the is due to matrix interference in the image of	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. The MSD. The MSD. The MSD. The batch with the model of the mo	0.342 0.74 he RPD between and a second base of the second base of th	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4 ND ND -01	0.500 //SD was eptable 10.2 0.200 0.200 0.200 10.2 0.200 0.500 10.2 0.200 0.200	0.05 0.2 0.005 0.005 0.050 0.50 2.0 0.050 0.050	1.00 1.00 1.00 1.00 10.00 10.00 10.00
Date Analyzed: (99.4 104 acceptance limits for the sis due to matrix interference of the sister of t	70 - 130 70 - 130 70 - 130 ne MS and/or MSD. To ference. The batch we ference. The batch we for 130 70 - 130	0.342 0.74 he RPD between and a second base of the second bas of the second base of the second base of the second base of the	0.22 the MS and Med on the accordance 20.5 0.001 0.078 XX-XX 0.073 ND 64.4 ND ND	0.500 //SD was eptable 10.2 0.200 0.200 0.200 0.500 10.2 0.200	0.05 0.2 0.005 0.005 0.050 0.50 2.0 0.050	1.00 1.00 1.00 1.00 10.00 10.00 10.00
i	Batch: BXD0462 Date Analyzed: 0 Batch: BXD0533 Date Analyzed: 0 120 Dele recovery was outsided a secont of QC acceptance on. The QC batch was personal or secont of the property of the prop	## Rec RPD Limits RPD	## Rec RPD Limits RPD Max Result	Batch: BXD0462 Date Analyzed: 04/13/2023 85 - 115 ND S5 - 115 S5 - 115	## Rec RPD Limits RPD Max Result Source Conc Spk Value LCS - EPA 200.7 (cont.)	## Rec RPD Limits RPD Max Result Source Conc Spk Value MRL

Page 22 of 33

www.ChemtechFord.com

QC Report for Work Order (WO) - 23D0472 RPD Max Analyte % Rec RPD Limits Result Source Conc Spk Value MRL DF Matrix Spike - EPA 200.7 (cont.) QC Sample ID: BXD0256-MS2 Batch: BXD0256 QC Source Sample: 23D0472-01 Date Prepared: 04/07/2023 Date Analyzed: 04/10/2023 1.00 Boron, Total 92.2 70 - 130 3.70 3.24 0.500 0.05 70 - 130 342 Calcium, Total 314 374 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. Chromium, Total 113 70 - 130 0.291 0.066 0.200 0.005 1.00 70 - 130 Lithium, Total 107 1.78 1.56 0.200 0.005 1.00 QC Sample ID: BXD0462-MS1 Batch: BXD0462 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/12/2023 Date Analyzed: 04/13/2023 97.9 70 - 130 0.220 Barium, Total 0.024 0.200 0.005 1.00 70 - 130 0.50 0.03 0.500 0.05 1.00 Boron, Total 101 Calcium, Total 109 70 - 130 32.6 21.5 10.2 0.2 1.00 Chromium, Total 101 70 - 130 0.207 0.006 0.200 0.005 1.00 Lithium. Total 104 70 - 130 0.213 0.006 0.200 0.005 1.00 QC Sample ID: BXD0462-MS2 Batch: BXD0462 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/12/2023 Date Analyzed: 04/13/2023 Barium, Total 93.6 70 - 130 0.208 0.021 0.200 0.005 1.00 Boron, Total 91.8 70 - 130 1.06 0.60 0.500 0.05 1.00 70 - 130 Calcium, Total 95.7 33.4 23.7 10.2 0.2 1.00 Chromium, Total 95.8 70 - 130 0.203 0.011 0.200 0.005 1.00 Lithium, Total 99.2 70 - 130 0.442 0.244 0.200 0.005 1.00 Batch: BXD0533 QC Sample ID: BXD0533-MS1 QC Source Sample: XXXXXXXXXXXX Date Prepared: 04/13/2023 Date Analyzed: 04/14/2023 90.5 70 - 130 0.205 0.024 0.200 0.005 1.00 Barium, Total Boron, Total 95.8 70 - 1300.48 ND 0.500 0.05 1.00 83.8 70 - 130 52.6 44.1 10.2 0.2 1.00 Calcium, Total Chromium, Total 99.8 70 - 130 0.200 0.0008 0.200 0.005 1.00 70 - 130 0.251 0.008 0.200 0.005 1.00 Lithium, Total 121 QC Sample ID: BXD0533-MS2 Batch: BXD0533 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/13/2023 Date Analyzed: 04/14/2023 Barium, Total 104 70 - 130 0.209 ND 0.200 0.005 1.00 102 70 - 130 0.51 ND 0.500 0.05 Boron, Total 1.00 Calcium, Total 103 70 - 130 10.5 ND 10.2 0.2 1.00 Chromium, Total 93.6 70 - 130 0.187 ND 0.200 0.005 1.00 Lithium, Total 92.0 70 - 130 0.184 ND 0.200 0.005 1.00 Matrix Spike Dup - EPA 200.7 QC Sample ID: BXD0255-MSD1 Batch: BXD0255 QC Source Sample: 23D0472-10 Date Prepared: 04/07/2023 Date Analyzed: 04/10/2023 20 Barium, Total 77.2 3.79 70 - 130 0.161 0.007 0.200 0.005 1.00 Boron, Total 115 2.51 70 - 130 20 1.02 0.45 0.500 0.05 1.00 347 7.90 70 - 130 20 293 Calcium, Total 328 10.2 0.2 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

QM-RPD - The recovery was outside acceptance limits for the MS and/or MSD. The RPD between the MS and MSD was acceptable and indicates the recovery is due to matrix interference. The batch was accepted based on the acceptable recovery of the LCS and the RPD.

3.34

2.60

100

190

70 - 130

70 - 130

20

20

0.201

2.07

CtF WO#: **23D0472** www.ChemtechFord.com

Chromium, Total

Lithium, Total

1.00

1.00

0.005

0.005

0.001

1.69

0.200

0.200

Analyte	QC R	eport for	Work Limit		(WO) -	23D0472 Result	Source Conc	Spk Value	MRL	DF
Allalyte		atrix Spik					Source Conc	Spk value	IVIIXL	ы
QC Sample ID: BXD0255-MSD2		3XD0255				le: XXXXX	XX-XX			
Date Prepared: 04/07/2023	Date Ar	alyzed: 04/		-	1					
Barium, Total	98.8	0.352	70 - 1		20	0.340	0.143	0.200	0.005	1.00
Boron, Total	102	0.811	70 - 1		20	0.74	0.22	0.500	0.05	1.00
QM-RPD - The recovery was outside acce	eptance lir	nits for the	MS and	or MSE). The RF	D between	the MS and M	SD was		
acceptable and indicates the recovery is										
recovery of the LCS and the RPD.										
Calcium, Total	103	0.277	70 - 1		20	31.0	20.5	10.2	0.2	1.00
Chromium, Total	103	0.770	70 - 1 70 - 1		20 20	0.207	0.001	0.200	0.005	1.00 1.00
Lithium, Total	100	0.359				0.279	0.078	0.200	0.005	1.00
QC Sample ID: BXD0256-MSD1		3XD0256			ce Samp	le: XXXXX	XX-XX			
Date Prepared: 04/07/2023		alyzed: 04/								
Barium, Total	98.9	2.55	70 - 1		20	0.271	0.073	0.200	0.050	10.00
Boron, Total	112	4.20	70 - 1		20	0.56	ND	0.500	0.50	10.00
Calcium, Total	109	2.56	70 - 1		20	75.6	64.4	10.2	2.0	10.00
Chromium, Total	106	2.34	70 - 1		20	0.211	ND	0.200	0.050	10.00
Lithium, Total	87.5	3.92	70 - 1		20	0.175	ND	0.200	0.050	10.00
QC Sample ID: BXD0256-MSD2	Batch: I	3XD0256	(QC Soui	ce Samp	le: 23D0472	2-01			
Date Prepared: 04/07/2023	Date Ar	alyzed: 04/	10/2023	3						
Barium, Total	101	0.390	70 - 1	130	20	0.231	0.029	0.200	0.005	1.00
Boron, Total	110	2.35	70 - 1	130	20	3.79	3.24	0.500	0.05	1.00
Calcium, Total	359	1.23	70 - 1		20	379	342	10.2	0.2	1.00
QM-4X - The spike recovery was outside							•			
times or greater the spike concentration. Tacceptance limits.	The QC ba	atch was ac	cepted I	based o	n LCS ar	nd/or LCSD	recoveries with	nin the		
Chromium, Total	116	2.28	70 - 1	130	20	0.298	0.066	0.200	0.005	1.00
Lithium, Total	118	1.19	70 - 1		20	1.80	1.56	0.200	0.005	1.00
QC Sample ID: BXD0462-MSD1	Datah: I	BXD0462	- (C Sour		le: XXXXX				
Date Prepared: 04/12/2023		alyzed: 04/		•	ce Samp	ic. AAAAA	ΛΛ-ΛΛ			
*		•			20	0.040	0.004	0.000	0.005	4.00
Barium, Total	94.8 99.2	2.87 1.56	70 - 1 70 - 1		20	0.213 0.50	0.024 0.03	0.200	0.005	1.00 1.00
Boron, Total Calcium, Total	98.3	3.37	70 - 1		20 20	31.5	21.5	0.500 10.2	0.05 0.2	1.00
Chromium, Total	97.8	2.74	70 - 1		20	0.202	0.006	0.200	0.2	1.00
Lithium, Total	99.4	3.88	70 - 1		20	0.205	0.006	0.200	0.005	1.00
QC Sample ID: BXD0462-MSD2		BXD0462								
_					ce Samp	le: XXXXX	ΛΛ-ΛΛ			
Date Prepared: 04/12/2023		alyzed: 04/			00	0.040	0.004	0.000	0.005	4.00
Barium, Total	95.5	1.86	70 - 1		20	0.212	0.021	0.200	0.005	1.00
Boron, Total	94.9	1.47	70 - 1		20	1.08	0.60	0.500	0.05	1.00
Calcium, Total Chromium, Total	101 98.4	1.63 2.58	70 - 1 70 - 1		20 20	34.0 0.208	23.7 0.011	10.2 0.200	0.2 0.005	1.00 1.00
Lithium, Total	103	1.55	70 - 1		20	0.449	0.244	0.200	0.005	1.00
								0.200	0.000	1.00
QC Sample ID: BXD0533-MSD1		BXD0533		-	ce Samp	le: XXXXX	XX-XX			
Date Prepared: 04/13/2023		alyzed: 04/								
Barium, Total	96.0	5.23	70 - 1		20	0.216	0.024	0.200	0.005	1.00
Boron, Total	101	5.17	70 - 1		20	0.50	ND	0.500	0.05	1.00
Calcium, Total	95.6	2.26	70 - 1		20	53.8	44.1	10.2	0.2	1.00
Chromium, Total	98.1	1.66	70 - 1		20	0.197	0.0008	0.200	0.005	1.00
Lithium, Total	119	1.89	70 - 1		20	0.246	0.008	0.200	0.005	1.00
QC Sample ID: BXD0533-MSD2		3XD0533			ce Samp	le: XXXXX	XX-XX			
Date Prepared: 04/13/2023		alyzed: 04/	14/2023	3						
Barium, Total	88.6	16.4	70 - 1	130	20	0.177	ND	0.200	0.005	1.00
CtF WO#: 23D0472										

Page 24 of 33

www.ChemtechFord.com

QC Report for Work Order	(WO) - 23D0472
--------------------------	-----	-------------

Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	Ma	atrix Spil	ke Dup - EF	PA 200.7 (cont.)				
QC Sample ID: BXD0533-MSD2	Batch: I	3XD0533	QC S	ource Samp	le: XXXX	XXX-XX			
Date Prepared: 04/13/2023	Date Ar	alyzed: 04	/14/2023						
Boron, Total	87.6	14.9	70 - 130	20	0.44	ND	0.500	0.05	1.00
Calcium, Total	87.8	16.0	70 - 130	20	9.0	ND	10.2	0.2	1.00
Chromium, Total	94.6	1.06	70 - 130	20	0.189	ND	0.200	0.005	1.00
Lithium, Total	93.0	1.08	70 - 130	20	0.186	ND	0.200	0.005	1.00

CtF WO#: **23D0472** www.ChemtechFord.com

QC Report for Work Order (WO) - 23D0472

Angluto	% Rec RPD	Limits RPI	•	Source Conc	Cnk Value	MDI	DF
Analyte				Source Conc	Spk Value	MRL	DF
		lank - EPA 200.	0				
QC Sample ID: BXD0258-BLK1	Batch: BXD0258	/4 0 / 2 0 0 0					
Date Prepared: 04/07/2023	Date Analyzed: 04	/10/2023					
Antimony, Total			ND			0.0005	1.00
Arsenic, Total			ND			0.0005	1.00
Beryllium, Total			ND			0.0005	1.00
Cadmium, Total			ND			0.0002	1.00
Cobalt, Total			ND			0.0005	1.00
Lead, Total			ND			0.0005	1.00
Molybdenum, Total			ND			0.0005	1.00
Selenium, Total			ND			0.0005	1.00
Thallium, Total			ND			0.0002	1.00
QC Sample ID: BXD0282-BLK1	Batch: BXD0282						
Date Prepared: 04/10/2023	Date Analyzed: 04	/10/2023					
Antimony, Total	•		ND			0.0005	1.00
Arsenic, Total			ND			0.0005	1.00
Beryllium, Total			ND			0.0005	1.00
Cadmium, Total			ND			0.0002	1.00
Cobalt, Total			ND			0.0005	1.00
Lead, Total			ND			0.0005	1.00
Molybdenum, Total			ND			0.0005	1.00
Selenium, Total			ND			0.0005	1.00
Thallium, Total			ND			0.0002	1.00
	ı	.CS - EPA 200.8				0.000_	
QC Sample ID: BXD0258-BS1	Batch: BXD0258						
Date Prepared: 04/07/2023	Date Analyzed: 04	/10/2023					
Antimony, Total	105	85 - 115	0.042		0.0400	0.0005	1.00
Arsenic, Total	100	85 - 115	0.042		0.0400	0.0005	1.00
Beryllium, Total	104	85 - 115	0.042		0.0400	0.0005	1.00
-	103	85 - 115	0.041		0.0400	0.0003	1.00
Cadmium, Total Cobalt, Total	103					0.0002	
·		85 - 115	0.040		0.0400		1.00
Lead, Total	100	85 - 115	0.040		0.0400	0.0005	1.00
Molybdenum, Total	102	85 - 115	0.041		0.0400	0.0005	1.00
Selenium, Total	103	85 - 115	0.041		0.0400	0.0005	1.00
Гhallium, Total	104	85 - 115	0.042		0.0400	0.0002	1.00
QC Sample ID: BXD0282-BS1	Batch: BXD0282						
Date Prepared: 04/10/2023	Date Analyzed: 04	/10/2023					
Antimony, Total	99.4	85 - 115	0.040		0.0400	0.0005	1.00
Arsenic, Total	99.1	85 - 115	0.040		0.0400	0.0005	1.00
Beryllium, Total	101	85 - 115	0.040		0.0400	0.0005	1.00
Cadmium, Total	96.6	85 - 115	0.039		0.0400	0.0002	1.00
Cobalt, Total	96.8	85 - 115	0.039		0.0400	0.0005	1.00
₋ead, Total	96.3	85 - 115	0.039		0.0400	0.0005	1.00
Molybdenum, Total	98.8	85 - 115	0.040		0.0400	0.0005	1.00
Selenium, Total	98.3	85 - 115	0.039		0.0400	0.0005	1.00
Гhallium, [´] Total	104	85 - 115	0.042		0.0400	0.0002	1.00
		x Spike - EPA 2					
QC Sample ID: BXD0258-MS1	Batch: BXD0258	-	Sample: 23D0472	-01			
Date Prepared: 04/07/2023	Date Analyzed: 04		1				
Antimony, Total	94.5	70 - 130	0.038	0.0003	0.0400	0.0005	1.00
Arsenic, Total	92.2	70 - 130	0.038	0.0003	0.0400	0.0005	1.00
Beryllium, Total	96.3	70 - 130 70 - 130	0.039	ND	0.0400	0.0003	10.00
•	00.0	70 - 100	0.000	140	0.0400	0.0000	10.00
CtF WO#: 23D0472						_	
ununu Chamataah Eard aana							~

Page 26 of 33

www.ChemtechFord.com

	QC Re	port for Work Ord	der (WO) - 2	23D0472	2			
Analyte	% Rec	RPD Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
	M	latrix Spike - EPA	200.8 (cor	nt.)				
QC Sample ID: BXD0258-MS1	Batch: BX	KD0258 QC S	Source Sampl	le: 23D047	72-01			
Date Prepared: 04/07/2023	Date Anal	lyzed: 04/10/2023	1					
Cadmium, Total	99.0	70 - 130		0.040	0.0002	0.0400	0.0002	1.00
Cobalt, Total	97.6	70 - 130		0.052	0.013	0.0400	0.0005	1.00
Lead, Total	94.6	70 - 130		0.040	0.002	0.0400	0.0005	1.00
Molybdenum, Total	106	70 - 130		0.047	0.004	0.0400	0.0005	1.00
Selenium, Total	94.1	70 - 130		0.041	0.003	0.0400	0.0005	1.00
Thallium, Total	97.9	70 - 130		0.039	0.0002	0.0400	0.0002	1.00
QC Sample ID: BXD0258-MS2	Batch: BX	KD0258 QC S	Source Sampl	le: 23D047	72-10			
Date Prepared: 04/07/2023	Date Anal	lyzed: 04/10/2023						
Antimony, Total	106	70 - 130		0.043	0.0004	0.0400	0.0005	1.00
Arsenic, Total	93.6	70 - 130		0.040	0.003	0.0400	0.0005	1.00
Beryllium, Total	91.8	70 - 130		0.037	ND	0.0400	0.0050	10.00
Cadmium, Total	96.4	70 - 130		0.039	0.0003	0.0400	0.0002	1.00
Cobalt, Total	95.5	70 - 130		0.042	0.004	0.0400	0.0005	1.00
Lead, Total	94.8	70 - 130		0.038	0.0001	0.0400	0.0005	1.00
Molybdenum, Total	104	70 - 130		0.043	0.0009	0.0400	0.0005	1.00
Selenium, Total	94.3	70 - 130		0.056	0.019	0.0400	0.0005	1.00
Thallium, Total	98.5	70 - 130		0.040	0.0004	0.0400	0.0002	1.00
QC Sample ID: BXD0282-MS1	Batch: BX	KD0282 QC S	Source Sampl	le: XXXX	XXX-XX			
Date Prepared: 04/10/2023	Date Anal	lyzed: 04/10/2023						
Antimony, Total	104	70 - 130		0.042	0.0001	0.0400	0.0005	1.00
Arsenic, Total	105	70 - 130		0.043	0.0006	0.0400	0.0005	1.00
Beryllium, Total	105	70 - 130		0.042	ND	0.0400	0.0005	1.00
Cadmium, Total	99.0	70 - 130		0.040	ND	0.0400	0.0002	1.00
Cobalt, Total	96.2	70 - 130		0.039	0.0002	0.0400	0.0005	1.00
Lead, Total	94.8	70 - 130		0.038	0.0001	0.0400	0.0005	1.00
Molybdenum, Total	105	70 - 130		0.043	0.001	0.0400	0.0005	1.00
Selenium, Total	108	70 - 130		0.045	0.001	0.0400	0.0005	1.00
Thallium, Total	103	70 - 130		0.041	ND	0.0400	0.0002	1.00
QC Sample ID: BXD0282-MS2	Batch: BX	KD0282 QC S	Source Sampl	le: XXXX	XXX-XX			
Date Prepared: 04/10/2023	Date Anal	lyzed: 04/10/2023						
Antimony, Total	99.9	70 - 130		0.047	0.007	0.0400	0.0005	1.00
Arsenic, Total	99.4	70 - 130		0.067	0.027	0.0400	0.0005	1.00
Beryllium, Total	102	70 - 130		0.041	ND	0.0400	0.0005	1.00
Cadmium, Total	95.1	70 - 130		0.039	0.001	0.0400	0.0002	1.00
Cobalt, Total	94.2	70 - 130		0.038	0.0004	0.0400	0.0005	1.00
Lead, Total	92.6	70 - 130		0.040	0.002	0.0400	0.0005	1.00
Molybdenum, Total	101	70 - 130		0.044	0.003	0.0400	0.0005	1.00
Selenium, Total	101	70 - 130		0.042	0.002	0.0400	0.0005	1.00
The Hirms Takel	404	70 400		0.040	0.000	0.0400	0.0000	4 00

70 - 130

0.042

0.002

0.0400

0.0002

1.00

101

CtF WO#: **23D0472** www.ChemtechFord.com

Thallium, Total

റ്റ	Report fo	r Work	Order	(WO	- 23D0472
QU.	IXEPULL IO	I AAOIV	Oluci		, - <u>2</u> 3D0412

Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		ВІ	lank - EPA	245.1					
QC Sample ID: BXD0353-BLK1	Batch: B	3XD0353							
Date Prepared: 04/11/2023	Date An	alyzed: 04/	/11/2023						
Mercury, Total					ND			0.00015	1.00
		L	.CS - EPA	245.1					
QC Sample ID: BXD0353-BS1	Batch: B	3XD0353							
Date Prepared: 04/11/2023	Date An	alyzed: 04/	/11/2023						
Mercury, Total	105		85 - 115		0.00526		0.00500	0.00015	1.00
		Matri	x Spike - E	PA 245.1					
QC Sample ID: BXD0353-MS1	Batch: B	3XD0353	QC S	ource Samp	le: 23D047	2-01			
Date Prepared: 04/11/2023	Date An	alyzed: 04/	/11/2023						
Mercury, Total	104		75 - 125		0.00521	ND	0.00500	0.00015	1.00
		Matrix S	Spike Dup	- EPA 245	.1				
QC Sample ID: BXD0353-MSD1	Batch: B	3XD0353	QC S	ource Samp	le: 23D047	2-01			
Date Prepared: 04/11/2023	Date Ana	alyzed: 04/	/11/2023						
Mercury, Total	100	3.71	75 - 125	20	0.00502	ND	0.00500	0.00015	1.00

Analyte	QC Repor	t for Work Order (W	O) - 23D0472 Max Result	Source Conc	Spk Value	MRL	DF
, u.a., c	70.100	Blank - EPA 300.0		554.55 555	opit raido		٥.
QC Sample ID: BXD0289-BLK1	Batch: BXD02						
Date Prepared: 04/10/2023	Date Analyzed						
Chloride	Date 1 mary 200	a. 0 1/10/2023	ND			1.00	1.00
Fluoride			ND			0.100	1.00
Sulfate			ND			1.00	1.00
QC Sample ID: BXD0313-BLK1	Batch: BXD03	313					
Date Prepared: 04/10/2023	Date Analyzed	d: 04/11/2023					
Chloride	·		ND			1.00	1.00
Fluoride			ND			0.100	1.00
Sulfate			ND			1.00	1.00
QC Sample ID: BXD0346-BLK1	Batch: BXD03	346					
Date Prepared: 04/11/2023	Date Analyzed	d: 04/11/2023					
Chloride			ND			1.00	1.00
QC Sample ID: BXD0969-BLK1	Batch: BXD09	969					
Date Prepared: 04/20/2023	Date Analyzed	d: 04/20/2023					
Fluoride	•		ND			0.100	1.00
Sulfate			ND			1.00	1.00
		LCS - EPA 300.0					
QC Sample ID: BXD0289-BS1	Batch: BXD02	289					
Date Prepared: 04/10/2023	Date Analyzed						
Chloride	96.9	90 - 110	48.4		50.0	1.00	1.00
Fluoride	96.3	90 - 110	4.82		5.00	0.100	1.00
Sulfate	95.9	90 - 110	48.0		50.0	1.00	1.00
QC Sample ID: BXD0313-BS1	Batch: BXD03	313					
Date Prepared: 04/10/2023	Date Analyzed	d: 04/10/2023					
Chloride	96.7	90 - 110	48.3		50.0	1.00	1.00
Fluoride	98.8	90 - 110	4.94		5.00	0.100	1.00
Sulfate	97.0	90 - 110	48.5		50.0	1.00	1.00
QC Sample ID: BXD0346-BS1	Batch: BXD03	346					
Date Prepared: 04/11/2023	Date Analyzed	d: 04/11/2023					
Chloride	98.2	90 - 110	49.1		50.0	1.00	1.00
QC Sample ID: BXD0969-BS1	Batch: BXD09	969					
Date Prepared: 04/20/2023	Date Analyzed	d: 04/20/2023					
Fluoride	102	90 - 110	5.08		5.00	0.100	1.00
Sulfate	101	90 - 110	50.6		50.0	1.00	1.00
	N	latrix Spike - EPA 30	00.0				
QC Sample ID: BXD0289-MS1	Batch: BXD02	289 QC Source S	Sample: 23D0472	-01			
Date Prepared: 04/10/2023	Date Analyzed						
Chloride	93.4	80 - 120	1150	212	1000	110	1.00
Fluoride	96.9	80 - 120	96.9	ND	100	11.0	1.00
Sulfate	50.3	80 - 120	8940	8440	1000	110	1.00
QM-4X - The spike recovery was outs times or greater the spike concentration acceptance limits.							
QC Sample ID: BXD0289-MS2	Batch: BXD02	289 OC Source S	Sample: XXXXX	XX-XX			
Date Prepared: 04/10/2023	Date Analyzed		1				
Chloride	92.3	80 - 120	126	33.9	100	11.0	1.00
Fluoride	97.4	80 - 120	9.74	ND	10.0	1.10	1.00

CtF WO#: 23D0472 www.ChemtechFord.com

	QC F	Report for	Work Orde	er (WO) - 2	23D0472				
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		Matrix Sp	oike - EPA :	300.0 (cor	nt.)				
QC Sample ID: BXD0289-MS2	Batch:	BXD0289	QC Sc	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/10/2023	Date A	nalyzed: 04/	10/2023						
Sulfate	88.2		80 - 120		146	57.8	100	11.0	1.00
QC Sample ID: BXD0313-MS1	Batch:	BXD0313	QC Sc	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/10/2023	Date A	nalyzed: 04/	/11/2023	·					
Chloride	186		80 - 120		18000	16200	1000	110	1.00
QM-4X - The spike recovery was outside times or greater the spike concentration. acceptance limits.						•			
Fluoride	83.6		80 - 120		83.6	ND	100	11.0	1.00
Sulfate	104		80 - 120		3180	2130	1000	110	1.00
QC Sample ID: BXD0313-MS2	Batch:	BXD0313	QC Sc	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/10/2023	Date A	nalyzed: 04/	11/2023						
Chloride	76.4		80 - 120		834	453	500	55.0	1.00
QM-010 - The MS recovery was outside				cate Spike a	cceptance	e limits. The bat	tch was		
accepted based on the acceptability of the		the batch S	•		50.4	ND	50.0	F F0	4.00
Fluoride Sulfate	100 7.36		80 - 120 80 - 120		50.1 4750	ND 4710	50.0 500	5.50 55.0	1.00
QM-4X - The spike recovery was outside		centance lin		S and/or MS				55.0	1.00
times or greater the spike concentration.									
acceptance limits.									
QC Sample ID: BXD0346-MS1		BXD0346	_	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/11/2023		nalyzed: 04/							
Chloride	89.6		80 - 120		1350	453	1000	110	1.00
QC Sample ID: BXD0346-MS2		BXD0346		ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/11/2023	Date A	nalyzed: 04/	11/2023						
Chloride	88.9		80 - 120		27900	19000	10000	1100	1.00
QC Sample ID: BXD0346-MS3	Batch:	BXD0346	QC Sc	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/11/2023	Date A	nalyzed: 04/	11/2023						
Chloride	12.7		80 - 120		21100	21000	500	55.0	1.00
QM-4X - The spike recovery was outside									
times or greater the spike concentration. acceptance limits.	The QC b	atch was ac	cepted based	d on LCS an	d/or LCSD	recoveries with	nin the		
QC Sample ID: BXD0346-MS4	Datahı	BXD0346	OC 8a	ource Sampl	o VVVV	vvv vv			
Date Prepared: 04/11/2023		nalyzed: 04/	_	ource Sampi	с. <i>А</i> ЛЛЛ	ΛΛΛ-ΛΛ			
•		maryzed. 04/			16700	47000	F00	55.0	4.00
Chloride QM-4X - The spike recovery was outside	-162	oontonoo lim	80 - 120	Candlar MC		17600	500	55.0	1.00
times or greater the spike concentration.		•				•			
acceptance limits.					u, c. 2002				
QC Sample ID: BXD0969-MS1	Batch:	BXD0969	QC Sc	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/20/2023	Date A	nalyzed: 04/	/20/2023	•					
Fluoride	97.3	•	80 - 120		1.05	0.076	1.00	0.110	1.00
Sulfate	113		80 - 120		104	93.0	10.0	1.10	1.00
		Matrix S	Spike Dup -	EPA 300.	.0				
QC Sample ID: BXD0289-MSD1	Batch:	BXD0289		ource Sampl		/2-01			
Date Prepared: 04/10/2023		nalyzed: 04/	_	z zampi					
Chloride	92.3	0.912	80 - 120	20	1140	212	1000	110	1.00
Fluoride	95.8	1.16	80 - 120	20	95.8	ND	1000	11.0	1.00
Sulfate	44.6	0.644	80 - 120	20	8880	8440	1000	110	1.00
	•				•				

CtF WO#: 23D0472 www.ChemtechFord.com QC Report for Work Order (WO) - 23D0472

RPD Max

Source Conc

MRL

Spk Value

DF

Limits

% Rec

RPD

Matrix Spike Dup - EPA 300.0 (cont.) QC Sample ID: BXD0289-MSD1 Batch: BXD0289 QC Source Sample: 23D0472-01 Date Prepared: 04/10/2023 Date Analyzed: 04/10/2023 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. QC Sample ID: BXD0289-MSD2 Batch: BXD0289 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/10/2023 Date Analyzed: 04/10/2023 80 - 120 20 126 33.9 100 11.0 1.00 Chloride 92.4 0.113 Fluoride 99.3 1.99 80 - 120 20 9.93 ND 10.0 1.10 1.00 Sulfate 88.7 0.312 80 - 120 20 146 57.8 100 11.0 1.00 QC Sample ID: BXD0313-MSD1 Batch: BXD0313 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/10/2023 Date Analyzed: 04/11/2023 Chloride 209 20 18200 16200 1000 110 1.00 1.30 80 - 120 93.7 80 - 120 20 93.7 ND Fluoride 100 11.0 1.00 Sulfate 104 80 - 120 20 3170 2130 1000 110 1.00 0.111 QC Sample ID: BXD0313-MSD2 Batch: BXD0313 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/10/2023 Date Analyzed: 04/11/2023 Chloride 85.0 5.04 80 - 120 20 878 453 500 1.00 55.0 98.5 1.73 80 - 120 20 49.2 ND 50.0 5.50 Fluoride 1.00 Sulfate 117 10.9 80 - 120 20 5290 4710 500 55.0 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits QC Sample ID: BXD0346-MSD1 Batch: BXD0346 QC Source Sample: XXXXXXXXXXXX Date Prepared: 04/11/2023 Date Analyzed: 04/11/2023 Chloride 90.0 0.277 80 - 120 20 1350 453 1000 110 1.00 Batch: BXD0346 QC Source Sample: XXXXXXXXXXX QC Sample ID: BXD0346-MSD2 Date Prepared: 04/11/2023 Date Analyzed: 04/11/2023 Chloride 82.7 2.28 80 - 120 20 27200 19000 10000 1100 1.00 Batch: BXD0346 QC Sample ID: BXD0346-MSD3 QC Source Sample: XXXXXXXXXXX Date Prepared: 04/11/2023 Date Analyzed: 04/11/2023 Chloride 80 - 120 20 21000 500 55.0 16.9 0.101 21100 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits QC Sample ID: BXD0346-MSD4 Batch: BXD0346 QC Source Sample: XXXXXXXXXXXX Date Analyzed: 04/11/2023 Date Prepared: 04/11/2023 Chloride -161 0.0333 80 - 120 20 16800 17600 500 55.0 1.00 QM-4X - The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits. QC Sample ID: BXD0969-MSD1 Batch: BXD0969 QC Source Sample: XXXXXXXXXXXX Date Prepared: 04/20/2023 Date Analyzed: 04/20/2023 Fluoride 99.9 2.41 80 - 120 20 1.07 0.076 1.00 0.110 1.00 114 0.0942 80 - 120 20 Sulfate 104 93.0 10.0 1.10 1.00

CtF WO#: **23D0472** www.ChemtechFord.com

Analyte

	QC Re	eport for	Work Ord	er (WO) - 2	23D0472				
Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		Bla	ank - SM 2	540 C					
QC Sample ID: BXD0259-BLK1	Batch: B	XD0259							
Date Prepared: 04/07/2023	Date Ana	alyzed: 04/0	07/2023						
Total Dissolved Solids (TDS)					ND			10	1.00
QC Sample ID: BXD0292-BLK1	Batch: B	XD0292							
Date Prepared: 04/10/2023	Date Ana	alyzed: 04/1	10/2023						
Total Dissolved Solids (TDS)					ND			10	1.00
QC Sample ID: BXD0850-BLK1	Batch: B	XD0850							
Date Prepared: 04/20/2023	Date Ana	alyzed: 04/2	20/2023						
Total Dissolved Solids (TDS)					ND			10	1.00
		Dupl	licate - SM	2540 C					
QC Sample ID: BXD0259-DUP1	Batch: B	XD0259	QC S	ource Sampl	e: 23D047	2-01			
Date Prepared: 04/07/2023	Date Ana	alyzed: 04/0	07/2023	•					
Total Dissolved Solids (TDS)		6		10	11200	11900		100	1.00
QC Sample ID: BXD0259-DUP2	Batch: B	XD0259	QC S	ource Sampl	e: 23D047	2-02			
Date Prepared: 04/07/2023	Date Ana	alyzed: 04/0	07/2023	•					
Total Dissolved Solids (TDS)		2		10	12500	12800		100	1.00
QC Sample ID: BXD0292-DUP1	Batch: B	XD0292	QC S	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/10/2023	Date Ana	alyzed: 04/1	_	•					
Total Dissolved Solids (TDS)		0.7		10	1710	1720		20	1.00
QC Sample ID: BXD0292-DUP2	Batch: B	XD0292	QC S	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/10/2023	Date Ana	alyzed: 04/1	_	1					
Total Dissolved Solids (TDS)		3		10	900	876		20	1.00
QC Sample ID: BXD0850-DUP1	Batch: B	XD0850	OC S	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/20/2023		alyzed: 04/2		1					
Total Dissolved Solids (TDS)		2		10	1170	1190		20	1.00
QC Sample ID: BXD0850-DUP2	Batch: B	XD0850	QC S	ource Sampl	e: XXXXX	XXX-XX			
Date Prepared: 04/20/2023	Date Ana	alyzed: 04/2	_	1					
Total Dissolved Solids (TDS)		0.5		10	880	876		20	1.00
•		LO	CS - SM 25	540 C					
QC Sample ID: BXD0259-BS1	Batch: B	XD0259							
Date Prepared: 04/07/2023		alyzed: 04/0	07/2023						
Total Dissolved Solids (TDS)	101	-	90 - 110		404		400	20	1.00

Batch: BXD0292

Batch: BXD0850

105

95

Date Analyzed: 04/10/2023

Date Analyzed: 04/20/2023

90 - 110

90 - 110

420

380

CtF WO#: **23D0472** www.ChemtechFord.com

QC Sample ID: BXD0292-BS1

Date Prepared: 04/10/2023

Date Prepared: 04/20/2023

Total Dissolved Solids (TDS)

Total Dissolved Solids (TDS)

QC Sample ID: BXD0850-BS1

400

400

20

20

1.00

1.00

QC Report for Work Order (Wo	O) - 23D0472
------------------------------	--------------

Analyte	% Rec	RPD	Limits	RPD Max	Result	Source Conc	Spk Value	MRL	DF
		Dupli	cate - SM	4500 H-B					
QC Sample ID: BXD0241-DUP1	Batch: I	3XD0241	QC S	Source Sampl	e: 23D047	72-01			
Date Prepared: 04/07/2023	Date Ar	nalyzed: 04/	/07/2023						
рН		0.675		3	7.4	7.4		0.1	1.00
SPH - Sample submitted past method	d specified hole	ding time.							
QC Sample ID: BXD0242-DUP1	Batch: I	3XD0242	QC S	Source Sampl	e: XXXX	XXX-XX			
Date Prepared: 04/07/2023	Date Ar	nalyzed: 04/	/07/2023						
рН		0.685		3	7.3	7.3		0.1	1.00
SPH - Sample submitted past method	d specified hole	dina time.							

CtF WO#: **23D0472** www.ChemtechFord.com

5/18/2023

Work Order: 23D0470 Project: Hunter Power Plant CCR

Pacificorp - Environmental Remediation
Attn: Brad Giles
1000 S Highway 10
Castle Dale, UT 84513

Client Service Contact: 801.262.7299

The analyses presented on this report were performed in accordance with the National Environmental Laboratory Accreditation Program (NELAP) unless noted in the comments, flags, or case narrative. If the report is to be used for regulatory compliance, it should be presented in its entirety, and not be altered.

Approved By:

Melissa Connolly, Project Manager

MeliCa

9632 South 500 West Sandy, Utah 84070 801.262.7299 Main 866.792.0093 Fax www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-2

Matrix: Water

Lab ID: 23D0470-01

Date Sampled: 4/6/23 11:30 Sampled By: Bradley Giles/Dennis Vanderbeek

	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	0.58	pCi/L	0.26	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.26	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.27	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.7	pCi/L	0.40	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.40	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.24	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 2 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-4

Matrix: Water

Lab ID: 23D0470-02

Date Sampled: 4/5/23 18:55 Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum Reporting		Preparation	Analysis	
	Result	<u>Units</u>	<u>Limit</u>	Method	Date/Time	Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.49	pCi/L	0.17	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.17	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.24	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.34	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.34	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.21	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 3 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-5R

Matrix: Water

Lab ID: **23D0470-03**

Date Sampled: 4/5/23 18:20 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	0.84	pCi/L	0.30	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.30	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.33	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.50	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.50	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.28	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 4 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

ELF-6R Sample ID:

Matrix: Water

Lab ID: 23D0470-04

Date Sampled: 4/5/23 17:40 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	Method	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.27	pCi/L	0.22	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.22	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.20	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.0	pCi/L	0.36	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.36	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.21	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 5 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-7

Matrix: Water

Lab ID: 23D0470-05

Date Sampled: 4/5/23 19:40 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	Analysis Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.74	pCi/L	0.24	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.24	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.30	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.41	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.41	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.24	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 6 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-8

Matrix: Water

Lab ID: 23D0470-06

Date Sampled: 4/5/23 16:15 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	1.1	pCi/L	0.18	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.18	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.35	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	0.99	pCi/L	0.48	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.48	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.26	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 7 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-9

Matrix: Water

Lab ID: **23D0470-07**

Date Sampled: 4/6/23 9:50 Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum Reporting		Preparation	Analysis	
	Result	<u>Units</u>	<u>Limit</u>	Method	Date/Time	Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.55	pCi/L	0.31	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.31	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.29	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.45	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.45	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.26	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 8 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: **ELF-11**

Matrix: Water

Lab ID: 23D0470-08

Date Sampled: 4/5/23 15:20 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	Analysis Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.64	pCi/L	0.22	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.22	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.28	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.9	pCi/L	0.42	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.42	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.25	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 9 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-12

Matrix: Water

Lab ID: **23D0470-09**

Date Sampled: 4/6/23 17:00 Sampled By: Bradley Giles/Dennis Vanderbeek

	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	0.94	pCi/L	0.28	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.28	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.35	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	2.6	pCi/L	0.39	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.39	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.25	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 10 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10 Castle Dale, UT 84513 PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: ELF-13

Matrix: Water

Lab ID: **23D0470-10**

Date Sampled: 4/6/23 15:45

Sampled By: Bradley Giles/Dennis Vanderbeek

			Minimum Reporting		Preparation	<u>Analysis</u>	
	Result	<u>Units</u>	<u>Limit</u>	Method	Date/Time	Date/Time	Flag(s)
Radiochemistry							
Radium-226	0.90	pCi/L	0.18	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.18	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.32	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	2.5	pCi/L	0.55	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.55	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.33	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 11 of 19

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: **ELF-14**

Matrix: Water

Lab ID: 23D0470-11

Date Sampled: 4/6/23 14:30 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	0.86	pCi/L	0.29	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.29	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.33	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	2.4	pCi/L	0.44	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.44	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.27	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 12 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

1000 S Highway 10 Castle Dale, UT 84513

Brad Giles Receipt: 4/7/23 12:31 @ 1.1 °C Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

PO#:

Sample ID: **ELF-15**

Matrix: Water Lab ID: **23D0470-12**

Date Sampled: 4/6/23 15:10 Sampled By: Bradley Giles/Dennis Vanderbeek

	Result	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	<u>Flag(s)</u>
Radiochemistry							
Radium-226	0.93	pCi/L	0.21	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.21	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.32	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.4	pCi/L	0.38	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.38	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.22	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 13 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

1000 S Highway 10 Castle Dale, UT 84513

Brad Giles

Date Reported: 5/18/2023 Project Name: Hunter Power Plant CCR

Receipt: 4/7/23 12:31 @ 1.1 °C

PO#:

Sample ID: **ELF-16**

Matrix: Water Lab ID: **23D0470-13**

Date Sampled: 4/6/23 12:15 Sampled By: Bradley Giles/Dennis Vanderbeek

· · · · · · · · · · · · · · · · · · ·							
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> Date/Time	Flag(s)
Radiochemistry							
Radium-226	1.2	pCi/L	0.26	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.26	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.37	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	0.66	pCi/L	0.52	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.52	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.28	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 14 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

Castle Dale, UT 84513

1000 S Highway 10

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: Duplicate - (CCR)

Matrix: Water

Lab ID: 23D0470-14

Date Sampled: 4/5/23 0:00 Sampled By: Bradley Giles/Dennis Vanderbeek

•							
	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	Analysis Date/Time	Flag(s)
Radiochemistry							
Radium-226	1.1	pCi/L	0.17	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.17	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.34	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	1.0	pCi/L	0.44	EPA 904.0	5/9/23	5/12/23	SL-62
Radium-228 LLD	0.44	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.24	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 15 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation

Brad Giles

1000 S Highway 10

Castle Dale, UT 84513

PO#:

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

Project Name: Hunter Power Plant CCR

Sample ID: Field Blank - (CCR)

Matrix: Water Lab ID: 23D0470-15

Date Sampled: 4/6/23 9:50 Sampled By: Bradley Giles/Dennis Vanderbeek

	<u>Result</u>	<u>Units</u>	Minimum Reporting <u>Limit</u>	<u>Method</u>	Preparation Date/Time	<u>Analysis</u> <u>Date/Time</u>	Flag(s)
Radiochemistry							
Radium-226	0.29	pCi/L	0.29	EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 LLD	0.29	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-226 Variance	0.23	pCi/L		EPA 903.0	5/4/23	5/10/23	SL-62
Radium-228	2.0	pCi/L	0.41	EPA 904.0	5/9/23	5/13/23	SL-62
Radium-228 LLD	0.41	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62
Radium-228 Variance	0.26	pCi/L		EPA 904.0	5/9/23	5/10/23	SL-62

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

Page 16 of 19 www.ChemtechFord.com

Serving the Intermountain West Since 1953

Certificate of Analysis

Pacificorp - Environmental Remediation Brad Giles 1000 S Highway 10 Castle Dale, UT 84513

Receipt: 4/7/23 12:31 @ 1.1 °C

Date Reported: 5/18/2023

PO#:

Project Name: Hunter Power Plant CCR

Report Footnotes

Abbreviations

 $ND = Not \ detected \ at \ the \ corresponding \ Minimum \ Reporting \ Limit \ (MRL).$

1 mg/L = one milligram per liter or 1 mg/kg = one milligram per kilogram = 1 part per million.

1 ug/L = one microgram per liter or 1 ug/kg = one microgram per kilogram = 1 part per billion.

 $1 \,\, ng/L \, = one \, nanogram \, per \, liter \, or \, 1 \, ng/kg \, = one \, nanogram \, per \, kilogram \, \ \, = 1 \, part \, per \, trillion.$

On calculated parameters, there may be a slight difference between summing the rounded values shown on the report vs the unrounded values used in the calculation.

Flag Descriptions

SL-62 = Analysis performed by Pace Analytical National, Mount Juliet, TN 37122

Project Name: Hunter Power Plant CCR CtF WO#: 23D0470

www.ChemtechFord.com Page 17 of 19

CHEMTECH - FORD ANALYTICAL LABORATORY

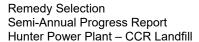
CHAIN OF CUSTODY

CHEMIECH - FORD ANALYTICAL LABORATORY																		•	-ΠAI	IN OF	CU	310	זט			
COMPANY:	PacifiCorp Environmenta	l Remediati	on		BILLIN	IG AD	DRE	SS:	email invoice to Bradley Giles																	
ADDRESS:	1407 West North Temple St	e 270			BILLING	CITY/	STATI	ZIP:	P:													A	A			
CITY/STATE/ZIP:	Salt Lake City, Ut 8414	0	1.0	4	PURCH	ASE O	RDER	# :	7		-1											7				
PHONE #:	(435) 748-6576	FAX:	- vg	· · · · · · · · · · · · · · · · · · ·													C	HEM	TEC	H-F	ORI	D.				
CONTACT:	Bradley Giles	PROJECT:	Hunter Pow	er Plant CCR	_														LABORATORIES							
EMAIL:	brad.giles@pacificorp.com	n	í			TURI	NARO	JND R	EQUI	QC Level 3 (10 business day							ys)									
						* Exp	edited tu	rnaroun	d subjec	t to add	itional c	harge	and provide	, , , , ,			S. Real Co.									
											A STATE OF		THE RESIDENCE AND ADDRESS.	IS REC	QUESTED		8					E W	Bact	eria		
23	P0470			Containers	A2540C	ride <i>E300.0</i>	A4500-H B	il Metals: Sb, As, Ba, Be, B	Total Metals: CD, Ca, Cr, Co, Pb	Total Metals: Li, Mo, Se, Tl, Hg	Total Metals: E200.7 / E200.8 / E245.1	Cloride / Sulfate E300.0			Radium A7500-RA; Radium 226 & 228	(separate & combined)				oliform + E. coli (Present/Absent)	Total Coliform + E. coli (Enumerated)	HPC (Plate Count)	Only			
Carrier and a ca	LOCATION / IDENTIFICATION	DATE	TIME	MATRIX	Field: Residual Chlorine	# of	TDS	Fluoride	됩	Total	Tota	Tota	Total	Clori			Radi	(seb				Total Colifor	rotal C	нРС (Р	E. Coli Only	
	1. ELF-1D	-	-	w		4	x	x	х	x	x	х	х	x			х									
01	2. ELF-2	4/6/2023	11:30	w		4	x	х	х	х	x	х	х	x			х									
	3. ELF-3	-	-	w		4	x	х	х	х	х	x	x	x			х									
02	4 ELF-4	4/5/2023	18:55	w		4	x	х	х	х	x	х	х	х			х									
03	5. ELF-5R	4/5/2023	18:20	w		4	x	х	х	х	x	х	х	x			х									
04	6. ELF-6R	4/5/2023	17:40	w		4	х	х	х	х	х	х	х	x			х									
05	7. ELF-7	4/5/2023	19:40	w	×	4	x	х	х	х	x	х	х	x			х		-							
06	8. ELF-8	4/5/2023	16:15	w		4	х	х	х	х	х	х	х	x			х									
07	9. ELF-9	4/6/2023	9:50	w		4	х	х	х	х	х	х	x	х			х									
	_{10.} ELF-10	-	-	w		4	х	х	х	х	х	х	х	x			х									
+ I2	Sampled by: Bradley Giles & Dennis \	Vanderbeek	Sampled by: [signatur		(社)	,							1	ONI	CE	NOT (ON ICI	E-,	Ten	np (C°):	1	. 1	On a			
i i	Special Instructions: Relinquished by: [signature]		Ipasais	and bur	signatu				う ₋			les receive perature			C° ma	y be re	ejected.	1		T						
. 9	1 Did X land	J-5 X-623 4-7-23						-	_		1		1	. sł.	. F				Date/Tim	7/2	3		123	31		
	Relinquished by: [signature]	12:31	Receiv	ed by:	signato	rej					-3043 (5)			Profes (Date/Tim	ie [100						
	Relinquished by: [signature]	A Parties on	Receiv	ed by:	sign	f	mple I	2)	129	8	A	212	46	-	M	12	7		17		10	yk w				
	CHEMTECH-FORD 9632 South 500 West Sandy, UT 84070	7284 (%) 768 EN	Paym	ent Tel	rms St.	()	Custo Conta COC a Receiv	dy Sea iners I and La	als Pres Intact bels M	sent	12 72 6 22 7 9	COC Inc	Contair uded nplete	ners		() He () Te	leadspace emperatu eceived v	ure Blan within H	k Iold	aproduc	ecia.	460.04				

CHEMTECH - FORD ANALYTICAL LABORATORY

Sandy, UT 84070

www.ChemtechFord.com


CHAIN OF CUSTODY

COMPANY:	PacifiCorp Environmental	BILLIN	NG AE	DRE	SS:	email invoice to Bradley Giles																			
ADDRESS:	1407 West North Temple Ste	270		1 2, 3,	BILLING	G CITY,	/STATI	ZIP:					,	*						_		A	A		
CITY/STATE/ZIP:	Salt Lake City, Ut 84140	0			PURCH	ASE O	RDER	‡ :						e											
PHONE #:	(435) 748-6576	FAX:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12										20	CHEMTECH-FORD									
CONTACT:	Bradley Giles	PROJECT:	Hunter Pov	ver Plant CCR																	LAB	ORAT	TORIE	ΞS	
EMAIL:	brad.giles@pacificorp.com	ĺ				TURNAROUND REQUIRED:* QC Level 3 (10 busin) busin	ess d	ays)									
	* Expedited turnaround subject to additional charge											ACMEDICAL SECTION	Sec. 2-30			an ann an an	7.7		(A. CHARLES						
		TESTS REQUESTED												Bacte	eria										
231	20470		TV.			Containers	A2540C	e <i>E300.0</i>	А4500-Н В	Metals: Sb, As, Ba, Be, B	Metals: CD, Ca, Cr, Co, Pb	Total Metals: LI, Mo, Se, TI, Hg	etals: E200.7 / E200.8 / E245.	/ Sulfate E300.0			A750	ate & combined)				Total Coliform + E. coli (Present/Absent)	orm + E. coli (Enumerated)	Count)	
Lab Use Only	CL LOCATION / IDENTIFICATION	DATE	DRMATION	MATRIX	Field: Residual	# of Co	TDS	Fluoride	рН	Total N	Total N	otal N	Total Metals:	Cloride			Radium	separate				tal Colife	Total Coliform + E.	HPC (Plate (
08	, ELF-11	4/5/2023	15:20		Chlorine	4	×	т Х	χ	X	×	×	x	x	+	1 1	X	5	+	+		은	2	± <u></u>	
09	2 ELF-12	4/6/2023	17:00	W		4	x	x	x	x	x	x	x	x		+	x	+	+	+	\neg		\dashv	_	
10	。 ELF-13	4/6/2023	15:45	W		4	x	x	x	x	x	x	x	x	-	+-+	x	+	+	+	-		-		
11	, ELF-14	4/6/2023	14:30	W		4	x	x	x	x	x	x	x	x	-	-	x	+	+	+			\vdash		
12	ELF-15	4/6/2023	15:10	w		4	x	x	x	x	x	x	x	x	+	+	x	+					-		
13	ELF-16	4/6/2023	12:15	W		4	x	x	x	x	х	x	x	x	+	+	x	+	+			\neg	\dashv		
	, ELF-17	-	-	w		4	x	х	χ.	x	х	х	x	x		+	x	+						_	
				"		T									+		\top	+		\Box				_	
14	Duplicate - (CCR)	4/5/2023	-	w		4	x	х	х	х	х	х	x	x	T		x	\top	1				\top		
1415	Field Blank - (CCR)	4/6/2023	9:50	w	and the same of the same of the	4	x	х	х	х	х	х	x	x			x			T			\top		
	sampled by: Bradley Giles & Dennis V	anderbeek	Sampled by: [signatu						1	3:5	UPG			ON ICE	1	NOT O	N ICE	Ĵ'n	Temp	(C°):	1	1		rati	
, Ar	Special Instructions:													THE REPORT OF					ecommo be rejec		ligare and	,			
	Relinquished by: [signature]			Date/Time	12121	Receiv	red by:	signatu	rel		/	1	-)	or charged fell (de	200		Daf	te/Time	1/2:	>	1	00	21	
	Relinquished by: [signature]	7	^	7-7-23 Date/Time	12:31	Receiv	ed by:	signatur	rej	1		_				-		Dat	ite/Time/	1/05 105					
	Relinquished by: [signature]	-15,	12.1	Date/Time	THe .	Receiv	ed by:	signatu	re)	late/Tin				457				Dat	ite/Time	Time					
		4					J- 27. 1	Du.a.	1										, i.iiie				1		
	CHEMTECH-FORD	801.262.7299 PHON	E	5.4774 (-4., -1		Paym	ent Te	ms are	net 3	0 days	OAC.	1.5% in	terest	harge pe	er month	(18% per	annum	n). Clie	ent agres	s to pay	collect	ion cos	ts and	attorney's	

ATTACHMENT C:

Remedy Selection Progress Report – October 2023

Date: October 15, 2023
To: Scott Wetzel
From: Dave Erickson

Subject: Semi-Annual Progress Report for Selecting and Designing Remedy

Hunter Power Plant - CCR Landfill

In compliance with the requirements of the Coal Combustion Residuals (CCR) *Final Rule*, § 257.97(a), included herein is a semi-annual progress report for remedy selection and design. The Corrective Measures Assessment for the Hunter CCR Landfill was completed and posted to the plant operating record on 4/15/2019. The preferred alternative in the assessment was re-design and/or optimization of the existing horizontal well capture system, to address localized groundwater impacts. To date, the following activities have been completed in the selecting and designing a remedy:

- 6/28/2019: Contract was initiated to complete an inspection of existing horizontal well system and to scope the work needed to evaluate the remedy.
- 7/23/2019: Conducted a public meeting to discuss the results of the corrective measures assessment.
- 8/20/2019: A site visit was completed by the project engineer to inspect and document the current condition of the existing horizontal well system. Research began on inspection, cleaning, and upgrade methods for the existing system.
- **8/26/2019:** Received comments from Heal Utah, Utah Clean Energy, and the Sierra Club. Comments were reviewed and addressed in Remedy Selection Report.
- 9/23/2019: Contract was finalized to inspect each horizontal well using a mobile camera. Equipment will be on site during the inspection to clean the wells if warranted.
- 11/12/2019: Inspection caps were removed from the horizontal capture wells in an attempt to inspect well integrity. Well construction prevented the camera from entering the wells to perform the inspections, due to the size of the internal opening.
- June 2020: The initial vendor tasked with performing inspections was unable to successfully retrofit their camera equipment to fit the well openings. Additional vendor sources to perform the well inspections were sought for procurement.
- October 2020: Remedy selection report, nature and extent report, and corrective measures sampling and analysis plan were placed in the plant operating record. The remedy selection report was also placed on the CCR website.
- **January 2021:** Performed full inspection of existing horizontal wells. The drainage from the wells continues to decrease and some routine maintenance was required.
- March 2021: An investigation to assess liquids in the landfill waste was attempted using Geoprobe direct push drilling methods. The drilling method could not reach the desired depths.
- March 2022. Sonic drilling was completed in the landfill to support an assessment of potential liquid in the landfill waste. Three new monitoring wells were installed downgradient of ELF-14. They include: ELF-15, ELF-16, and ELF-17. ELF-5 and ELf-6 were deepened due to decreasing water levels.

- May-October 2022. Sampling and evaluation of data acquired from the new monitoring wells installed in the landfill is ongoing, to determine if additional corrective measures are needed.
- **January 2023.** Results from 2022 assessment monitoring revealed Appendix IV constituents above their groundwater protection standards in monitoring well ELF-14. Because this well is the most downgradient well east of the landfill, additional monitoring well(s) may be required to comply with the CCR Rule.
- February 2023. As part of compliance with CCR Rule requirements § 257.95(g), PacifiCorp has sent a notification letter to the downgradient property owner and posted it on PacifiCorp's CCR website and in the Plant operating record. The notification was sent to the adjacent property owner to determine if proposed actions to install additional monitoring wells are acceptable to them.
- March 2023. A report is being developed detailing the findings of the supplemental investigations completed at the Hunter Landfill. This report will be used to evaluate if additional corrective measures are needed to address groundwater impacted by landfill discharge.
- July 2023. The supplemental investigation report was completed and placed in the Plant operating record. The report concluded interim corrective measures have been highly effective in reducing liquids in the landfill and capturing impacted groundwater beneath the landfill. These measures included removal of free liquids in process waster prior to its disposal in the landfill (2007) and the installation of horizontal wells beneath the landfill (2016). The combined actions have significantly reduced the saturated thickness in the landfill and reduced impacted groundwater beneath and around the landfill. The report makes the following recommendations:
 - 1. Continue monitoring effluent production from the horizontal well system.
 - 2. Abandon groundwater monitoring wells that have become dry as the result of horizontal well groundwater capture and install new deeper wells to facilitate groundwater monitoring.
 - 3. Continue assessment monitoring to determine if reduced leachate / impacted groundwater is influencing Appendix III and Appendix IV constituent concentrations.

Upcoming tasks relative to the CCR Landfill will include the following:

- Continue to monitor effluent production in existing horizontal wells;
- Abandon dry monitoring wells and install new, deeper wells to facilitate groundwater monitoring; and
- Continue semi-annual groundwater monitoring.