Oregon Distribution System Planning Public Workshop #1 February 17th, 2023

Presenters:

Distribution System Planning (DSP): Ian Hoogendam – DSP Manager, Daniel Talbot – Sr. Engineer, Daniel Morgan – Engineer **Clean Energy Plan (CEP):** Stephanie Meeks – Regulatory Manager

Community Benefits and Impacts Advisory Group (CBIAG): Christina Medina – Stakeholder Policy and Engagement Manager

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 242 807 115 259

Passcode: MdDCwr

Download Teams | Join on the web

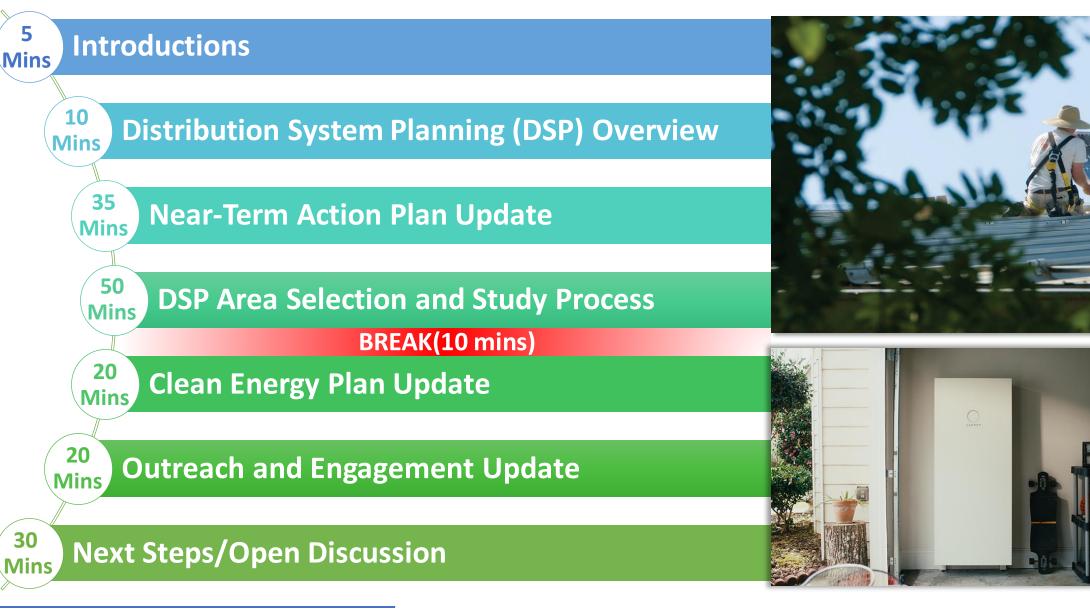
Join with a video conferencing device

berkshirehathawayenergy@m.webex.com

Video Conference ID: 115 643 161 5

Alternate VTC instructions

Or call in (audio only)

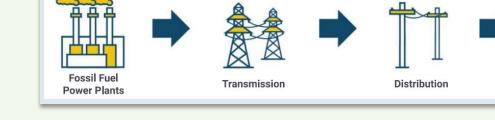

<u>+1 563-275-5003,,187867967#</u> United States, Davenport Phone Conference ID: 187 867 967# Please add the following to the Teams Chat when you log on to the meeting:

- Your Name
- Your Organization and Title/Role

Please use the raise hand function in Teams if you would like to speak.

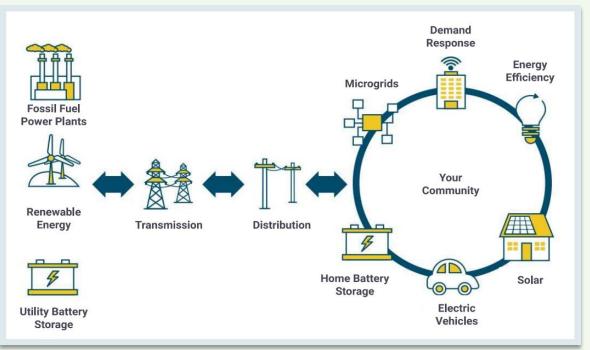
This meeting will be recorded and posted to the PacifiCorp DSP website.

DSP Overview



What is Oregon DSP?

- Based on guidelines proposed by Oregon PUC staff
- Increased transparency and modernization of traditional DSP to meet the needs and leverage the capabilities of the modern grid


Key changes to traditional DSP:

- Increased community engagement
- Consideration of non-traditional solutions to meet grid needs
- Enhanced forecasting
 - 24-hour load profiles
 - Inclusion of incremental electric vehicle and solar adoption rates

Modern Grid

Your Home

Past Grid

DISTRIBUTION SYSTEM PLANNING

POWERING YOUR GREATNESS

Overview of Pacific Power - Oregon

Oregon Service Area	NO	RTH REG	ION	CEN	ITRAL REC	GION	SOUTH	REGION
•502 distribution circuits	Portland	Walla Walla	Yakima	Bend	Albany	Roseburg	Klamath Falls	Medford
 191 distribution substations 			(Operating A	eas / District	.s ———		
PORTLAND SERVICE AREA	Clatsop (Astoria) Portland	Walla Walla Hermiston Umatilla Pendleton Enterprise Dalreed	Sunnyside Yakima	Madras Hood River Bend Redmond	Albany Corvallis Dallas Independence Cottage Grove Stayton Lebanon Lincoln City	Coos Bay Roseburg	Alturas Lakeview Tulelake Mt Shasta Klamath Falls Yreka	Crescent City Medford Grants Pass
Detters Detters Detters			[Distribution S	System Profile	e ———		
	95 Circuits 1,200 Line Miles 107,000 Customers	42 Circuits 2,500 Line Miles 54,000 Customers	106 Circuits 3,300 Line Miles 108,000 Customers	65 Circuits 2,800 Line Miles 77,000 customers	86 Circuits 3,700 Line Miles 137,000 Customers	66 Circuits 2,300 Line Miles 70,000 Customers	110 Circuits 5,000 Line Miles 75,000 Customers	138 Circuits 5,700 Line Miles 156,000 Customers
U CONTRACTOR CONTRACTICON CONTRACTOR CONTRAC				Unique A	Attributes			
CALIFORNIA	Portland Underground Mesh Network Distributed Automation Pilot Project	Fire High Consequence Area	Fire High Consequence Area	High Growth Rate/New Connections	Distributed Automation Pilot Project Energy Storage Pilot	Fire High Consequence Area	California Code Requirements Fire High Consequence Area	Distribution Automation Pilot Project Fire High Consequence Area

Near-Term Action Plan Update

Distribution System Plan Part 2 filing and Near-Term Action Plan

Distribution System Plan Part 2 Filing:

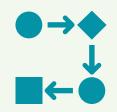
- Filed on August 15th, 2022
- Presented summary of filing to the OPUC on September 15th, 2022

Near-Term Action Plan ('23-'26):

- 1. Analytical projects and pilot evaluations
- 2. Data evaluation and improvement
- 3. Toolset evaluation and implementation
- 4. Process improvements
- 5. Outreach and engagement (local and statewide)
- 6. Utility staffing and development

Oregon Distribution System Plan – Part 2

Progress on Near-Term Action Plan



Analytical Projects and Pilot Evaluations:

- Klamath Falls non-traditional solution pilot analysis
- Irrigation solar sizing analysis

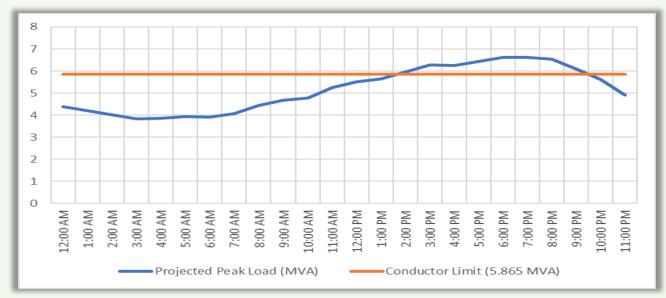
Process Improvements:

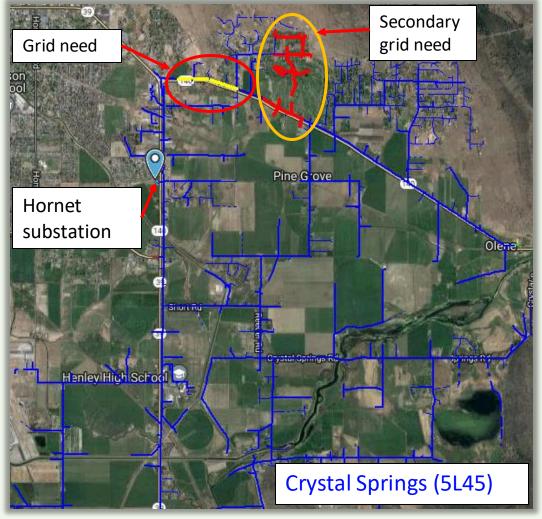
- New study area selection process (in progress)
- New area study process

Data Evaluation and Improvement:

- Advanced Metering Infrastructure (AMI) use cases:
 - Substitute for missing SCADA
 - Voltage violations during peak and minimum loading
 - Load profiles by customer class

Utility Staffing and Development:


- Manager (started September 2022)
- Data Governance Specialist (position posted)
- Program Specialist (position posted)



Klamath Falls Grid Need Review

Grid Needs:

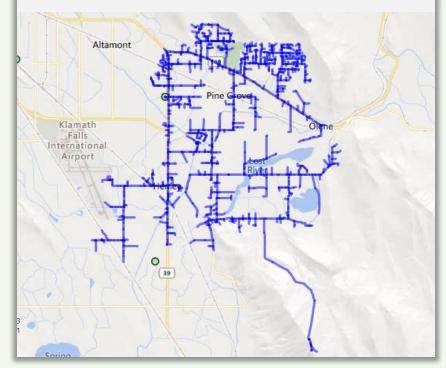
- Study identified an overcapacity issue causing conductor overload
- Also causes low voltage downstream
- Needs to be addressed in 2-3 years
- Approximately 750 kW over existing conductor limit
- Occurs ~20 50 hours total per year in Summer

DISTRIBUTION SYSTEM PLANNING

POWERING YOUR GREATNESS

Grid Need Solution Options Review

Traditional Solutions:


- Reconductor overloaded wire
- Load balancing (alternative solution not chosen due to not fully meeting grid needs)

Non-traditional solution concepts Company considered to address grid need included:

- Solar
- Solar + Battery Storage (Evaluation #1)
- Load Control, Curtailment, Demand Response
- Targeted Energy Efficiency (Evaluation #2)
- Other Renewables

Klamath Falls – Crystal Springs – 5L45

- Overloaded conductor during peak summer load
- Low voltages downstream of overload
- Phase loading imbalance

Solution Participation Requirements

- 290 310 residential customer participants
- 2.4 MW of solar and 2.44 MWh of storage needed

	Customer Cost*	+ Utility/Energy Trust of Oregon incentives*
Per Customer (Solar + Storage)	\$50k - \$75k	\$45k - \$70k
Per Customer (Just Storage)	\$20k - \$35k	\$14k - \$26k

Estimated total customer costs: \$15 M- \$23 M

Estimated 10-year utility costs: \$1.7M – 2.6M

Estimated time to set up program 3-5 years

Additionally, this would potentially offset a cumulative total of 1224 tons of carbon from 2023 to 2028** * Based on NREL and DNV Studies **Based off PacifiCorp's 2021 IRP emissions forecast

Traditional solution cost estimate: \$225k

Estimated Total Cost Energy Efficiency

Load Reduction Requirements:

- Estimated annual load: 26,430 MWh
- 0.75 MW peak load reduction needed within 3 years
- Aggressive program (4525 MWh savings): 3% yearly load reduction, 17% over 5 years
- Standard program (1290 MWh savings): 1% yearly load reduction, 5% over 5 years

Case	Total Customer Incremental Costs	Total Program Costs (incentives + admin)	Total MWh Savings	Total kW Savings	Levelized Cost of Energy \$/kWh
Business as Usual	\$550,000	\$440,000	1,290	215	\$0.042
Accelerated Acquisition (typical measure mix)	\$1,930,000	\$1,850,000	4,525	750	\$0.050
Accelerated Acquisition (targeted measure mix*)	\$645,386	\$930,000	3,652	750	\$0.031

*Assumes half of all savings come from cooling-based measures

Traditional solution cost estimate: \$225k

DISTRIBUTION SYSTEM PLANNING

For discussion only, values subject to change

Solar Sizing Analysis for Irrigation Loads

Theory:

- Irrigation loads have large solar sizing potential resulting in:
 - Participation requirements
 - Risk and complexity

Grid Need Analysis:

- Solar sizing estimated for irrigation loads and districts impacting grid need
- Sizing estimates larger than residential, but not large enough to meet grid need alone or to significantly reduce the need for residential customer participation

Statewide Analysis:

• Some areas have larger irrigation solar sizing potential, but still smaller than expected

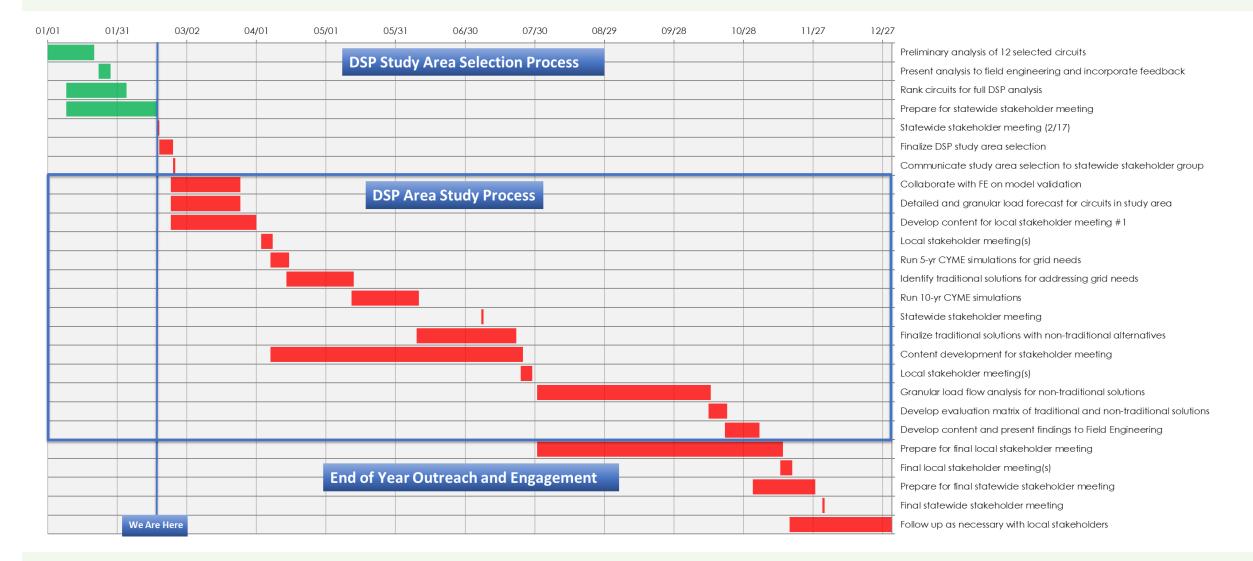
Conclusion:

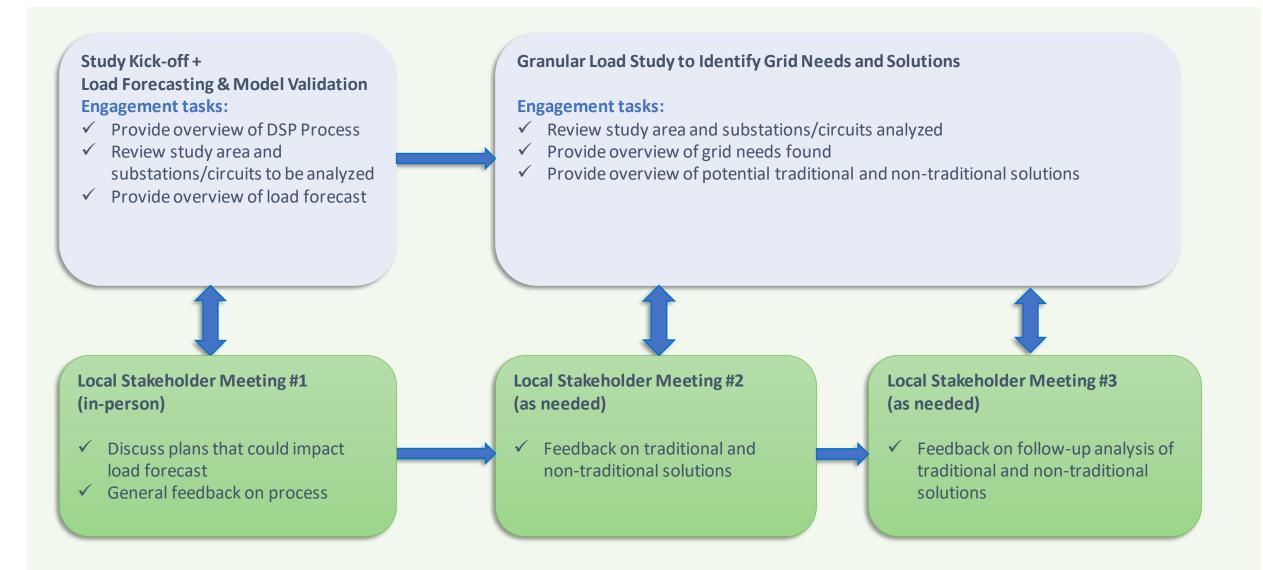
• After thorough evaluation of the Klamath Falls grid need, and feedback from stakeholders, the Company will proceed with the traditional reconductor solution due to the time constraints, cost, complexity and risk of the non-traditional solutions evaluated.

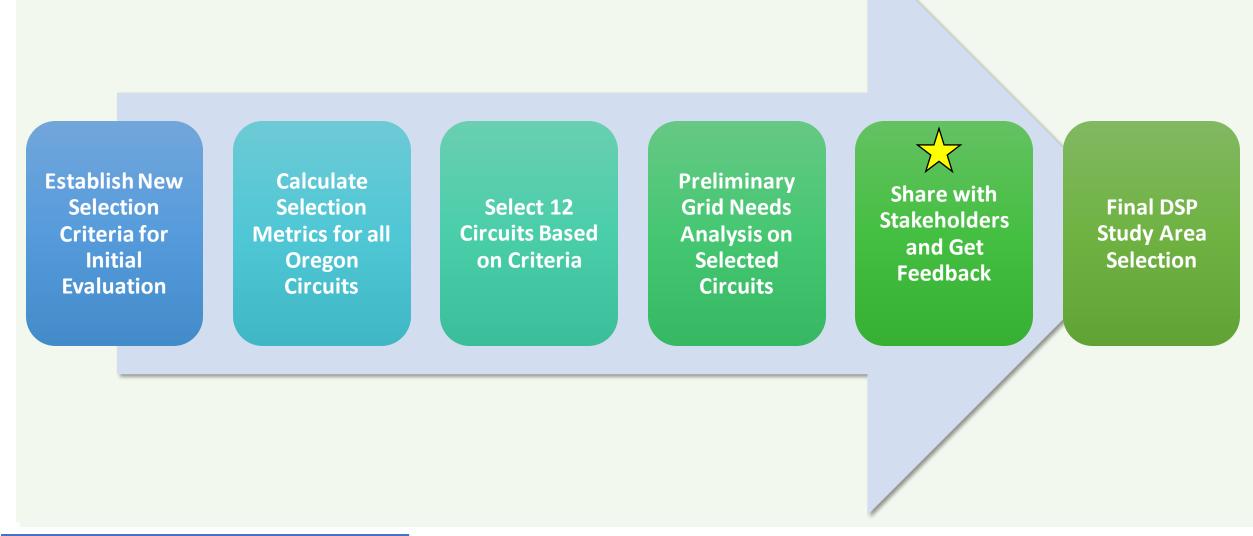
Going Forward:

• While the irrigation focused solar sizing analysis did not result in a feasible single solution, the Company plans to use the evaluation methodology in future solar projects

Q1	Q2	Q3	Q4
 DSP Process Improvements DSP Study Areas: Finalize study area selection Local meetings to review study areas and forecasts Collaboration: Provide DSP Input to Clean Energy Plan and IRP Participate in Community Benefits and Impacts Advisory Group Educate Internal Stakeholders on DSP Coordination with ETO Outreach and Engagement Statewide workshop #1 Utility Staffing & Development Hire Data Governance Specialist Hire Program Specialist Set 2023 Development Goals Data Evaluation and Improvement Document current data structures and flows 	 DSP Process Improvements DSP Study Areas: Grid need and solution Identification Develop new methods/approaches within studies including analysis of non-traditional solutions Collaboration: Continued collaboration with Clean Energy Plan and IRP Continued participation in Community Benefits and Impacts Advisory Group Coordination with ETO Toolset Evaluation and Implementation Document data requirements and use cases based on input from DSP study area analysis (As Needed) 	 DSP Process Improvements DSP Study Areas: Continued work from Q2 Collaboration: Continued collaboration with Clean Energy Plan and IRP Continued participation in Community Benefits and Impacts Advisory Group Coordination with ETO Outreach and Engagement Local meetings to review DSP study area findings Statewide workshop #2 Toolset Evaluation and Implementation Define toolset requirements (As Needed) Begin preliminary toolset evaluation (As Needed) 	 DSP Process Improvements DSP Study Areas: Finalize studies Define next steps Collaboration: Continued collaboration with Clean Energy Plan and IRP Continued participation in Community Benefits and Impacts Advisory Group Coordination with ETO Outreach and Engagement Local meetings to communicate final findings and next steps Statewide workshop #3 Toolset Evaluation and Implement data improvements and new toolsets (As Needed)




DSP Area Selection and Study Process


DSP Area Study Plan Timeline

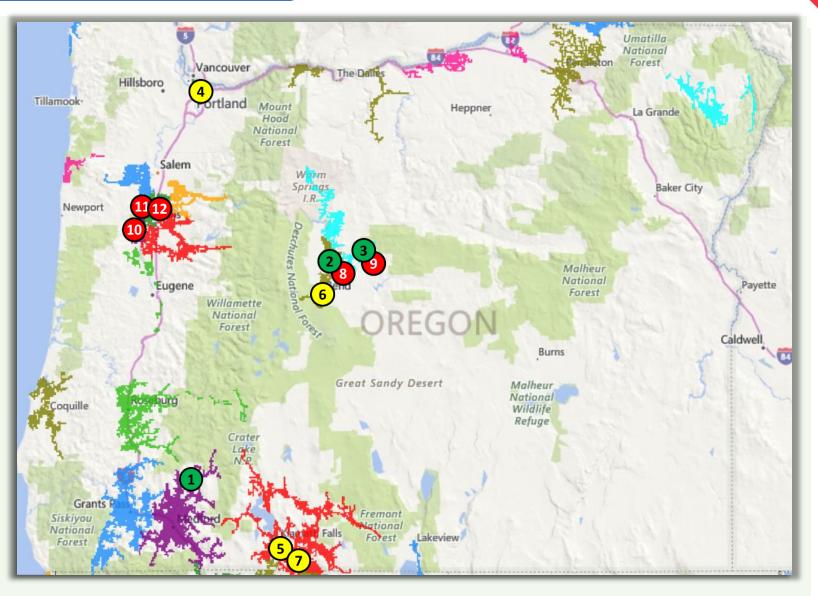
Local Engagement in Study Cycle

2023 DSP Study Area Selection Process

Selection methodology: Criteria and Metrics

Selection Methodology: Results

Circuit	High Solar Generation Growth	High Electric Vehicle Growth	Low Reliability Score	Larger Potential Solar Sizing	High Potential for Reverse Power Flow	SCADA Available	Median Income ≤ \$50k	High Amount of Households Below 200% Poverty Level
4R9	\checkmark	\checkmark	\checkmark			\checkmark	✓	\checkmark
5D22	\checkmark	\checkmark		\checkmark		\checkmark		
5D167	\checkmark	√				\checkmark		\checkmark
5P395	\checkmark	\checkmark				\checkmark		
5L45	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
5D261		\checkmark			\checkmark	\checkmark		
5D227		\checkmark			\checkmark	\checkmark		
5L27				\checkmark		\checkmark	✓	
5D50			\checkmark	\checkmark		\checkmark		\checkmark
4M182		\checkmark				\checkmark		\checkmark
4M16	\checkmark	v						
4M15	\checkmark	√					\checkmark	\checkmark


Selection Methodology: Preliminary Grid Needs Analysis

Identify significant planned changes to the circuits Basic 10-year peak load forecast based on 10 years of circuit load (if available)

CYME load flow analysis for grid needs using peak projected load CYME load flow for worst case reverse power flow (if applicable) Discuss findings and models with local field engineers and incorporate feedback

Preliminary Selection for Full Area DSP Study

	0	Evaluation Likelihood:
#	Circuit	High Low Disqualified
1	4R9	Grid needs identified
2	5D22	Grid needs identified
3	5D167	Grid needs identified
4	5P395	No grid needs identified
5	5L45	No grid needs identified
6	5D261	No grid needs identified
7	5L27	No grid needs identified
8	5D227	New substation
		Large planned load
9	5D50	transfer
10	4M182	New substation
11	4M16	New substation
12	4M15	New substation

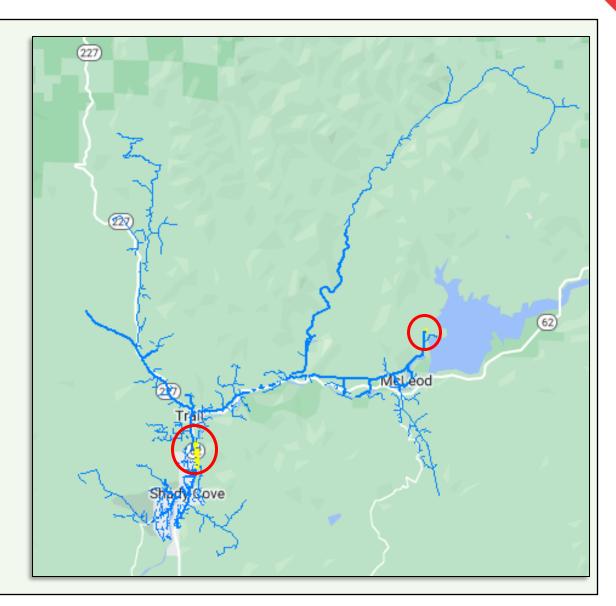

4R9 – North of Medford


Selection Criteria:

- High forecasted DG growth
- High forecasted EV growth
- Median income below \$50k (equity)
- Low reliability score

Other Considerations:

- One of the longest PAC circuits in Oregon
- High customer count

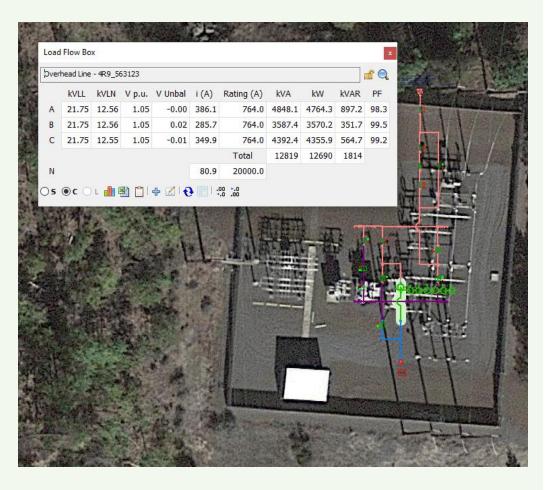

4R9 Preliminary Analysis Results

	Summer	Winter
Growth Factor	2.2%	2.3%
Current Peak Load (MVA)	10.3	12.2
5 Year Projected Peak Load (MVA)	11.5	13.3
10 Year Projected Peak Load (MVA)	<mark>12.8</mark>	14.9
Operational Limit (MVA)	12.5	15.6

Grid needs assessment:

- Substation transformer overcapacity in summer
- Thermal overload on overhead conductor in summer (yellow segment)
- Substation transformer almost at capacity in winter

DSP study candidacy: High

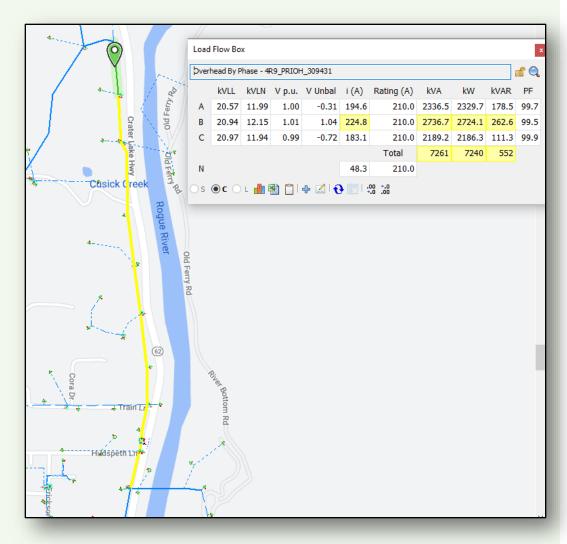


4R9 Preliminary Grid Needs Assessment: Substation Overcapacity

Grid Needs Summary:

- Projected peak summer load to exceed substation transformer capacity of 12.5 MVA in 2032
- Only one circuit on the substation

	Residential	Commercial	Irrigation	Combined
Customer Count	2372	284	22	2678
% of Total Count	88%	11%	<1%	100%
% of Peak Load	84%	16%	<1%	100%
Projected 2032 Peak Load (kW)	8962	1697	63	10722

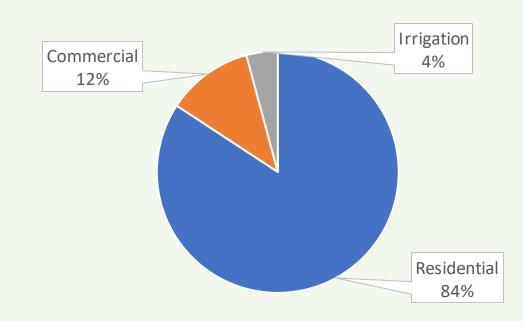

Note: these figures are based off meter data and do not include line losses

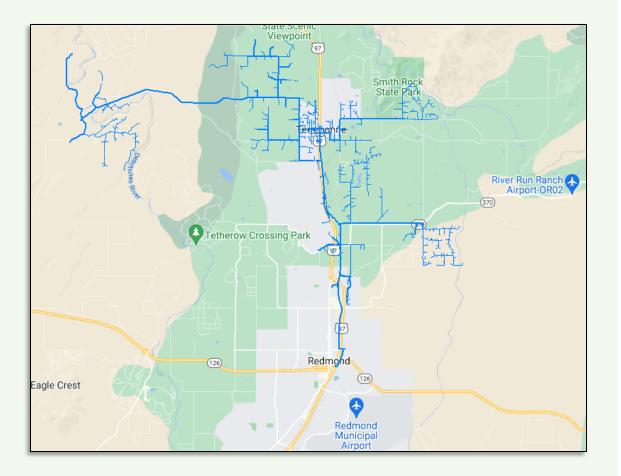
Grid Needs Summary:

- 3863 feet of main line projected to reach thermal overload in peak summer condition in 2031
- Downstream of conductor is the most populated part of the circuit (town of Shady Cove)

	Residential	Commercial	Irrigation	Combined
Customer Count	1488	201	3	1692
% of Total Count	56%	8%	<1%	63%
% of Peak Load	57%	13%	<1%	69%
Projected 2032 Peak Load (kW)	6067	1345	7.6	7419

Note: these figures are based off meter data and do not include line losses

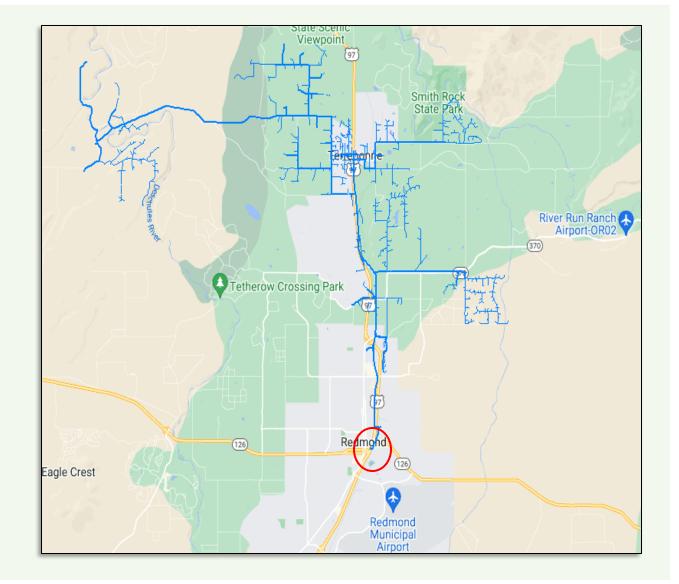

5D22 – North Redmond and Terrebonne


Selection Criteria

- High distributed generation growth predicted
- High proportion of irrigation circuits

Other Considerations

- Large proportion of customers on this circuit have electric-source heating
- Large residential development expected in near future

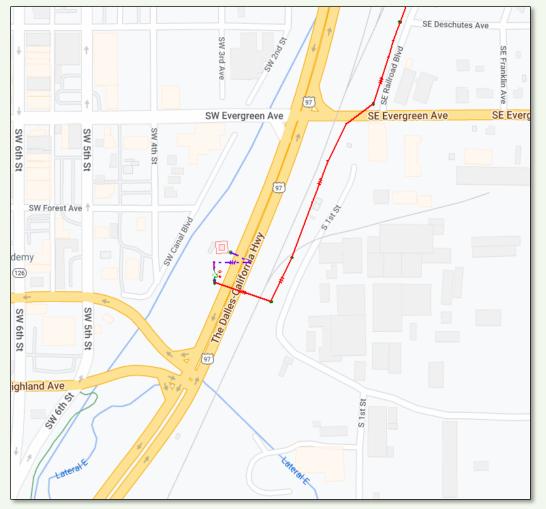


5D22 Analysis Results

	Summer	Winter
Projected Load		
Growth Rate	1.10%	3.30%
Current Peak Load (MW)	7.2	10.3
5 year projected peak load (MW)	8.3	12.4
10 year projected peak load (MW)	10.2	15.3
Operational Limit (MW)	13.5	13.9

Initial Findings

- Base studies suggest transformer loading issues within 10 years
- Large subdivision planned with load split between PacifiCorp and Central Oregon Electric Co-operative
- Anticipated voltage problems stemming from long distribution lines on rural loads
- Planned Redmond substation not expected to impact 5D22 topology


5D22 Grid Needs Assessment: Circuit Guidelines Exceeded

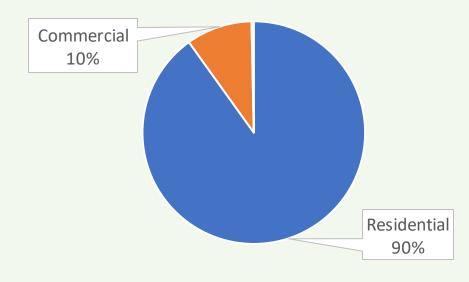
Grid Needs Summary:

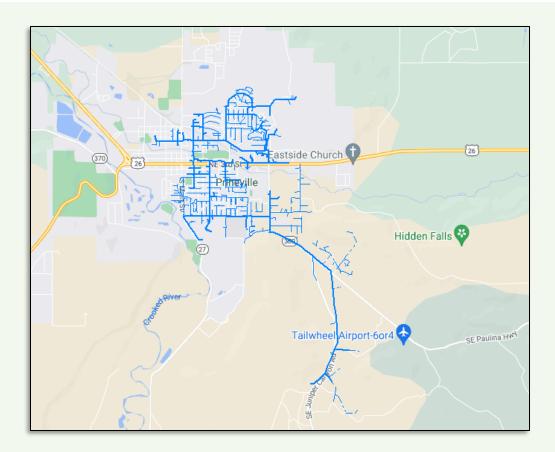
- Previous winter peak appears to have been driven by residential heating loads
- Circuit Guidelines projected to exceed limits by 2032
- Impacts to protection schemes and system-wide voltage levels

	Residential	Commercial	Irrigation	Combined
Customer Count	1368	188	68	1626
% of Total Count	84%	12%	4%	100%
% of Peak Load	86%	14%	<1%	100%
Projected 2032 Peak Load (kW)	11675*	1945*	9.7*	13634*

*figures are based off meter data and do not include line losses

5D167 Summary - Prineville

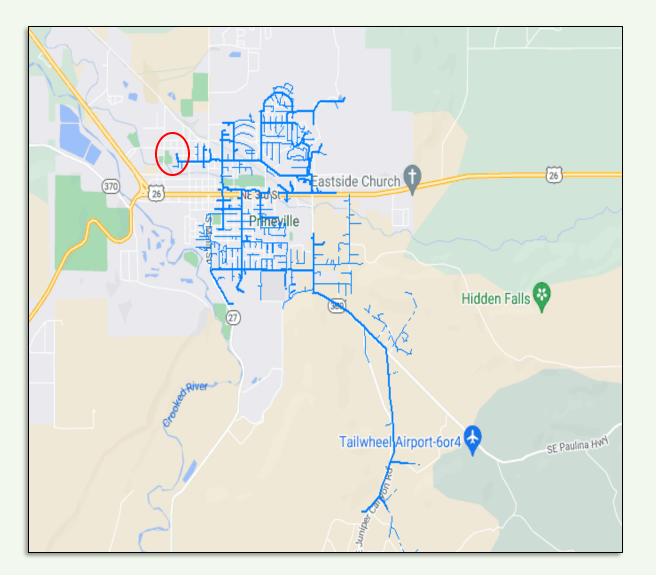



Selection Criteria

- High distributed generation growth predicted
- 35.6% of household incomes on this circuit have median incomes below 200% of Federal Poverty Limit

Other Considerations

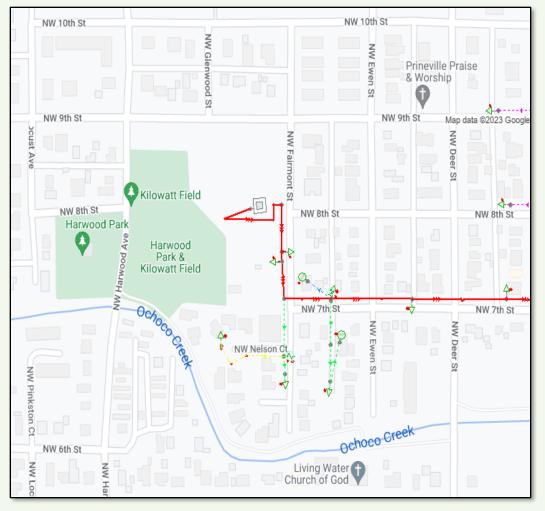
• Approximately half of customers on this circuit have electric-source heating



	Summer	Winter
Projected Load		
Growth Rate	1.40%	1.90%
Current Peak Load (MW)	10.5	10.3
5 year projected peak load (MW)	11.6	11.5
10 year projected peak load (MW)	12.3	13
Operational Limit (MW)	11.3	13

Initial Findings

- Overall ten-year growth trend low, but recent upswing suggests acceleration of load growth
- Initial studies suggest circuit loading issues within 5 years if recent growth trends continue.
- With lower growth rates from ten-year trends, circuit loading issues are seen at 7-10 years.



Gird Needs Summary:

- Summer and winter show similar peaks—summer peaking due to seasonal equipment ratings
- Past two years show much higher load growth rates than previous ten.

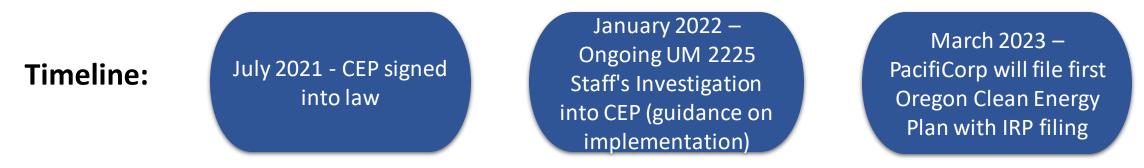
	Residential	Commercial	Irrigation	Combined
Customer Count	2550	260	4	2819
% of Total Count	90%	10%	<1%	100%
% of Peak Load	68%	31%	<1%	100%
Projected 2032 Peak Load (kW)	8333*	3847*	3.6*	12,290*

*figures are based off meter data and do not include line losses

Break (10 Mins)

Ti Start Timer g

TIME TO RESUME



Clean Energy Plan: The Basics

In 2021, Oregon Governor Brown signed House Bill (HB) 2021 into law, which provides an emissions-based clean energy framework for electricity providers to develop Clean Energy Plans (CEP). The plan requires retail electricity providers to reduce greenhouse gas (GHG) emission associated with electricity sold to Oregon consumers by:

(Baseline is average annual emission of greenhouse gases for the years 2010, 2011, and 2012 associated with the electricity sold to electricity customer.)

Oregon Clean Energy Plan

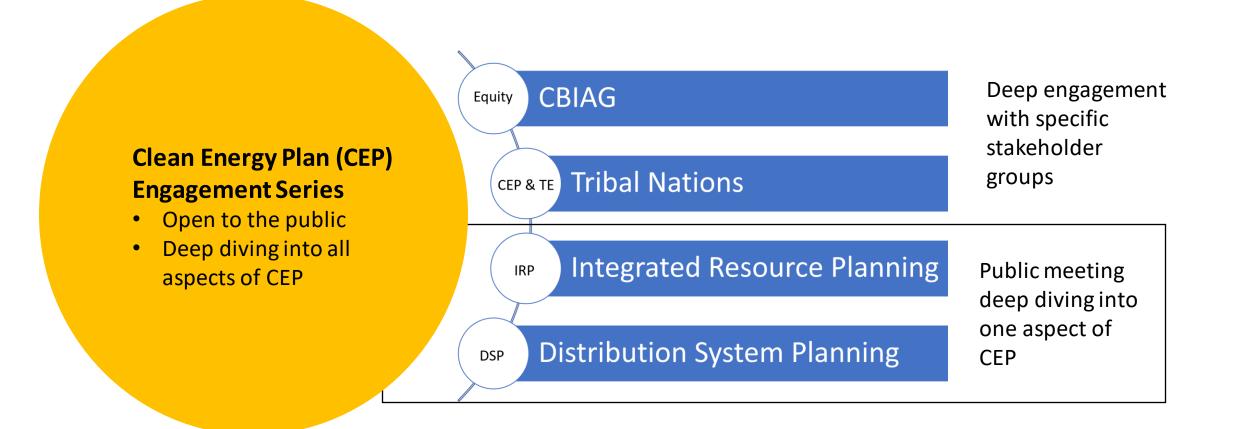
- The Oregon Clean Energy Plan (CEP) works in conjunction with Pacific Power's system Integrated Resource Plan (IRP) and provides certainty to our target emissions reductions.
- The company will file its first CEP concurrently with its IRP in spring 2023.
- The CEP will include:
 - A clean energy strategy with milestones;
 - A path for additional stakeholder and community engagement; and
 - Discussion of how the company will comply with the requirements to provide 100% carbon free electricity to its Oregon retail customers by 2040.

Outreach and Engagement Update

Clean Energy Plan Engagement Series

- Open to the public
- Focused deep diving into the details and intersectionality of clean energy planning with topics including:
 - Clean Energy Plan
 - Integrated Resource Plan (IRP)
 - Community Based Renewable Energy (CBRE)
 - Community Benefit Indicators (CBI)
 - Resiliency
 - Distribution System Planning (DSP)
 - Community Benefits + Impacts Advisory Group (CBIAG)

TIMING & TACTICS


1-4 pm PT Feb. 24 Kick Off

- 2023: Meetings every other month starting Feb
- Online and recorded for flexibility and accessibility
- Feedback will be tracked and shared online

External Engagement 2023

Transitioning to a clean energy future benefits from diverse stakeholder input

OREGON COMMUNITY BENEFIT & IMPACT ADVISORY GROUP

Oregon Clean Energy Plan and the Community Benefits and Impacts Advisory Group (CBIAG)

- Oregon passed HB 2021 in June 2021 requiring utilities to develop Clean Energy Plan to reduce emission levels
- Led to Company forming CBIAG
- DSP will engage the CBIAG for input related to equity issues (e.g., definition of Community Benefit Indicators, equity metrics for screening, suggested data sources, etc.)
- CBIAG replaced the Community Input Group (CIG) outlined in DSP Part 1

Community Benefit & Impact Advisory Group (CBIAG) Purpose:

Focus on equity and a clean energy future in the state of Oregon in accordance with <u>HB 2021</u>.

PacifiCorp plans to continue seeking direct stakeholder feedback to build an inclusive and accessible process for consultation and collaboration. This includes:

- ✓ Increasing participation from communities that have not traditionally participated in utility planning processes.
- ✓ Providing the Company with a better understanding of community needs and perspectives.
- ✓ Identifying barriers to participation and input on how to address these barriers.
- Acting as a conduit to exchange information and ideas between the Company and stakeholder communities; and
- ✓ Assisting with community outreach.

Stakeholder Engagement is Just the Beginning

Pacific Power is taking the real and actionable learnings from other community engagement initiatives to set up this process for success

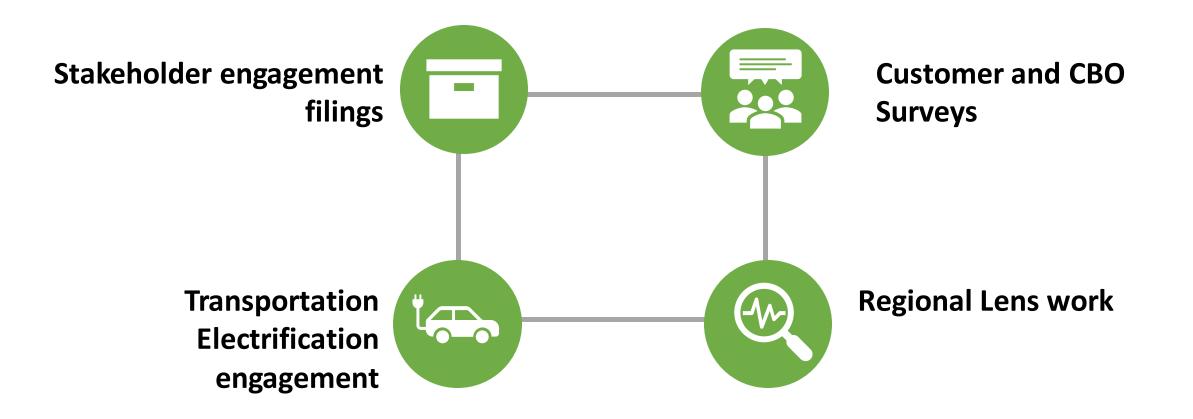
Stakeholder Meetings Solidifying integrated stakeholder strategy and approach

Begin data work to develop equity lens across service area

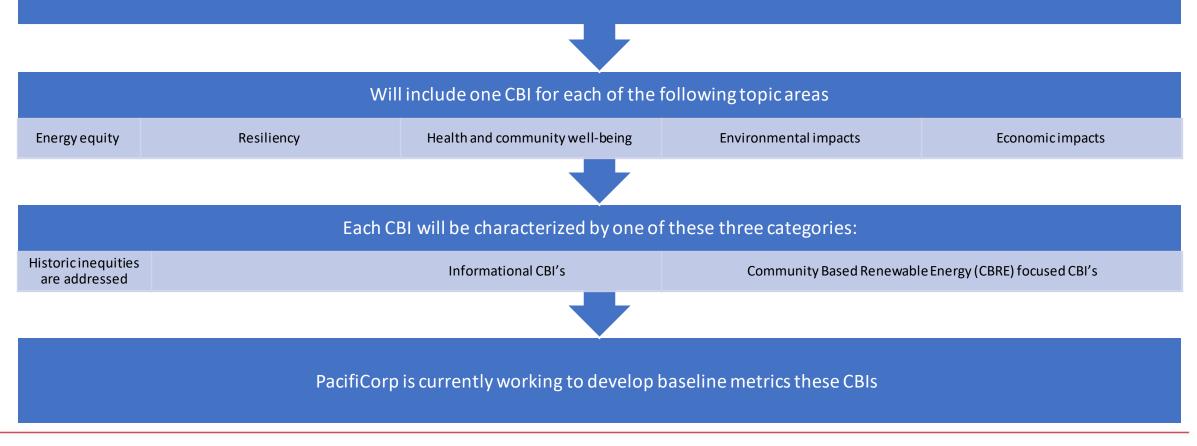
Develop an online information HUB

Elements of engagement

PLANNING


ELECTRIFICATION

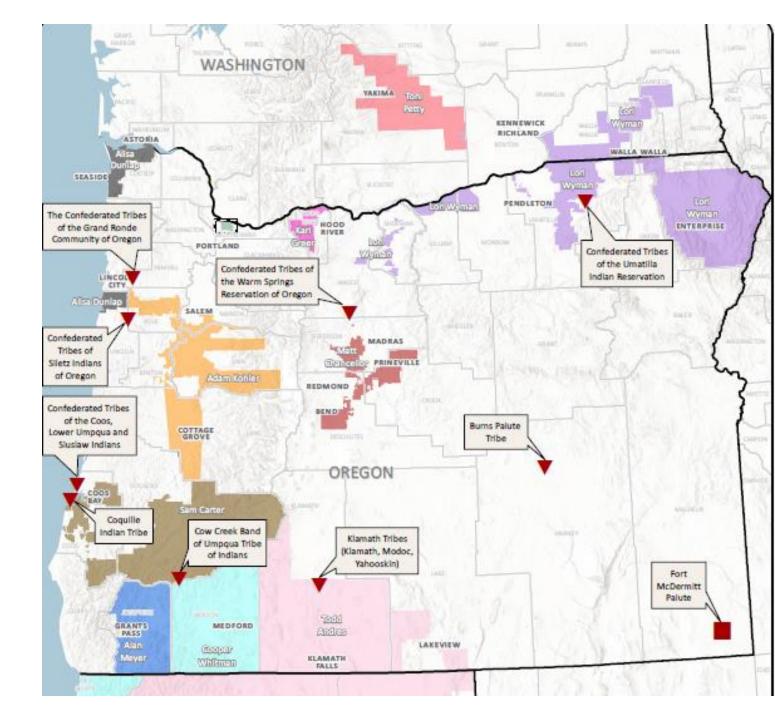
EQUITY GROUPS: OR Community Benefits & Impacts Advisory Group & WA Equity Advisory Group


SERVICE AREA

Data & Resource

Community Benefit Indicators

CEP will be filed with PacifiCorp's 2023 Integrated Resource Plan in March of 2023



OREGON TRIBAL NATION ENGAGEMENT

Existing Relationships

- Regional Business Managers
- Environmental (Consultations)
- Emergency Managers
- Regional Advisors
- Community-Based Organizations

JOIN US FOR THE NEXT MEETINGS

For more information:

Oregon Clean Energy Plan Updated Engagement Strategy

Engagement Strategy

Oregon Community Benefits and Impacts Advisory Group (pacificorp.com)

Email comments to:

ORCBIAG@pacificorp.com

In closing...

Next Steps:

- Finalize and communicate DSP study area selection
 - DSP mailing list communication next week
- Meeting recording and Spanish translation slide materials posted to DSP website next week
- 2023 study kick-off
 - Model validation and forecasting
- DSP local stakeholder meetings
- Targeting next statewide stakeholder meeting for Q3

DSP Email / Distribution List Contact Information

DSP@pacificorp.com

DSP Webpages

- <u>Pacific Power Oregon DSP Website</u>
- Planificación del Sistema de Distribución de Oregón (pacificorp.com)

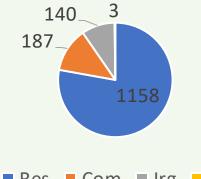
Additional Resources

- PacifiCorp's DSP Part 1 Report
- <u>PacifiCorp's DSP Part 2 Report</u>
- DSP Pilot Project Suggestion Form

Thank You!

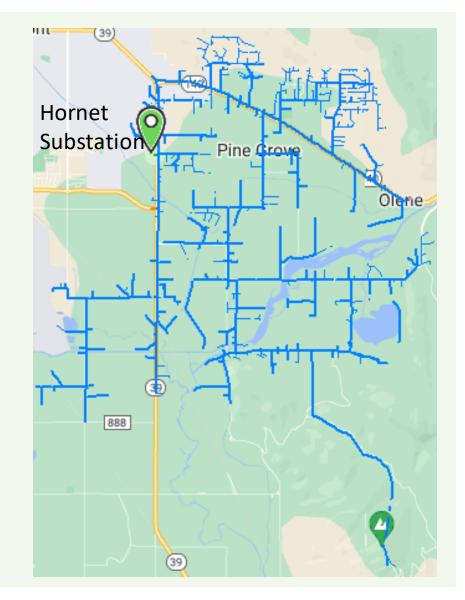
Appendix A: Circuit Analysis

5L45 Selection Klamath Falls


Criteria:

- High predicted amounts of DG
- Above average predicted EV growth
- High amount of Irrigation customers
- Moderately low reliability
- High data quality

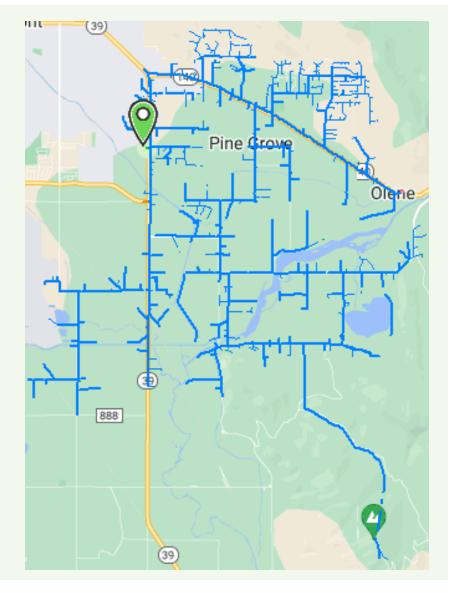
Additional Note:


• Follow up from previous pilot project stake holders

5L45 Customer count breakdown

■ Res ■ Com ■ Irg ■ Ind

Significant circuit changes: No

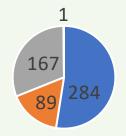

5L45 Analysis Results

	Summer	Winter
Growth Factor	2%	0%
Projected peak load	7.7 MVA	5.3 MVA
Substation Capacity	10.3 MVA	10.3MVA

Grid needs assessment:

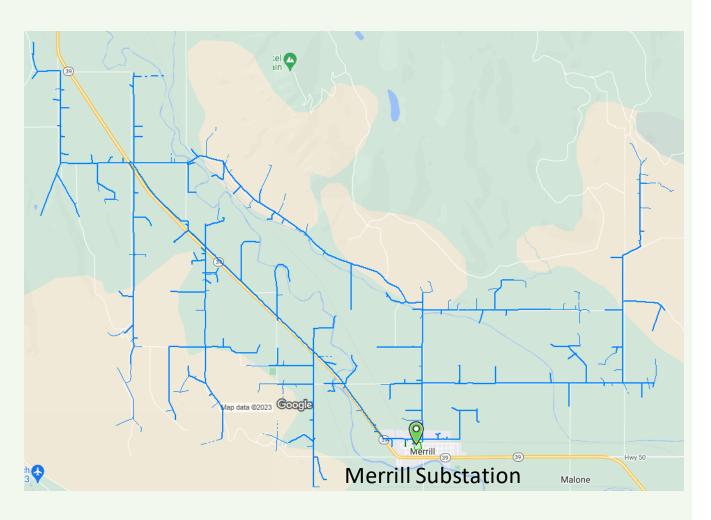
• No needs identified

DSP study candidacy: Low


5L27 Selection – Klamath Falls Area

Criteria:

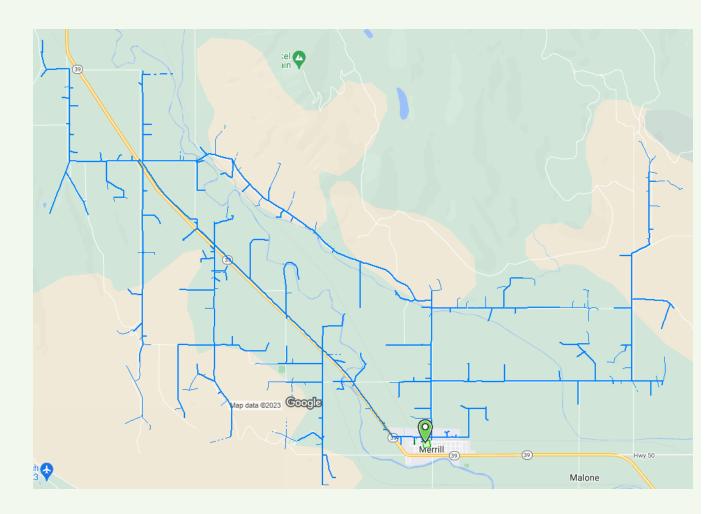
- Very large existing DG
- Moderately high predicted DG growth
- Very High amount of Irrigation customers
- Reverse power flow
- Very low median income (equity)


Additional Note:

- Follow up from previous pilot project stake holders
- 5L27 Customer count breakdown

■ Res ■ Com ■ Irg ■ Ind

Significant circuit changes: No

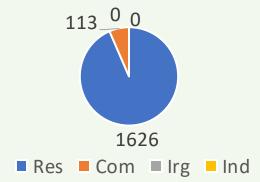

5L27 Analysis Results

	Summer	Winter
Growth Factor	1.8%	0%
Projected peak load	4.8 MVA	2.0 MVA
Substation Capacity	9.1 MVA	10.9 MVA

Grid needs assessment:

• No needs identified

DSP study candidacy: Low



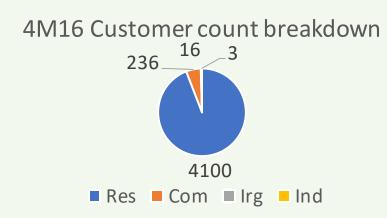

4M182 Selection - Corvallis

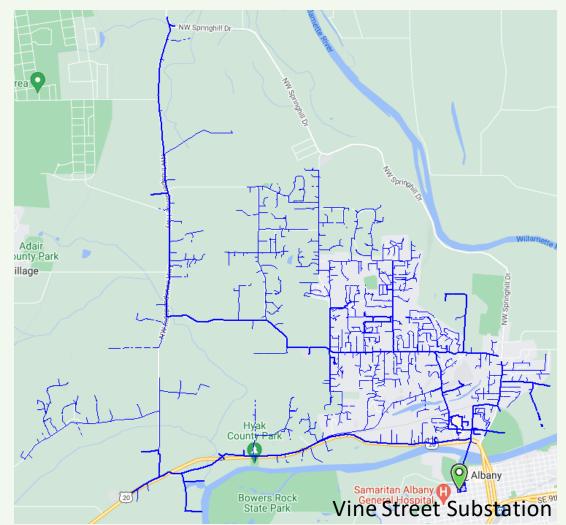
Criteria:

- High predicted EV growth
- Very large existing DG
- Moderately high predicted DG growth
- High percentage of home around federal poverty level (equity)

4M182 Customer count breakdown

Significant circuit changes: Yes, New substation planned significantly affecting the circuit


4M16 Selection - Albany

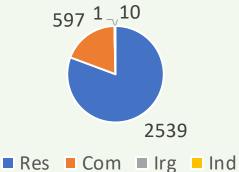

Criteria:

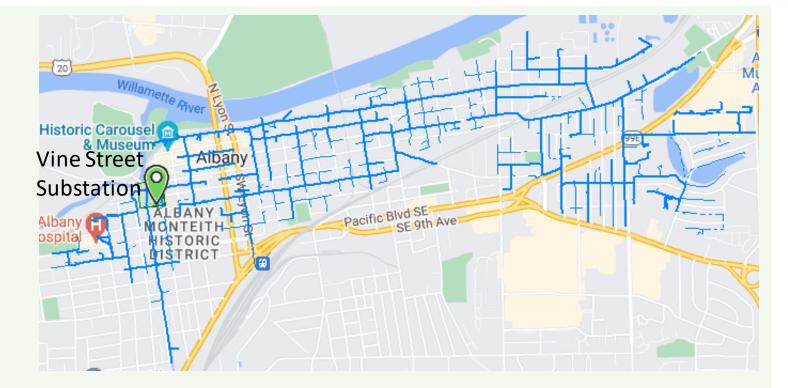
- Very high predicted DG growth
- High predicted EV growth
- No feeder SCADA
- Very high customer count

Additional Note:

• Highest coincident of predicted DG and EV growth

Significant circuit changes: Yes, New substation planned significantly affecting the circuit


4M15 Selection - Albany


Criteria:

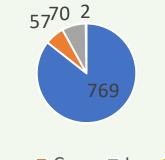
- High predicted EV growth
- Very low reliability
- No feeder SCADA
- Very low median income (equity)
- High customer count

Additional Note:

- Another potential circuit on the same substation
- 4M15 Customer count breakdown

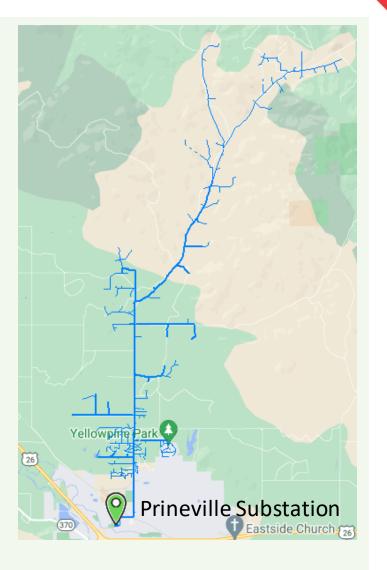
Significant circuit changes: Yes, New substation planned significantly affecting the circuit

5D50 Selection


Criteria:

- Moderately high predicted DG growth
- High amount of Irrigation customers
- Very low reliability

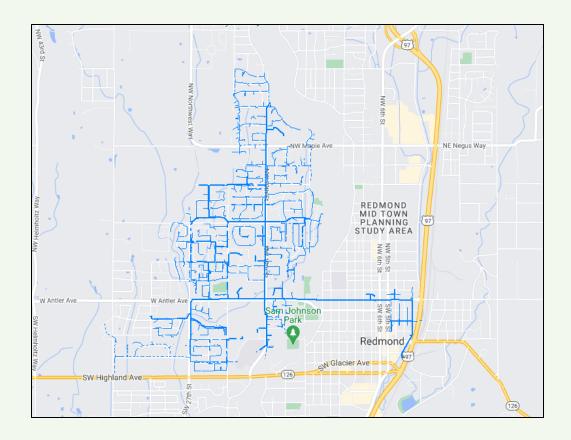
Additional Note:


• Another potential circuit on the same substation

5D50 Customer count breakdown

■ Res ■ Com ■ Irg ■ Ind

Significant circuit changes: Yes, large load transfers planned



5D227 Summary – West Redmond

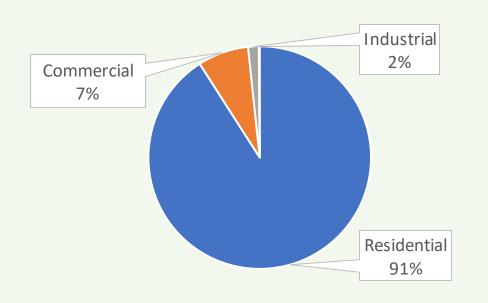
	Se
3,200	•
\$67 <i>,</i> 433	
858%	
7556%	
33.1%	
	Residential 96%
	\$67,433 858% 7556%

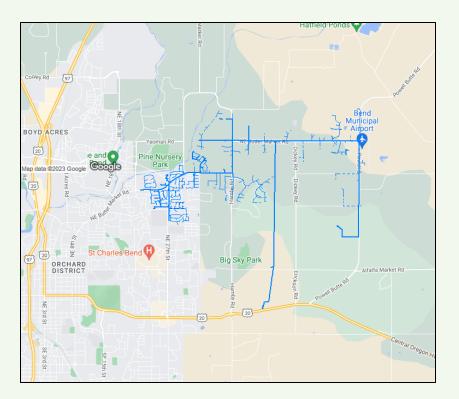
Selection Criteria:

High distributed generation growth predicted

DISTRIBUTION SYSTEM PLANNING

68


5D261 Summary – East Bend

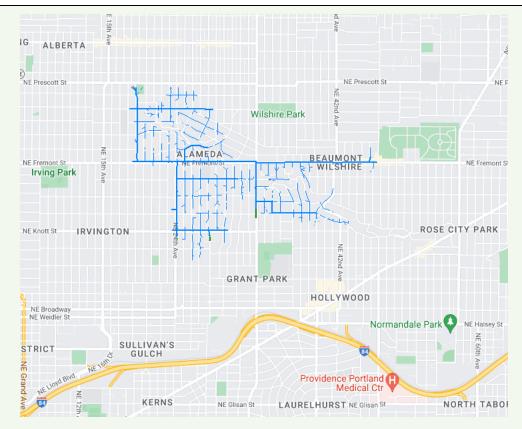

Customers	1610
Median Income	\$81,934
10-yr projected EV growth	858%
10-yr projected DG growth	130%

Selection Criteria:

٠

- 10 MW Solar Farm creates reverse power flow during day
- High growth area

	Summer	Winter
Projected Load		
Growth Rate	2.60%	1.50%
Current Peak Load (MW)	4.9	4.2
5 year projected peak load (MW)	5.8	4.6
10 year projected peak load (MW)	7.1	5.2
Operational Limit (MW)	13.4	11.5


• No grid needs identified

5P395 Summary - Portland

		Select	in
Customers	2256	• Hig	
Median Income	\$137,675	• Old	de
10-yr projected EV growth	319%		
10-yr projected DG growth	558%		
Average Home Age	92 years		
Commercial 3%		lential 7%	

Selection Criteria:

- High EV growth predicted
- Older housing stock

POWERING YOUR GREATNESS

	Summer	Winter
Projected Load		•••
Growth Rate	1.6%	0%
Current Peak Load (MW)	8.9	6.2
5 year projected peak load (MW)	10	6.4
10 year projected peak load (MW)	11.8	6.8
Operational Limit (MW)	13	13

• No grid needs identified