Oneida Hydroelectric Project FERC No. 472

Water Quality Summary 2004-2005

Prepared for:

PacifiCorp

Prepared by:

Ecosystems Research Institute

Version: April 5, 2007

TABLE OF CONTENTS

1.0	INTRO	ODUCT	TION	1
2.0	HISTO	ORICA	L WATER QUALITY CONCERNS	3
	2.1	Water	Quality Limited Segments Occurring in the Study Area	3
	2.2	Applic	cable Water Quality Standards	3
	2.3	Summ	ary and Analysis of Existing Hydrology and Water Quality Data	6
		2.3.1	Hydrology	12
		2.3.2	Temperature, Dissolved Oxygen and pH	12
		2.3.3	Suspended Solids	14
		2.3.4	Nutrients	14
3.0	METH	IODS		16
	3.1	Data (Qualification	16
	3.2	Data N	Merging and Filtration	16
	3.3	Analy	tical Procedure	21
		3.3.1	Hydrologic Time Periods	21
		3.3.2	Storm Event Documentation	
		3.3.3	Outlier Identification	
4.0	RESU	LTS		
	4.1	Upper	Basin Runoff 2004	26
	4.2	Summ	er Base Flow 2004	
	4.3	Winte	r Base Flow 2004-2005	
	4.4	Lower	Basin Runoff 2005	
	4.5	Upper	Basin Runoff 2005	
	4.6	Summ	er Base Flow 2005	41
	4.7	Water	Quality Grab Samples and Regression Analysis	41
	4.8	Quant	ification of PacifiCorp Operations	41
	4.9	Pacifi	Corp Effects	46
	4.10	Statist	ical Analysis of Increasing Hydrological Effects	54
5.0	DISCU	USSIO	۷	69
6.0	REFE	RENCE	ES	69

Appendix I. Hydrologically Increasing Events Dataset Appendix II. Storm-Influenced Hourly Data for Hydrologically Increasing Events

LIST OF FIGURES

Figure 1-1. General location map of study area	2
Figure 3-1. The location of the monitoring site for the Oneida Water Quality Study17	7
Figure 3-2. The documentation of the six hydrologic time periods used in this study22	2
Figure 4-1. Upper basin runoff flows for two stations in the Bear River in 200427	7
Figure 4-2. Continuous temperature at the monitoring site during UBR04	7
Figure 4-3. Continuous conductance at the monitoring site during UBR04	3
Figure 4-4. Continuous dissolved oxygen at the monitoring site during UBR0428	3
Figure 4-5. Continuous turbidity at the monitoring site during UBR04)
Figure 4-6. Summer base flow for two stations in the Bear River in 2004)
Figure 4-7. Continuous temperature at the monitoring site during SBF04)
Figure 4-8. Continuous conductance at the monitoring site during SBF04)
Figure 4-9. Continuous dissolved oxygen at the monitoring site during SBF0431	l
Figure 4-10. Continuous turbidity at the monitoring site during SBF04	l
Figure 4-11. Winter base flow for two stations in the Bear River in 2004 and 2005	3
Figure 4-12. Continuous temperature at the monitoring site during WBF	3
Figure 4-13. Continuous conductance at the monitoring site during WBF	1
Figure 4-14. Continuous dissolved oxygen at the monitoring site during WBF	1
Figure 4-15. Continuous turbidity at the monitoring site during WBF	5
Figure 4-16. Lower basin runoff flows for two stations in the Bear River in 2005	5
Figure 4-17. Continuous temperature at the monitoring site during LBR05	5
Figure 4-18. Continuous conductance at the monitoring site during LBR05	5
Figure 4-19. Continuous dissolved oxygen at the monitoring site during LBR05	7
Figure 4-20. Continuous turbidity at the monitoring site during LBR05	7
Figure 4-21. Upper basin runoff flows for two stations in the Bear River in 2005	3
Figure 4-22. Continuous temperature at the monitoring site during UBR05	3
Figure 4-23. Continuous conductance at the monitoring site during UBR05)

Figure 4-24. Continuous dissolved oxygen at the monitoring site during UBR05
Figure 4-25. Continuous turbidity at the monitoring site during UBR0540
Figure 4-26. Summer base flow for two stations in the Bear River in 2005
Figure 4-27. Continuous temperature at the monitoring site during SBF0542
Figure 4-28. Continuous conductance at the monitoring site during SBF0543
Figure 4-29. Continuous dissolved oxygen at the monitoring site during SBF0543
Figure 4-30. Continuous turbidity at the monitoring site during SBF0544
Figure 4-31. The statistical relationship between turbidity and total suspended solids for grab samples collected during the study period
Figure 4-32. The statistical relationship between turbidity and total phosphorus for grab samples collected during the study period
Figure 4-33. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for UBR04
Figure 4-34. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for SBF04
Figure 4-35. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for WBF
Figure 4-36. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for LBR05
Figure 4-37. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for UBR05
Figure 4-38. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for SBF05
Figure 4-39. The frequency distribution of the duration of the increasing flow events documented below Oneida Reservoir in 2004-2005
Figure 4-40. An example of three sequential events (All Events Nos. 51, 52, and 53) during UBR04 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station
Figure 4-41. An example of three sequential events (All Events Nos. 155, 156, and 157) during SBF04 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station
Figure 4-42. An example of three sequential events (All Events Nos. 258, 259, and 260) during WBF in 2004/2005 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station

Figure 4-43. An example of three sequential events (All Events Nos. 427, 428, and 429) during LBR05 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station
Figure 4-44. An example of three sequential events (All Events Nos. 537, 538, and 539) during UBR05 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station
Figure 4-45. An example of three sequential events (All Events Nos. 619, 620, and 621) during SBF05 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station
Figure 4-46. The temporal location of the 236 hydrologically increasing events during the study period
Figure 4-47. The temporal (above) and linear regression (below) relationship between flow and turbidity during an increasing flow event (No. 16) in the Bear River during UBR04
Figure 4-48. The temporal (above) and linear regression (below) relationship between flow and turbidity during an increasing flow event (No. 56) in the Bear River in SBF04
Figure 4-49. The temporal (above) and linear regression (below) relationship between flow and turbidity during an increasing flow event (No. 91) in the Bear River in WBF 2004-2005
Figure 4-50. The temporal (above) and linear regression (below) relationship between flow and turbidity during an increasing flow event (No. 147) in the Bear River in LBR05
Figure 4-51. The temporal (above) and linear regression (below) relationship between flow and turbidity during an increasing flow event (No. 184) in the Bear River in UBR0560
Figure 4-52. The temporal (above) and linear regression (below) relationship between flow and turbidity during an increasing flow event (No. 229) in the Bear River in SBF0561
Figure 4-53. The hourly data for all significant increasing flow events comparing flow and turbidity in the Bear River at the Idaho-Utah state border
Figure 4-54. The hourly data for all significantly increasing flow events comparing flow and turbidity at the Idaho-Utah state border for just outlier and storm-influenced events
Figure 4-55. The hourly data for all significantly increasing flow events comparing flow and turbidity at the Idaho-Utah state border after removing outlier and storm-influenced events67
LIST OF TABLES
Table 2-1. Waters within the Middle Bear River Subbasin (HUC# 16010202) and their designated beneficial uses
Table 2-2. Idaho water quality criteria for the mainstem Bear River and its tributaries
Table 2-3. A comparison of total inorganic nitrogen and orthophosphorus concentrations in the Bear River (data are from ERI historical collections)

Table 2-4. Total suspended solids and total phosphorus criteria applied to mainstem Bear River reaches in the proposed TMDL for the Bear River below Oneida Reservoir. The criteria for total suspended solids changed with hydrologic time period
Table 2-5. A summary of studies completed on the Bear River basin
Table 2-6. Exceedences of state water quality criteria in mainstem Bear River sites
Table 2-7. Exceedences in Bear River tributary sites of state water quality criteria15
Table 3-1. Rejection criteria for continuous water-quality monitoring sensors
Table 3-2. The description of the hydrologic intervals used in this study and the associatednumber of data points excluded due to QA/QC criteria19
Table 3-3. The description of the hydrologic intervals used in this study and the associated number of data points
Table 3-4. The number of data points "tagged" within the data set as a result of the analysis of storm events. The percent of the data remaining after the documentation of storm influence is provided
Table 3-5. The number of data points removed from the data set as a result of the analysis of outliers (probe fouling). The percent of the data remaining after removal of these outliers is provided
Table 4-1. Characteristics of the hydrologically increasing event database
Table 4-2. Percent exceedence of IDEQ's current numeric criterion for turbidity and proposed TSS and TP TMDL criteria (calculated from turbidity data) in database events categorized as hydrologically-increasing. Exceedence was based on whether the maximum turbidity recorded in the event exceeded criteria
Table 4-3. The details of the storm-influenced events that had significant relationships between flow and turbidity. These tagged events were removed from further analysis relative to operational effects due to PacifiCorp. Hourly data for these events are included in Appendix II

1.0 INTRODUCTION

On August 28, 2002, PacifiCorp entered into a settlement agreement with the resource agencies and other intervening parties including the Idaho Department of Environmental Quality concerning the relicensing of the Bear River Projects (FERC Nos. 20, 472, and 2401). As part of the Draft 401 Water Quality Certification in this agreement, PacifiCorp agreed to several investigations associated with the operation of the Oneida Hydroelectric Plant (FERC No. 472), the furthest downstream project licensed under the agreement. The pertinent sections of this agreement relative to the Oneida Hydroelectric Project are as follows:

(Section 5). PacifiCorp shall develop a water quality monitoring plan (Oneida WOMP) to monitor for temperature, dissolved oxygen, specific conductance, sediment, nutrients and turbidity. The purpose of the Oneida WOMP is to characterize water quality conditions in the Bear River from Oneida powerhouse to the Idaho/Utah border ("Oneida reach") and to determine the Project's contribution to any violations of water quality criteria as set forth in the Idaho Water Quality Standards and Wastewater Treatment Requirements, IDAPA 58.01.02 (Water Quality Standards). Continuous monitoring consisting of temperature, specific conductance, dissolved oxygen and turbidity will be conducted downstream of Riverdale (at the location identified in paragraph 3) and data will be recorded at a minimum of hourly intervals for a minimum period of 18 months commencing after the new license has been issued by FERC and accepted by PacifiCorp. Monitoring for suspended sediment and nutrients (at a minimum, total and dissolved phosphorus) shall be conducted to establish a statistically significant relationship between these parameters and turbidity as recorded by the continuous monitoring station (i.e., approximately 30 samples during the 18-month monitoring period). Sampling for suspended sediment and nutrients shall be collected to represent the range of flows experienced through course of the annual hydrograph in the Oneida reach. PacifiCorp shall implement the Oneida WOMP upon IDEO approval pursuant to paragraph 7 below.

(Section 6). If IDEQ determines, based upon data collected by PacifiCorp and any other relevant information, that the operation of the Oneida Project causes or contributes to a violation of Water Quality Standards in the Bear River downstream of the Oneida reach, then within 90 days of IDEQ's request, PacifiCorp shall submit an Oneida Reach Mitigation Plan to IDEQ for approval that describes those measures PacifiCorp shall take, to address the violations caused by the Oneida Project. PacifiCorp must obtain approval of the Oneida Reach Mitigation Plan consistent with the requirement of this certification within 180 days of its submittal. PacifiCorp shall implement and comply with the Mitigation Plan once it is approved by IDEQ. Failure to submit an Oneida Reach Mitigation Plan consistent with this Certification or failure to comply with an approved Mitigation Plan is a violation of the terms of this certification and the FERC license for the Projects.

The objectives of this investigation were to meet the conditions of Section 5 above. The study was undertaken in cooperation with the Idaho Department of Environmental Quality who selected the monitoring location (county bridge at 3600 South, Figure 1-1) and approved the

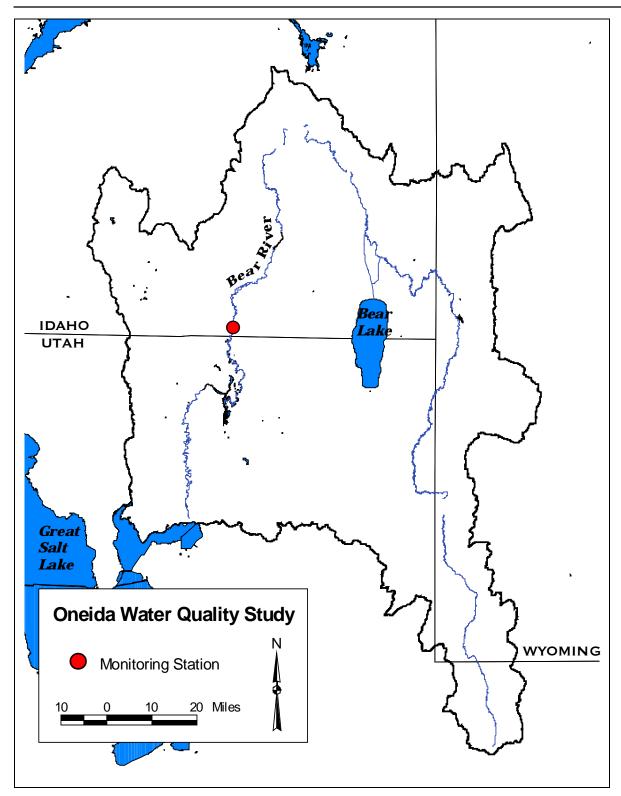


Figure 1-1. General location map of study area.

monitoring plan June 18, 2004. The experimental design was for a single continuous monitoring station near the Idaho-Utah border below the Oneida Project. Within the reach of river between the Oneida Hydroelectric Project and the 3600 South Bridge (a distance of approximately 30 river miles), there are a number of tributaries and anthropogenic activities that have been historically shown to affect the ambient water quality parameters measured as part of this study. A brief overview of the historical water quality conditions is warranted in order to place the current data collection into perspective.

2.0 HISTORICAL WATER QUALITY CONCERNS

2.1 Water Quality Limited Segments Occurring in the Study Area

The Bear River below Oneida Reservoir is the last of four major subbasins in the Idaho portion of the Bear River. This subbasin has six tributaries (5 are on the 303(d) list) of which four are non-designated, and thus assumed to support coldwater aquatic life and secondary contact recreation. Recreation contact is primary or secondary for these tributary streams (Table 2-1). The Bear River in this subbasin is also on the 303(d) list. The entire Bear River in this reach has a coldwater and salmonid spawning designation for aquatic life and primary contact recreation. Nutrients, sediment and flow alteration are the reasons given for the 303(d) listing for the river.

2.2 Applicable Water Quality Standards

As noted in Section 2.1, the tributaries and mainstem of the Bear River, as well as Oneida Reservoir have either coldwater, salmonid spawning or are undesignated relative to surface water beneficial use designations (aquatic life). Recreation designations are either primary or secondary contact. The specific numeric water quality standards are described in Table 2-2.

According to the 1998 Idaho Administrative Code 16.01.02.101.01(b), non-designated surface waters in the state are assumed to support cold water aquatic life and primary or secondary contact recreation beneficial uses and the department will apply coldwater aquatic life and primary and secondary recreation criteria to undesignated waters unless the department determines that other criteria are appropriate.

In addition to enforceable numeric standards, the state has narrative standards for pollutants such as nutrients (e.g. phosphorus and nitrate) and sediment. Therefore, numeric criteria established for nutrients or sediment are targets and not standards. Targets, like standards, do serve as a guidance to indicate possible pollution problems. When the concentrations are exceeded, further study is typically recommended. This may include more frequent water quality monitoring, biological monitoring, riparian assessment or additional studies to identify and quantify point and nonpoint sources.

WATERS INCLUDED:	303(d)	BENEFICIAL USES*											
	LIST	ND	DWS	AWS	COLD	WARM	SS	PCR	SCR	SRW			
Bear River - Alexander Dam to Utah Border	Х			Х	Х		Х	Х					
Cottonwood Creek	Х	Х		Х									
Mink Creek				Х	Х		Х	Х					
Battle Creek	Х			Х	Х				Х				
Deep Creek	Х	Х		Х									
Fivemile Creek	Х	Х		Х									
Weston Creek	Х	Х		Х									

Table 2-1. Waters within the Middle Bear River Subbasin (HUC# 16010202) and their designated beneficial uses.

* ND: Non-designated; DWS: Domestic Water Supply; AWS: Agricultural Water Supply; COLD: Cold Water Communities; WARM: Warm Water Communities; SS: Salmonid Spawning; PCR: Primary Contact Recreation; SCR: Secondary Contact Recreation; SRW: Special Resource Water.

Table 2-2. Idaho water quality criteria for the mainstem Bear River and its tributaries.

P	ARAMETER	CRITERIA
RECREATIO	ON USE DESIGNATION	'S
E. coli:	primary contact (May 1-Sept 30)	Maximum: 406/100 ml and or geometric mean >126/100 ml from 5 samples taken 3 to 5 days over 30 days.
	secondary contact	Maximum: 576/100 ml or a geometric mean >126/100 ml from 5 samples taken 3 to 5 days over 30 days.
AQUATIC L	IFE USE DESIGNATIO	NS (COLDWATER)
Dissolved Oxygen		$\geq 6 \text{ mg/L}$
pН		6.5 - 9.5
Turbidity inc	rease	\leq 50 NTUs from background instantaneously
		\leq 25 NTUs from background for 10 days
Temperature		\leq 22°C instantaneous maximum & daily average maximum \leq 19°C
Total Dissolv	ved Gas	<u><</u> 110%
Ammonia		dependent on pH and temp
AQUATIC L	IFE USE DESIGNATIO	NS (SALMONID SPAWNING)
Dissolved Ox	xygen (water column)	<u>≥</u> 6 mg/L
Dissolved O	xygen (intergravel)	one day min \geq 5 mg/L & 7 day avg \geq 6 mg/L
Temperature		\leq 13°C instantaneous maximum & daily average maximum \leq 9°C

Generally, one nutrient, usually phosphorus, is the limiting factor in aquatic environments. Nitrogen to phosphorus ratios in aquatic vegetation have been shown to range from about 10 to 17 parts nitrogen to 1 part phosphorus (Mackenthun 1973). It appears the limiting factor during most of the year in the Bear River in the study reach is phosphorus (Table 2-3). A comparison of readily available (i.e., the form of nutrient in the water column is such that its uptake by plants is easy) phosphorus and nitrogen indicates that phosphorus is the limiting factor.

Water quality targets for sediment and total phosphorus are different based on location within the Bear River depending on whether water flowing past that site discharges into a lake or impoundment (reservoir). For example, water flowing into Alexander Reservoir has a target of 0.05 mg P/l while water flowing in the Bear River below Alexander is 0.075 mg/l. In the case of the Bear River at the Utah-Idaho border, the target was set at 0.050 mg P/l for political reasons (Utah has set a target of 0.05 mg P/l for their criteria and the two states wanted to be consistent in their designations).

In the Bear River, the separation of sites based on downstream receiving waters corresponds to phosphorus targets recommended in the 1986 EPA "Gold Book" which established phosphorus concentrations at levels that prevent the "development of biological nuisances and to control accelerated or cultural eutrophication." The Gold Book recommends for sections of stream that do not discharge into a lake or impoundment (reservoir) a total phosphorus target of 0.1 mg/L. For those reaches that discharge into a lake or reservoir, the Gold Book suggests a threshold of total phosphates as phosphorus of 0.05 mg/L. The 0.05 mg/L target has been proposed for those reaches of the Bear River which discharge into Bear Lake, Alexander Reservoir, and Oneida Reservoir. All other sites, which are considered riverine, were assigned a target of 0.075 mg/L total phosphorus, a 25 percent reduction from that which was recommended in the Gold Book. However, as noted in the previous section of this report, the 0.05 mg/L total phosphorus target was also used for the Bear River below Oneida Reservoir to the stateline, based on the same target set by the state of Utah in their Lower Bear River Water Quality Management Plan (Ecosystems Research Institute 1995). Table 2-4 lists TSS and TP criteria for the Bear River below Oneida Reservoir by hydrologic period.

2.3 Summary and Analysis of Existing Hydrology and Water Quality Data

Water quality studies on the Bear River date back to the 1950s. Table 2-5 summarizes these studies by author, year of data collection, area covered by the study and the parameters measured during the investigations. The Idaho Bear River reach (that portion downstream of the Wyoming-Idaho border) has been the subject of water quality investigations starting as early as 1953 (Clyde 1953). The studies focused on suspended sediments and flow. Several studies have also been conducted on the current condition of and influences on water quality in the reach above Bear Lake, extending as far as Woodruff Reservoir in Wyoming down to the Idaho-Utah stateline. Of the studies that have been conducted on Bear River water quality in Idaho (Wyoming-Idaho stateline to the Utah-Idaho stateline) the most extensive has been completed by ERI (1998) and will be described in detail later in this section.

Site	Season	NH3 + NH4 (mg N/L)	NO2 (mg N/L)	NO3 (mg N/L)	Total inorganic nitrogen (TIN; mg N/L)	Ortho- phosphorus (OP; mg P/L)	Ratio of TIN to OP
Bear River below	WBF	0.113	(2)			0.007	120.71
Oneida (BRBO)	LBR	0.095	0.009	0.682	0.786	0.017	46.24
	UBR	0.059	0.006	0.213	0.278	0.012	23.17
	SBF	0.066	0.012	0.328	0.406	0.024	16.92
BRBO Average:		0.083	0.009	0.489	0.579	0.015	38.58
Bear River at	WBF	0.145	(2)	0.588	0.733	0.009	81.44
Riverdale (BRR)	LBR	0.115	0.009	0.699	0.823	0.02	41.15
	UBR	0.06	0.005	0.195	0.260	0.012	21.67
	SBF	0.06	0.01	0.174	0.244	0.013	18.77
BRR Average:		0.095	0.008	0.414	0.515	0.013	38.15
Bear River at	WBF	0.065	0.03	0.913	1.008	0.033	30.55
ID-UT stateline	LBR		0.038	0.919	(1)	0.048	(1)
(BRSL)	UBR		0.02	0.559	(1)	0.031	(1)
	SBF		0.018	0.386	(1)	0.032	(1)
BRSL Average:		(1)	0.027	0.694	(1)	0.036	(1)

Table 2-3. A comparison of total inorganic nitrogen and orthophosphorus concentrations in the Bear River (data are from ERI historical collections).

(1) Insufficient data

(2) Nitrate assumed to be 0.0 mg/L

Table 2-4. Total suspended solids and total phosphorus criteria applied to mainstem Bear River reaches in the proposed TMDL for the Bear River below Oneida Reservoir. The criteria for total suspended solids changed with hydrologic time period.

Location	Total Phosphorus	Total Suspended Solids (mg/l)					
	(mg/l) Criterion	Runoff Criterion	Base flow Criterion				
Bear River below Oneida (BRBO)	0.050	80	60				
Bear River at ID-UT stateline (BRSL)	0.050	80	60				

		LOCATIONS				PARAMETERS							
Author	Data date	BR UT	BR ID	BR WY	Flow	Nutrients	TSS	Salts	Metals	Bacteria	Biological		
Thorne & Thorne 1951	1949	Х			Х			Х					
Clyde 1953	1953	Х	Х		Х		Х						
Ward & Skoubye 1959	1958-59	Х			Х	Х	Х	Х	Х	Х			
Bangerter 1965	1963-67	Х									Х		
Waddell 1970	1952-68	Х	Х	Х	Х		Х	Х					
Hill et al. 1973	1971-72	Х	Х	Х	Х			Х					
Israelson et al. 1975	1973-74	Х				Х							
UWRL 1974a	1974	Х				Х				Х			
UWRL 1974b	1974	Х				Х				Х			
Drury et al. 1975	1972-73	Х				Х							
UWRL 1976	1975-76	Х	Х	Х	Х	Х	Х	Х	Х	Х			
Perry 1978	1978		Х				Х	Х		Х	Х		
Heimer 1978	1975-76		Х				Х						
Lamarra 1979	1977-78	Х				Х							
Lamarra & Adams 1980	1980	Х			Х	Х	Х			Х			
Wienecke et al. 1980	1976-77	Х				Х	Х						
Messer et al. 1981	1980	Х	Х		Х		Х						
Rupp & Adams 1981	1979-80	Х			Х								
UBWPC 1982	1975-82	Х				Х	Х	Х		Х			
Messer et al. 1984	1979-84	Х			Х	Х							
Montgomery 1984	1984	Х			Х		Х						
Sorensen et al. 1984	1977-83	Х				Х	Х	Х					
UBWPC 1984	1982-84	Х				Х	Х	Х		Х	Х		
Grenney et al. 1985	1976-82	Х				Х							
UDPC 1985	1985	Х									Х		
Sorensen et al. 1986	1984-85	Х	Х			Х	Х	Х	Х				

Table 2-5. A summary of studies completed on the Bear River basin.

		L	OCATIO	NS	PARAMETERS						
Author	Data date	BR UT	BR ID	BR WY	Flow	Nutrients	TSS	Salts	Metals	Bacteria	Biological
UBWPC 1986a	1984-86	Х				Х	Х	Х		Х	
UBWPC 1986b	1986	Х									Х
Sorensen et al. 1987	1985-86	Х	Х		Х	Х					
UBWPC 1987	1987	Х									Х
UBWPC 1988	1986-88	Х				Х	Х	Х		Х	
Barker et al. 1989	1987	Х	Х		Х	Х		Х			
UBWPC 1990	1988-90	Х				Х	Х	Х		Х	
ERI 1991	1990-91	Х	Х		Х	Х	Х	Х		Х	
PacifiCorp Electric Operations	1991	Х									Х
UBWPC 1991a	1988-89	Х									Х
UBWPC 1991b	1889-90	Х									Х
UDWQ 1992a	1990-92	Х				Х	Х	Х		Х	
BLRC & ERI 1993	1991			Х	Х	Х	Х	Х			Х
UDWQ 1993a	1990-91	Х									Х
UDWQ 1993b	1991-92	Х									Х
UDWQ 1993c	1990-91	Х									Х
UDWQ 1993d	1991-92	Х									Х
UDWQ 1994a	1992-93	Х									Х
UDWQ 1994b	1992-93	Х									Х
UDWQ 1995	1993-94	Х									Х
ERI 1995	1992-93	Х			Х	Х	Х		Х	Х	Х
ERI 1998	1994-96	Х	Х		Х	Х	Х		Х	Х	Х

DRAFT 2004-2005 Water Quality Summary

Early water quality studies focused on sediments and salinity in the river. Clyde (1953) evaluated sedimentation patterns in the Bear River between Oneida and Cutler reservoirs. Between 1910 and 1950, the river bed raised six feet due to the deposition of over 110,000,000 tons of sediment. He attributed the source to rapid erosion in tributaries below Oneida Reservoir, caused by the natural soil conditions in the upland areas, exacerbated by irrigation and other land use practices. He concluded that fluctuating flows from Oneida had not greatly affected deposition of sediment in the channel. Heimer (1978) measured turbidity and suspended sediments at sites from below Bear Lake to the Utah-Idaho stateline. Based on his 1975 data, sediment loads in the river increased from 98 tons/month (3,000 kg/day) at Soda Springs to 351 tons/month (10,600 kg/day) near Preston, then decreased to 171 tons/month (5,180 kg/day) at the stateline. Waddell (1970), Haws and Hughes (1973), and Hill et al (1973) all summarized water quality data collected in the late 1960s and early 1970s. Most analyses were for major anions and cations only. Over this time period, total dissolved solids (TDS) averaged about 375 mg/liter at the Bear Lake outlet, with little change throughout the Idaho reach.

The first extensive water quality study of the Idaho portion of the Bear River was conducted in 1975 and 1976 (Perry 1978), with samples collected every two weeks at 15 stations. Perry concluded that total suspended solids (TSS) and TDS concentrations responded differently in the reaches above and below Oneida. From Bear Lake to above Oneida, TSS and TDS decreased at higher flows due to a dilution effect. However, below Oneida, solids increased during runoff. He attributed this to high sediment inputs from tributaries below Oneida. High nitrate concentrations in Black Canyon, possibly from Grace wastewater treatment plant (WWTP), and fecal coliform contamination in the river near Preston were also identified as water quality problems.

In the late 1970s, the emphasis shifted to nutrient contamination in the river, with most data collected below Oneida Reservoir by Utah State University Water Research Laboratory. Sorensen et al. (1984, 1986) found increasing TSS and total phosphorus (TP) loads below Oneida to be associated with inputs from tributaries. Most of the phosphorus was associated with the sediment, rather than in dissolved form. A study of the impact of power peaking below Oneida Reservoir demonstrated that total phosphorus increased during peaking events. Sorensen et al. also investigated bio-available phosphorus at the sites they monitored. They indicated that the amount of bio-available phosphorus in the system was related to anthropogenic sources.

Barker et al. (1989) summarized nutrient data collected from Bear Lake outlet to the Idaho-Utah stateline during 1987 and 1988. Average TP concentrations increased from 0.06 mg/liter at Bear Lake outlet to 0.100 mg/liter at stateline. Average orthophosphorus increased from 0.008 to 0.037 mg/liter over the same reach, although on most dates the concentrations were low and relatively constant from site to site. Nitrate concentrations ranged from 0.140 mg/liter at the outlet to 0.860 mg/liter at the stateline.

ERI (1991) reported on data collected in the lower basin during 1990, a low flow year, which included a site below Oneida Reservoir and sites from the Idaho-Utah stateline to below Cutler Reservoir. In this study, the average daily load of TSS increased from 7,000 kg/day below Oneida Reservoir to 24,000 kg/day at the stateline. The average TSS concentration increased

from 6 to 50 mg/liter over this reach. Nutrient concentrations were relatively constant or decreased from Oneida to the stateline.

ERI (1998) conducted the most current and extensive water quality investigation on the mainstem Bear River. Twelve sites on the mainstem Bear River were sampled from April 1994 through September 1996 and in 1999-2000. In addition, several point sources, including the Soda Springs WWTP, the Clear Springs fish hatchery and Preston WWTP were also sampled. Several monitoring sites on the mainstem and tributaries were monitored by PacifiCorp as part of their relicensing effort on three hydroelectric facilities in Idaho. Data from several of these sites have also been included in this review of available information. This study represents the basis for the summary and analysis of water quality conditions in the Middle Bear River watershed particularly below Oneida Reservoir.

ERI's (1998) investigation sampled only a limited number of tributaries. In order to more fully define the nonpoint source component of the source inventory, detailed tributary and mainstem synoptic surveys were conducted during 1999-2000, using the same protocol as the 1998 study. These surveys will be discussed in the context of the more extensive 1998 study.

Samples for both studies were collected as subsurface grabs within the mixed zone and in the main channel of the stream. Field parameters (temperature, pH, conductivity, dissolved oxygen) were measured at the site and water samples were collected for nutrient, sediment and salinity analyses and returned to the laboratory for analysis. Flows were measured at the sites where water quality samples were collected. Flows on most of the mainstem Bear River in Idaho, and Soda Creek were obtained from PacifiCorp. Discharge data for the Utah-Idaho stateline were obtained from the U.S. Geological Service (USGS).

2.3.1 Hydrology

For the years used in this specific water quality analysis (1994, 1995, 1999, and 2000), the total water yields from this basin were considered below average for 1994 to 1995 and above average for 1996 and 1999. The seasonal hydrograph was divided into four hydrologically similar periods. These periods, which will be used throughout the analysis in this report are: winter base flow or WBF (November, December, January, and February); lower basin runoff or LBR (March and April); upper basin runoff or UBR (May, June, and July); and summer base flow or SBF (August, September, and October).

2.3.2 Temperature, Dissolved Oxygen and pH

Temperature and dissolved oxygen are important water quality parameters relative to aquatic life. Within the Bear River system in Idaho, both parameters have numeric criteria associated with the coldwater aquatic life beneficial use designated for this segment of the Bear River and its tributaries.

Exceedence of state water quality criteria for coldwater biota for each hydrologic time period and station are shown in Table 2-6. The temperature criterion was exceeded between 0% and 7% of the observations below Oneida Reservoir, depending upon the specific location.

	PH	IYSICAL		SOLIDS	NITR	OGEN	PHOSPHORUS		
DESCRIPTION	DO (mg/L) <6	pH (SU) <6.5 or >9.5	Temp (°C) >22	TSS (mg/L) >80	NH ₃ (mg/L) >4	NO ₃ (mg/L) >4	OP (mg/L) >0.075	TP (mg/L) >0.075	
BR abv Oneida at Hwy Bridge	3%	0%	0%	0.0%	0%	0%	2.9%	72.2%	
BR 1 mile blw Oneida	0%	0%	0%	0.0%		15%	0.0%	40.0%	
BR blw Oneida	2%	1%	3%	0.0%	0%	0%	0.0%	5.9%	
BR at Riverdale	0%		0%	0.0%		14%	4.8%	20.0%	
BR near Preston	0%	0%	7%	0.0%				0.0%	
BR west of Preston	1%	0%	5%	2.8%	0%	0%	0.0%	53.5%	
BR at ID UT stateline	2%	0%	7%	7.9%	0%	1%	9.1%	41.8%	

Table 2-6. Exceedences of state water quality criteria in mainstem Bear River sites.

Dissolved oxygen varied widely from station to station on the Bear River in each hydrologic time period. In general, the highest dissolved oxygen concentrations were found during the winter base flow period, followed by lower basin runoff. Upper basin runoff and summer base flow had the lowest overall oxygen levels. This is believed to be the result of the combination of the influences of temperature and flow on the oxygen concentrations in the Bear River system. The numbers of exceedences for dissolved oxygen concentrations for the 1994-1995 and 1999-2000 data sets are shown in Table 2-6. Exceedences ranged from 0% to 3% of the observations.

2.3.3 Suspended Solids

The concentrations of total suspended solids were far more variable than for other parameters throughout the study reach. For example, during the two study periods, water leaving Oneida Reservoir and moving downstream to the Utah-Idaho stateline had its highest gain in concentration (61 mg/l) during the winter base flow period as compared to other river reaches upstream of Oneida Reservoir. The same spatial pattern was evident in the concentration of TSS in the three other hydrologic periods, with large increases in TSS occurring from the Oneida outlet to the Utah-Idaho stateline. The data collected in 1999-2000 indicated the major differences between the hydrologic time period was one of magnitude. Lower basin runoff had the highest concentrations of TSS followed by upper basin runoff, summer and winter base flow Using a criterion of 80 mg TSS/l, there were up to 7.8% exceedences for suspended sediments in the mainstem Bear River at the Utah-Idaho stateline (Table 2-6).

In the reach below Oneida Reservoir, the six major tributaries were also sampled as part of the 1999-2000 investigation. The data indicated that with the exception of Cottonwood Creek, these tributaries significantly added suspended solids to the Bear River. As noted in Table 2-7, Deep Creek and Battle Creek had the highest percent exceedences (46.7% and 75%, respectively). These creeks flow into the Bear River from the northwest near Riverdale, Idaho.

2.3.4 Nutrients

Using a 4 mg/l concentration for ammonia and nitrate as a pollution indicator, the mainstem Bear River stations below Oneida exceeded criterion from 0% to 15% of the observations (Table 2-6). In this reach of the river, Battle, Deep, Five Mile and Weston creeks exceeded criterion 7% to 13% of the observations (Table 2-7).

Total phosphorus and orthophosphorus are also pollution indicators. Inspection of Table 2-6 indicates that the concentrations of phosphorous measured below the Oneida Reservoir exceeded the proposed criteria of 0.05 mg P/l at least 50% of the observations. The elevated concentrations at the border reflect mostly watershed contributions because the highest elevated concentrations occur in March and April (lower basin runoff) when winter snows are melting off the south and west facing dry farms which are in the drainages of Deep Creek, Battle Creek and 5-mile Creek. These tributaries exceed the TP criteria in 100% of the observations (Table 2-7). In a loading analysis conducted as part of the preliminary TMDL for this reach of the Bear River, it was found that about 30% of the TP gain from the Oneida Reservoir outfall to the Utah-Idaho stateline was attributed to these tributary inflows.

	PHYSICAL		SOLIDS NITROGEN		PHOSPHORUS			
DESCRIPTION	DO (mg/L)	pH (SU)	Temp (°C)	TSS (mg/L)	NH ₃	NO ₃	OP	ТР
	<6	<6.5 or	>22	>80	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		>9.5			>4	>4	>0.075	>0.075
Cottonwood Creek	0%	0%	1%	0.0%	0%	0%	0.0%	0.0%
Mink Creek	0%	0%	3%	7.9%	0%	0%	6.3%	56.8%
Battle Creek *	3%	0%	2%	75.0%	0%	13%	33.3%	100.0%
Deep Creek *	0%	0%	13%	46.7%	0%	7%	46.7%	100.0%
5 Mile Creek	0%	0%	7%	6.7%	0%	7%	93.3%	100.0%
Weston Creek *	0%	0%	7%	13.3%	0%	13%	0.0%	73.3%

* Idaho 303(d) List

3.0 METHODS

The following section of this report describes the methods used in the collection, data qualification, and data analysis of the study. As noted previously, a single station (Figure 3-1) was used to collect hourly data for selected water quality parameters. Continuous monitoring data was collected using a YSI Model 6920 water quality probe. The instrument was inspected and field calibrated at least weekly. During some time periods (summer baseflow 2004) the probe was inspected on a daily basis in order to remove organic detritus that congregated around the probe housing and resulted in a significant amount of outlier data points. Section 3.1 describes the procedure for data qualification and outlier identification.

In addition to the continuous electronic data, water quality "grab" samples were collected by technicians from Ecosystems Research Institute (ERI) and returned to the ERI laboratory for determining the concentration of ortho and total phosphorous, as well as total suspended solids. From March to September (runoff through summer baseflow/irrigation season), grab samples were collected every two weeks. The frequency was reduced to monthly sampling from October to February (winter baseflow). This schedule was followed in order that water quality samples collected for total suspended solids (TSS), turbidity and phosphorous corresponded to the range of flows representing the normal hydrograph, which is between 150 cfs and 2000 cfs.

3.1 Data Qualification

An important process in the analysis of the data collected at the site was the determination of data acceptance. The criteria used to establish acceptance limits are noted in Table 3-1. These limits were compared to the water quality probe data during regular probe field calibrations. Data were rejected based upon the exceedence of the criteria. The number and percent of accepted data are provided in Table 3-2 and Table 3-3.

3.2 Data Merging and Filtration

The following section of this report describes the procedures and protocols (logic) used to further refine (filter) the electronic water quality data logged at the study site. Because the overall objective of the study was to determine if PacifiCorp's activities were resulting in or contributing to violations of the water quality standards in the Bear River below the Oneida site, several additional data sets were acquired and merged with the *in situ* logged electronic data.

In order to accomplish the goal of assigning potential liability to operations of the Oneida Project to water quality violations, the natural perturbations (storm events) in the system needed to be identified within the data. In addition, the transient data anomalies also need to be identified and marked. The overall procedure is described below.

2004-2005 Water Quality Summary

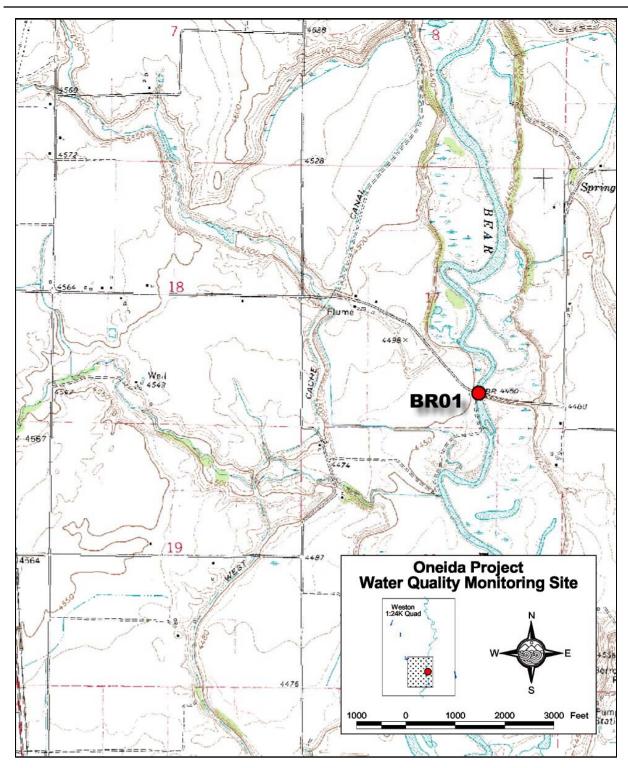


Figure 3-1. The location of the monitoring site for the Oneida Water Quality Study.

Constituent	Manufacturer's Specifications ^a	Maximum Allowable Limits (USGS) ^b
Water temperature	$> \pm 0.15^{\circ}C$	$> \pm 2.0^{\circ}\mathrm{C}$
Specific Conductance	$> \pm 0.5$ %	> <u>+</u> 30 %
Dissolved oxygen	$> \pm 0.2$ mg/L or $\pm 2\%$, whichever is greater	$> \pm 2.0$ mg/L or $\pm 20\%$, whichever is greater
рН	$> \pm 0.2$ units	$>$ \pm 2.0 units
Turbidity	$> \pm 5\%$ or 2 NTU whichever is greater	> <u>+</u> 30%

Table 3-1. Rejection criteria for continuous water-quality monitoring sensors.

^a YSI Incorporated. 6-Series Environmental Monitoring Systems Operations Manual ^b USGS, 2000. WRIR 00-4252, Table 8.

· · · · · · · · · · · · · · · · · · ·	ACCEPTA	Demonst exceeding state		
	No. of Percentage Datapoints		— Percent exceeding state water quality criteria	
Turbidity	11869	100	See Table 3-3	
Dissolved Oxygen	8691	73.2	6.9	
Temperature	11869	100	17.1	
Conductivity	11461	96.6	NA	

Table 3-2. The number and percentage of records in the database rated "acceptable" by parameter, based upon Table 3-1 criteria.

Hydrologic Time Period	Months Included	Number Data Points Accepted	Percentage Accepted
Upper Basin Runoff 2004	May, June, July	5974	100
Summer Base Flow 2004	August, September, October	9162	100
Winter Base Flow 2004-2005	November, December, January, February	10080	100
Lower Basin Runoff 2005	March, April	5437	100
Upper Basin Runoff 2005	May, June, July	8361	100
Summer Base Flow 2005	August, September	5874	100

Table 3-3. The description of the hydrologic intervals used in this study and the associated number of turbidity data points included which met the QA/QC criteria.

The initial step in the database development involved the merging of three separate hydrologic data sets with the water quality data (temporally matching), which involved the following steps. First, the USGS flow data was obtained and merged with the data from the logged water quality information. According to the standard operating procedure for the study, the frequency of data collection was on an hourly time step, however the study logged data at a 15-minute interval for better resolution and for use in the identification of outliers. The USGS flow data from Station No. 10092700 (Bear River at Idaho-Utah State Line) were merged at a 15-minute interval resolution.

Second, additional flow data collected by PacifiCorp at the outlet channel from Bear Lake (BROC), the outflow from the Soda Plant (BRSO) and the outflow from the Oneida facility (BROO) were combined with the above described data. This data was also at a 15-minute interval. It is believed that these three stations define PacifiCorp's Bear River hydrologic operations, which in turn, affects flows at the monitoring location. For example, the Bear River at BROC defines the time period and the magnitude of flows released out of Bear Lake for down stream irrigation at Cutler Reservoir (below the project site). These releases are not determined by PacifiCorp, but by the irrigation companies which have water delivery contracts with PacifiCorp. The comparison between the flows below Soda and the flows below Oneida define the day-to-day flow changes and thus the specific "micro" impacts experienced at the site. These flows shown at BROO can be regulated on an hourly or on a daily basis throughout the year and are much less in scale when compared to the large seasonal flow releases from Bear Lake in the mid to late summer or the lower or upper basin runoff flows.

Third, the meteorological data was obtained from the Preston Idaho COOP Northwest station 107346 and merged into the data set. This data was only reported as daily totals for a 24-hour period ending between 5:00 PM and 10:00 PM. All data were merged at their reporting times.

At the conclusion of the database development phase (merging of all the data sets), the final step was to clip the hourly data from the complete data set. This reduced data set (11,869 observations) was then used in the analytical process described below. The total data set (47,394 observations) was retained for an analysis of outliers described in Section 3.3.3.

3.3 Analytical Procedure

The following section summarizes the process used in the analysis phase of this study. This process systematically qualified or refined the data prior to statistical analysis. It should be noted that the description of the analytical approach is based upon one overriding assumption that the only mechanism of impact caused by PacifiCorp is the short term alteration of flows (operational changes) which can indirectly affect the water quality parameters recorded at the 3600 South station. To that end, great effort was made to define operational hydrologic actions and to dissect these actions from naturally occurring hydrologic events.

3.3.1 Hydrologic Time Periods

In order to facilitate the analysis, the hourly data was divided into four hydrologic time periods. These periods are shown in Table 3-3 and are used throughout this report. The hydrologic time periods are also shown in Figure 3-2.

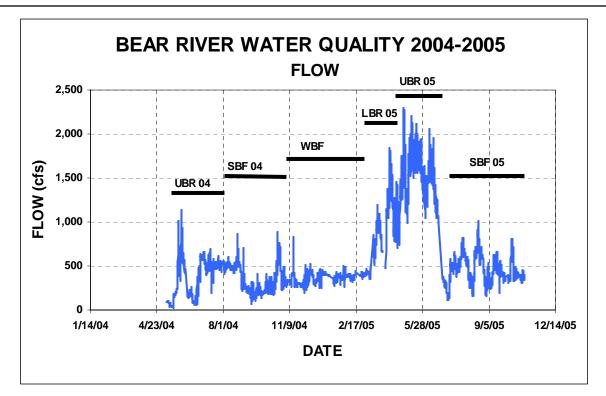


Figure 3-2. The documentation of the six hydrologic time periods used in this study.

Table 3-4. The number of data points "tagged" within the data set as a result of the analysis of storm events. The percent of the data remaining after the documentation of storm influence is provided.

Hydrologic Time Period	No. Datapoints Analyzed	No. Days with Precipitation	No. Datapoints Tagged	Percentage of Database Remaining
Upper Basin Runoff 2004	1944	22	155	92.0
Summer Base Flow 2004	2182	30	282	87.1
Winter Base Flow 2004-2005	2418	8	43	98.2
Lower Basin Runoff 2005	1310	20	442	66.3
Upper Basin Runoff 2005	2009	25	242	88.0
Summer Base Flow 2005	2006	14	159	92.1

3.3.2 Storm Event Documentation

As noted above, storm events are stochastic in nature and affect the water quality parameters at the site. Because there is only one station where data were collected, transient storm events were marked within the database in order to facilitate an analysis of potential PacifiCorp impacts. The identification of storm events followed two steps or procedures. Firstly, any hydrologic changes in the data associated with measurable precipitation were coded within the data. A summary of precipitation events during the project period are shown in Table 3-4. In this initial storm event analysis, a total of 119 days with measurable precipitation occurred over the entire period of the study. Inspection of each event resulted in a change of flow and turbidity in 66 number of events (55.5% of the total storm time). This resulted in a notation of hourly observations ranging from 43 hourly observations during winter baseflow to 442 hourly observations in lower basin runoff. As can be seen in Table 3-4, all hydrologic time periods had data that fell into this category (storm event modified). After this initial filtration, data unaffected by stochastic storm events ranged from 66.3% to 98.2% of the total data, depending upon hydrologic time period.

3.3.3 Outlier Identification

The identification of outliers was undertaken with the hourly data set described in Section 3.2 of this report. Outliers were found to be present in all hydrologic conditions. Field observations during the regular servicing and calibration of the probes indicated that floating or suspended detritus commonly collected on the probe housing especially during summer base flows in 2004. This resulted in sporadic peaks in the turbidity data. These points were tagged based upon the following criteria. Firstly, upon inspection of each data point where large turbidity spikes occurred, if the event was not present before or after the spike, the event was considered a outlier and tagged within the data set. If however, the spike lasted more than a single hourly observation (multiple consecutive hourly observations), the 15 minute data were inspected. If the data indicated that the pattern observed followed a "step function", all the data were tagged for future analysis. In total, 394 hourly turbidity spikes were categorized as outliers within the database. By far, the vast majority of outliers were encountered in the summer baseflow of 2004. In September of that year, flows in the Bear River were less than 200 cfs. Given this low flow, extensive aquatic macrophytes were observed growing in the river around the study site. In order to keep the probe free from fouling, daily cleaning was necessary. Inspection of the data indicated that the water quality instrument was fouled within only several hours of cleaning. In order to preserve some data for analysis in this time period, the data collected immediately following the clearing of macrophyte debris was deemed usable in the subsequent analysis. A summary of the outliers removed are shown in Table 3-5.

In summary, the documentation of water quality observations at the 3600 Street Bridge corresponding to storm or outlier events has resulted in a dataset that is 85.5% of its initial size. Although all the data remained within the database, the outlier data was not used in the analysis involving the subsequent determination of potential impacts as a result of Oneida Reservoir operations.

Table 3-5. The number of data points "tagged" within the data set as outliers. The percent of the
data remaining after removal is provided.

Hydrologic Time Period	No. Datapoints Tagged as Outliers	Percentage of Database Remaining
Upper Basin Runoff 2004	1	92.0
Summer Base Flow 2004	371	70.1
Winter Base Flow 2004-2005	15	97.6
Lower Basin Runoff 2005	2	66.1
Upper Basin Runoff 2005	3	87.8
Summer Base Flow 2005	2	92.0

4.0 RESULTS

The following section of this report summarizes the results of the data analysis conducted as part of investigation. The results of this study will be initially presented based upon hydrologic time period. Because of its timing and magnitude, hydrology at the site has a overriding influence on the water quality conditions, and an inter-parameter comparison was warranted.

4.1 Upper Basin Runoff 2004

The hydrology data used in this investigation came from two sources and are shown in Figure 4-1. Data for the 3600 South site was obtained from the USGS (Station No. 10092700) while flow data for the remaining sites were provided by PacifiCorp. All the remaining hydrology data presented in this report was obtained from these sources. In Figure 4-1 through Figure 4-5, flow and water quality data are presented for the upper basin runoff period in 2004 (UBR04). As noted in the Methods section, the flows at the project site (Figure 4-1) represent natural hydrologic conditions, irrigation augmentation during base flow, and re-regulation of flows below Oneida Reservoir. In 2004, Bear Lake water was released earlier than normal because of the lack of upper basin runoff flows. The hydrologic year in 2004 was considered a low water year. Bear Lake releases occurred for a brief time in May, as well as in June and July. Irrigation releases were continued after August 1, 2004. The remaining flows passing the study site were from natural sources.

The water quality parameters are plotted in Figures 4-2 through 4-5. Both temperature and dissolved oxygen exhibited diel variations. Temperatures remained relatively consistent in May but showed an overall warming trend during the middle of July, after which it remained constant at about 25° C ($\pm 1^{\circ}$ C). Dissolved oxygen typically ranged between 6.5 to 9.5 mg/L.

Turbidity measurements during UBR04 were usually less than 50 NTU. The exception included two large peaks that occurred in May. Both peaks exceeded 120 NTU and were associated with large storm events.

4.2 Summer Base Flow 2004

The summer base flows for 2004 (SBF04) as well as the water quality data for the same time period are shown in Figures 4-6 through 4-10. The flow data for the Bear Lake outlet shows that irrigation releases continued from the UBR04 period through August ending on September 2, 2004. Flows at the stateline site were very low and relatively stable (200 cfs) until the middle of October when fall storms increased flows to 700 cfs.

As in the UBR04 time period, temperature and dissolved oxygen both exhibited diel variations. Temperatures reached a maximum of 23°C in early August and then continually decreased through the end of October (7°C). Both dissolved oxygen and turbidity had the highest proportion of outliers (94.2% of all outlier data occurred during this period) because of extensive amounts of floating macrophyte piles which lodged on the probe housing. Both dissolved oxygen and turbidity are sensitive to debris fouling. The turbidity data (in an unfouled condition) was typically around 10 NTU. During an October storm event, which increased flows in the river to 700 cfs, turbidity also increased from a base of 5 NTU to a maximum of 70 NTU.

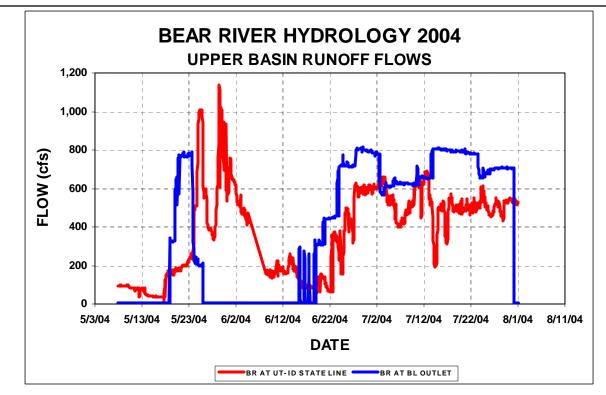


Figure 4-1. Upper basin runoff flows for two stations in the Bear River in 2004.

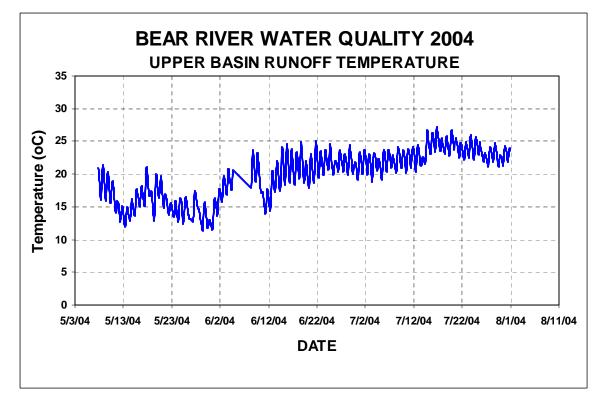


Figure 4-2. Continuous temperature at the monitoring site during UBR04.

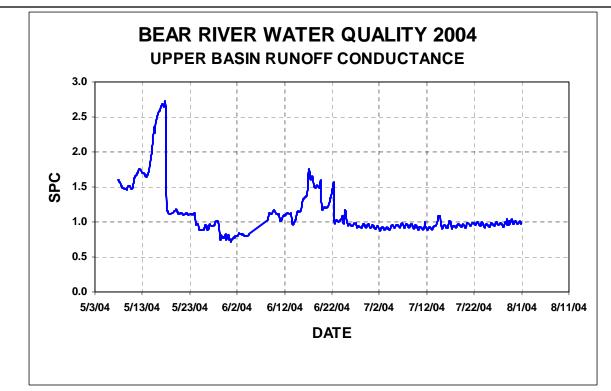
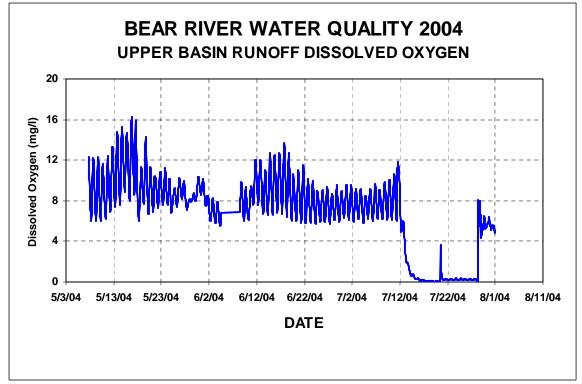



Figure 4-3. Continuous conductance at the monitoring site during UBR04.

Figure 4-4. Continuous dissolved oxygen at the monitoring site during UBR04. Data from 7/12/04 to 08/01/04 were due to probe failure.

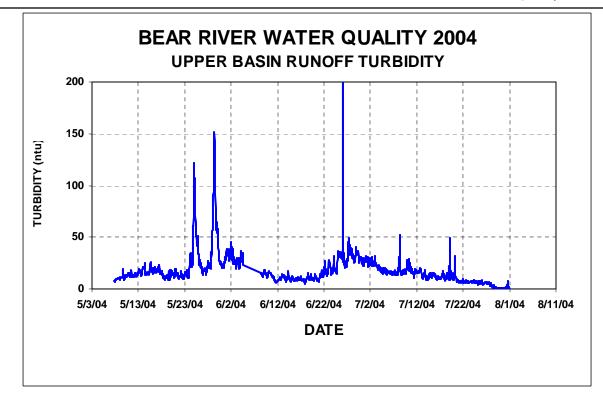


Figure 4-5. Continuous turbidity at the monitoring site during UBR04.

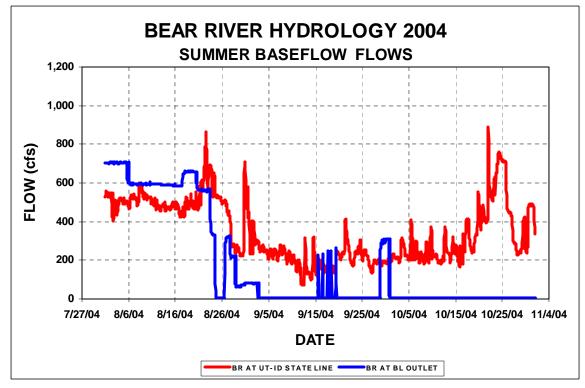


Figure 4-6. Summer base flow for two stations in the Bear River in 2004.

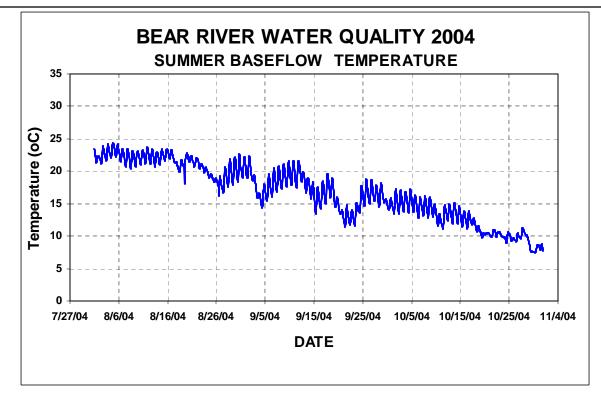


Figure 4-7. Continuous temperature at the monitoring site during SBF04.

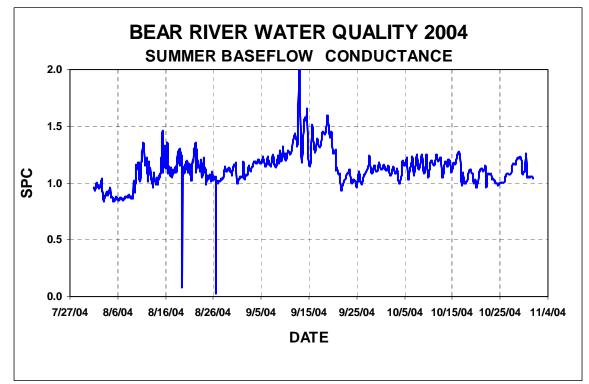
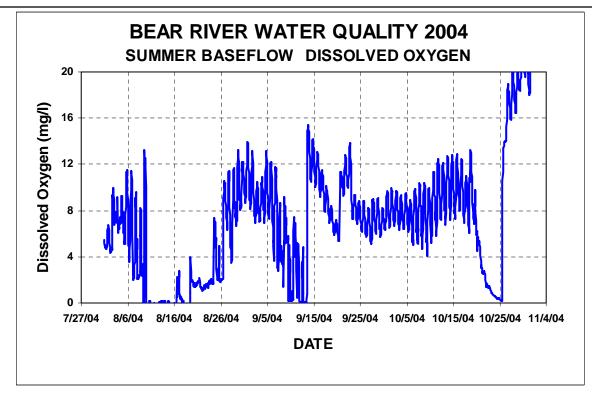



Figure 4-8. Continuous conductance at the monitoring site during SBF04.

Figure 4-9. Continuous dissolved oxygen at the monitoring site during SBF04. Data below 4 mg DO/l were due to probe failure (08/11/04, 09/10/04, 10/20/04).

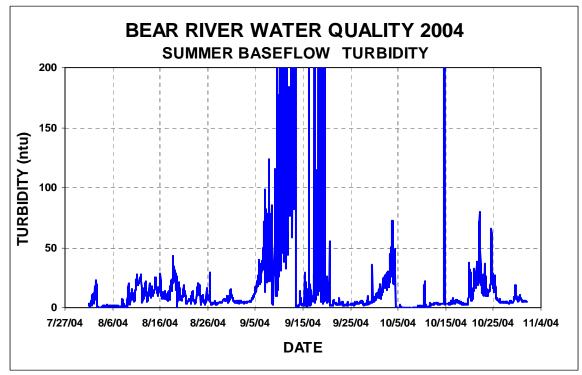


Figure 4-10. Continuous turbidity at the monitoring site during SBF04.

4.3 Winter Base Flow 2004-2005

The data collected at the 3600 South Bridge site and the stateline gage during winter base flow 2004-2005 (WBF) are shown in Figures 4-11 through 4-15. Of all the data sets collected, this time period represented the most stable conditions in both flow and water quality data. Flows in the river were between 200 and 400 cfs with no flows from Bear Lake being added to the system. Temperatures decreased from 10°C on November 1 to 5°C by January 1, and remained between 0°C and 5°C throughout the hydrologic period. Unlike temperature, which did not show a strong diel periodicity, dissolved oxygen did have daily variations. Because temperatures were reasonable uniform, the variation in oxygen was believed to have been caused by plant photosynthesis and respiration. Inspection of the data shows three turbidity fouling events. One event was associated with a spike in flows while the remaining events were not associated with large-scale flow changes.

4.4 Lower Basin Runoff 2005

Inspection of lower basin runoff flows in 2005 (LBR05) in Figure 4-16 shows that the flows at the stateline station did not start to change until March 7, 2005. At that time, flows increased in a linear fashion reaching an initial maximum of 1,120 cfs (from a base of 450 cfs). This initial increase caused a significant increase in turbidity (Figure 4-20). This is consistent with the historical data collected within the basin, which shows that lower basin runoff has the highest ambient turbidity. This data set documents this condition in unprecedented detail. The turbidity, which started at a base level of 5 NTU to 10 NTU, increased to levels over 400 NTU. Although subsequent snow melting also resulted in increased turbidity, levels did not exceed 150 NTU. The highest flows experienced in this time period (over 2,000 cfs on April 29, 2005) were associated with higher elevation runoff. This high flow resulted in a concurrent turbidity of over 250 NTU.

4.5 Upper Basin Runoff 2005

Upper basin runoff in 2005 (UBR05) was the first replication of a hydrologic time period for the study. In the 2005 time period, hydrologic conditions were much different than in 2004. First, Bear Lake water was not added to the system in May as had occurred in 2004. In addition, a significant amount of water was in the system as a result of natural flows from the watershed. Two peaks in flow were observed (Figure 4-21), both of which were over 2,000 cfs in magnitude and resulted in turbidity changes at the study site. The first flow peak resulted in turbidity levels in excess of 100 NTU, while the second peak in flow resulted in turbidity levels around 50 NTU. Bear Lake water entered the site on June 20, 2005 and flow steadily increased to a maximum of 800 cfs on July 23, 2005. This flow increase also had an overall increase in background turbidity.

Temperatures in the river showed no pattern relative to the runoff events but did show an overall increase beginning at 10°C on May 1 and reaching 25°C by July 1.

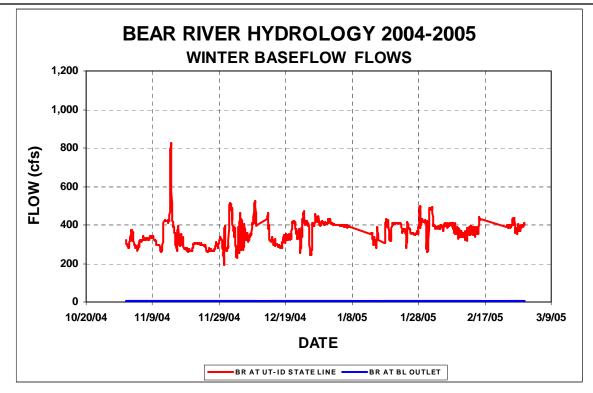


Figure 4-11. Winter baseflow for two stations in the Bear River in 2004 and 2005.

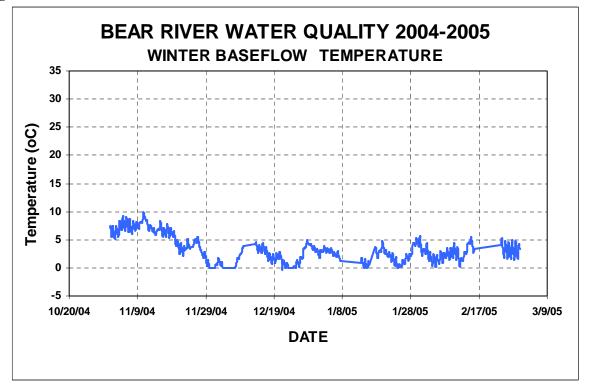


Figure 4-12. Continuous temperature at the monitoring site during WBF.

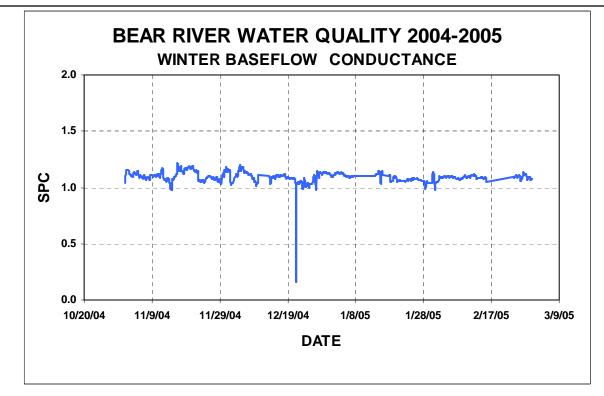
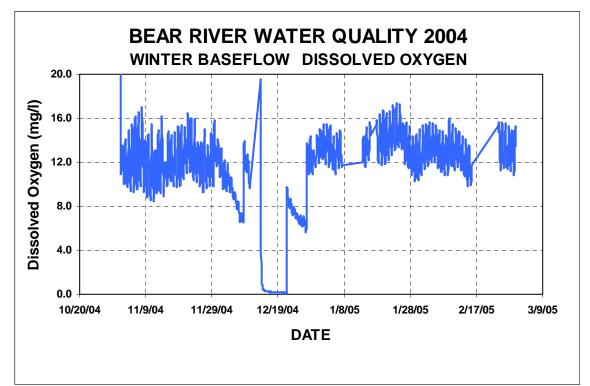



Figure 4-13. Continuous conductance at the monitoring site during WBF.

Figure 4-14. Continuous dissolved oxygen at the monitoring site during WBF. Data for 12/19/04 represent a probe failure.

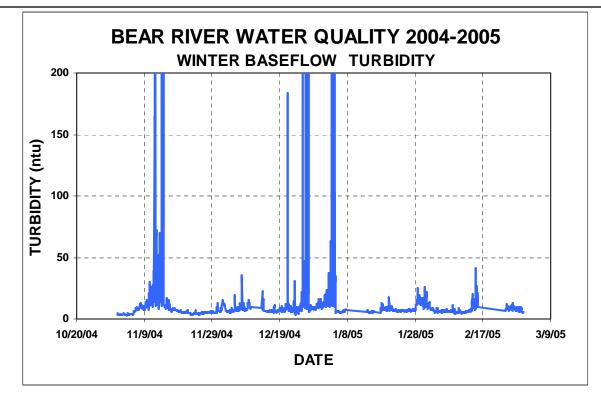


Figure 4-15. Continuous turbidity at the monitoring site during WBF.

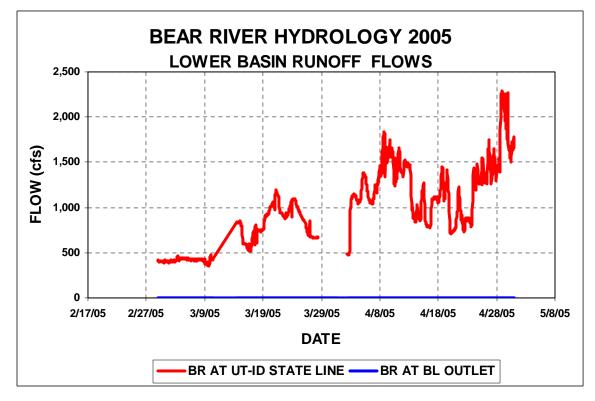


Figure 4-16. Lower basin runoff flows for two stations in the Bear River in 2005.

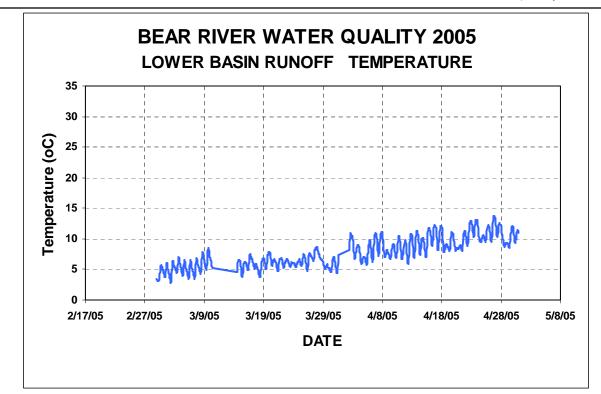


Figure 4-17. Continuous temperature at the monitoring site during LBR05.

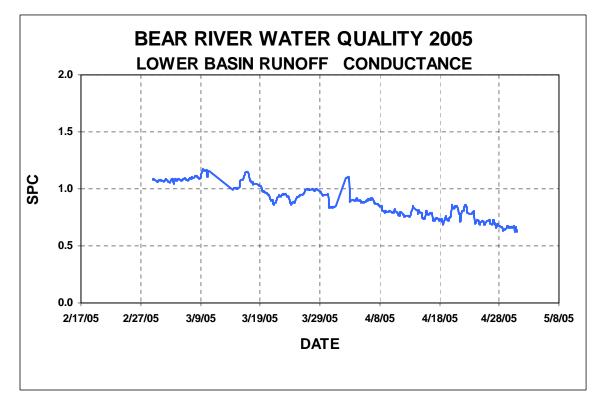
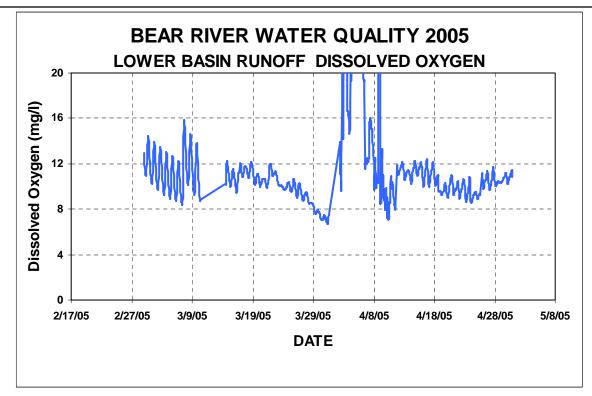



Figure 4-18. Continuous conductance at the monitoring site during LBR05.

Figure 4-19. Continuous dissolved oxygen at the monitoring site during LBR05. Data for 04/04/05 represent a probe failure.

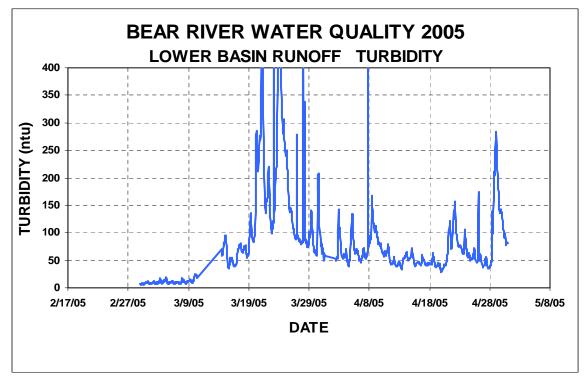


Figure 4-20. Continuous turbidity at the monitoring site during LBR05.

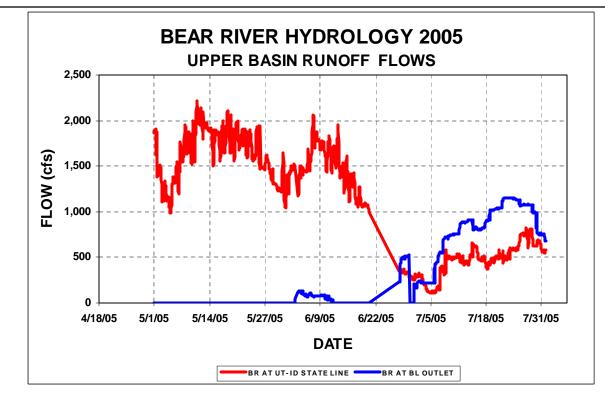


Figure 4-21. Upper basin runoff flows for two stations in the Bear River in 2005.

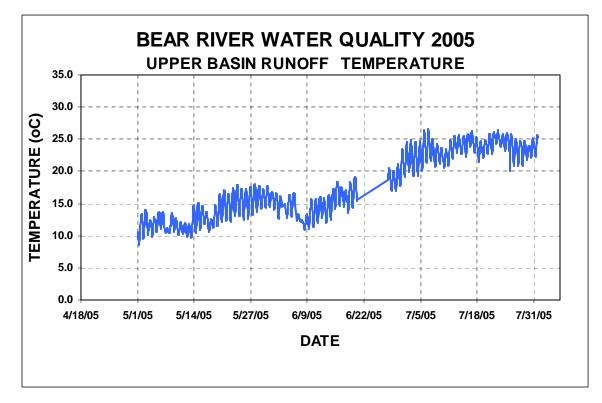


Figure 4-22. Continuous temperature at the monitoring site during UBR05.

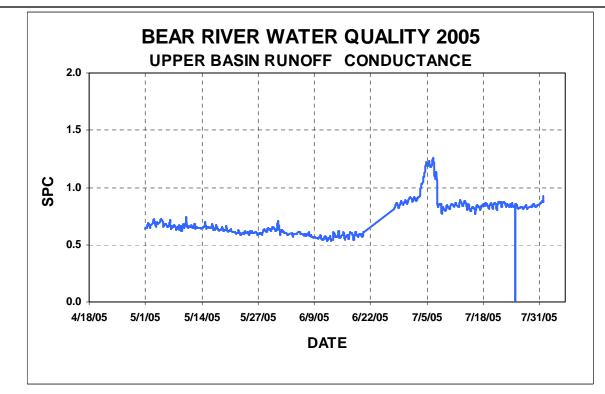


Figure 4-23. Continuous conductance at the monitoring site during UBR05.

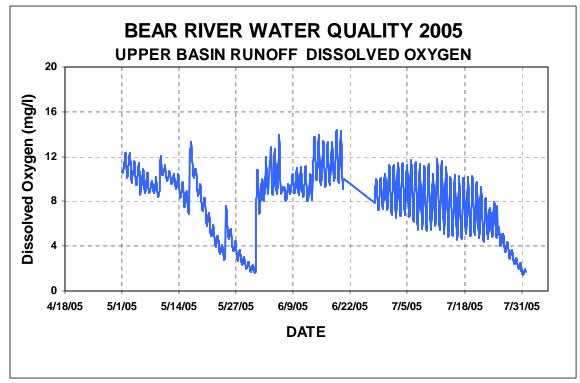


Figure 4-24. Continuous dissolved oxygen at the monitoring site during UBR05.

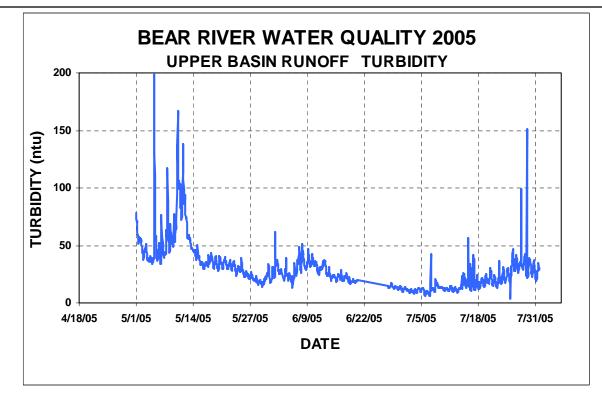


Figure 4-25. Continuous turbidity at the monitoring site during UBR05.

4.6 Summer Base Flow 2005

As with UBR04 and UBR05, summer base flow in 2005 (SBF05) was a replicate time period relative to the 2004 data. The major difference between the two replicate years was the amount of time Bear Lake water influenced the lows at the project site. In 2004, Bear Lake flows were discontinued in the first week of September, but in 2005 these flows were present in the system until the end of September. This allowed for a higher base flow in 2005 (400 cfs rather than 200 cfs). This resultant higher base flow was reflected in the ambient number of turbidity outliers and the lower degree of probe fouling that was experienced in 2004. Temperature and dissolved oxygen data showed the same pattern between the two years. Several storm events occurring in the middle of October resulted in an increase in background turbidity levels.

4.7 Water Quality Grab Samples and Regression Analysis

As part of the settlement agreement, IDEQ required the collection of water quality grab samples from each of the representative hydrologic time periods, with a minimum collection of 30 samples. The parameters included turbidity, total phosphorus, and total suspended solids. Upon completion of the chemical analysis, statistical relationships were to be determined between total phosphorous (mg P/l) and turbidity (NTU), as well as between total suspended solids (mg/l) and turbidity (NTU). These relationships, as well as their statistical significance can be seen in Figures 4-31 and 4-32. In both cases, turbidity as measured at the 3600 South Bridge site was a significant predictor of total phosphorus concentration and total suspended sediment concentrations.

4.8 Quantification of PacifiCorp Operations

As noted earlier in this report, hydrologic conditions at the study site (below the Oneida Hydroelectric Project and near the Utah-Idaho border) can be affected by a variety of natural and man-caused events. Natural flows in the river, tributary input within the study reach, augmentation of summer base flows for irrigation, as well as short-term flow manipulations for hydropower production at the Oneida facility all contribute to the observed flows. Because of this mixture of activities, as well as only a single monitoring station, the specific operations of the Oneida facility had to be defined and quantified, as well as sorted out from the other non-project related impacts. To that end, an analysis was undertaken which attempted to dissect out the operational effects on hydrology at the 3600 South Bridge site.

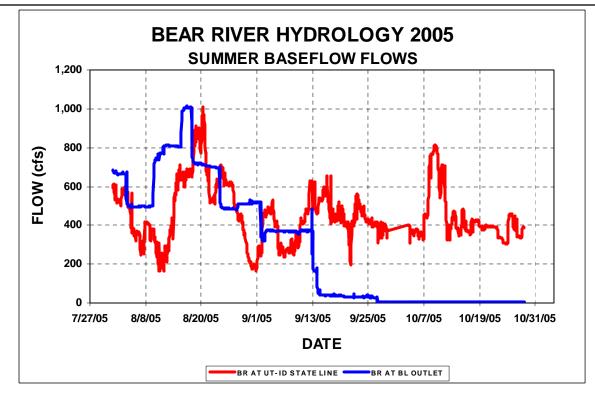


Figure 4-26. Summer base flow for two stations in the Bear River in 2005.

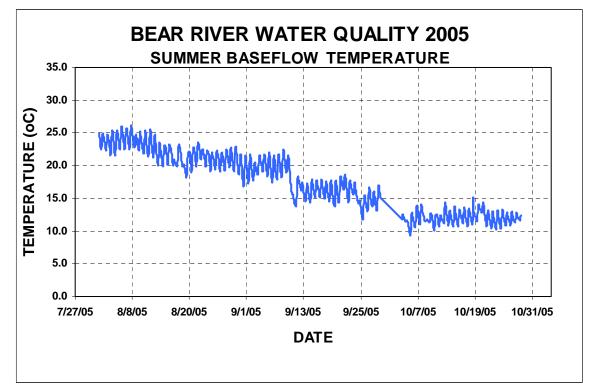


Figure 4-27. Continuous temperature at the monitoring site during SBF05.

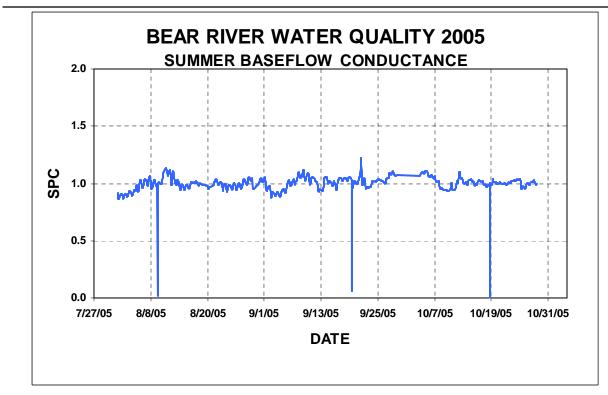
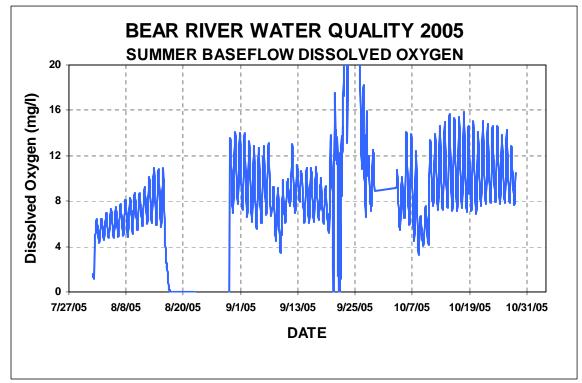



Figure 4-28. Continuous conductance at the monitoring site during SBF05.

Figure 4-29. Continuous dissolved oxygen at the monitoring site during SBF05. Data between 08/16/05 and 08/26/05 were lost due to probe failure.

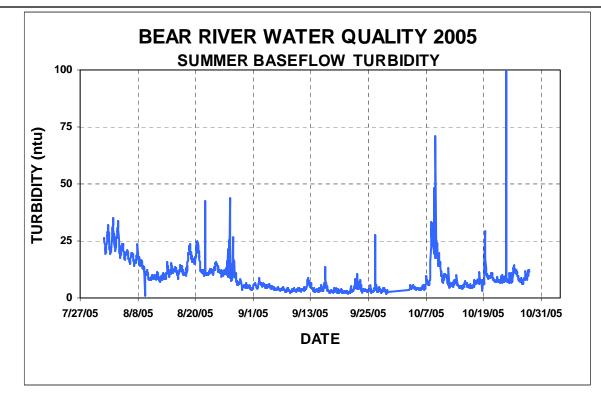
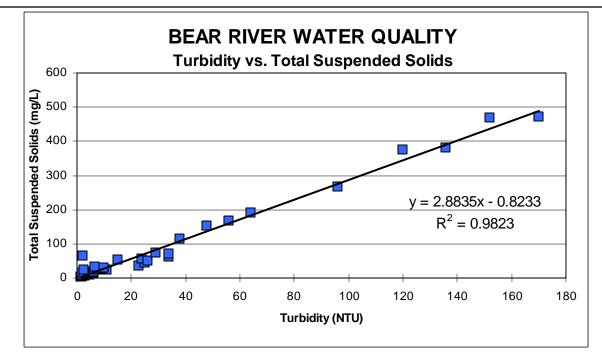
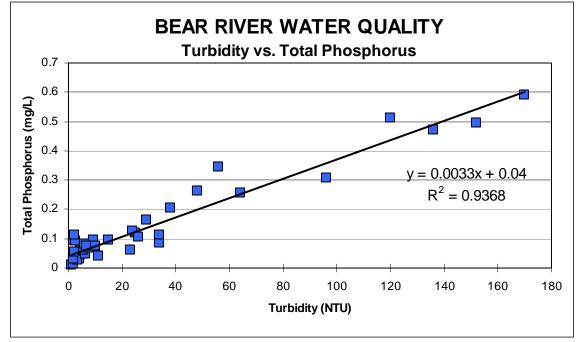
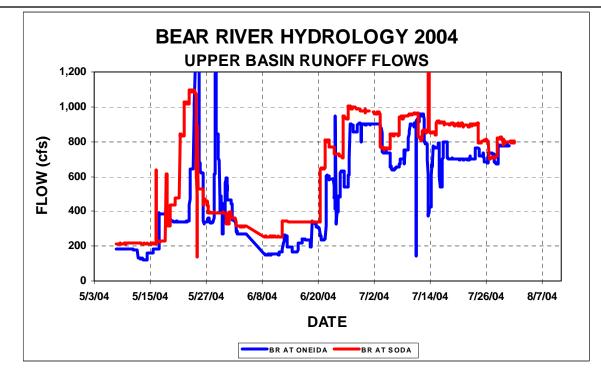




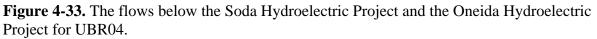
Figure 4-30. Continuous turbidity at the monitoring site during SBF05.

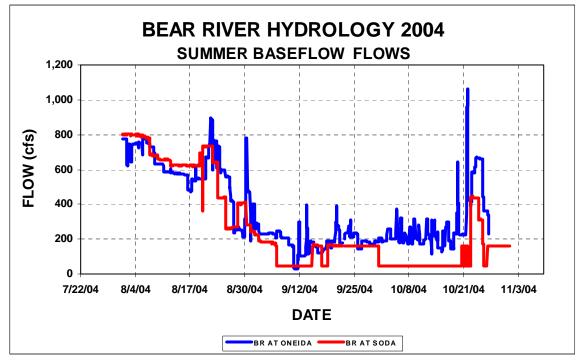
Figure 4-31. The statistical relationship between turbidity and total suspended solids for grab samples collected during the study period.

Figure 4-32. The statistical relationship between turbidity and total phosphorus for grab samples collected during the study period.

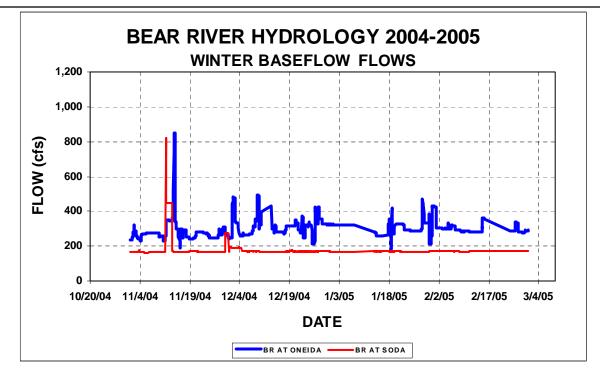
In order to accomplish this goal, the following approach was undertaken. First, the individual hourly data was inspected and divided into "events". An event was defined as an abrupt change in flow conditions as recorded at the USGS stateline station (No. 10092700) lasting at least three hours in length. Typically, events were longer in duration, however, three hours was the threshold for consideration. The event was then categorized as an increasing flow, decreasing flow or stable flow event within the hourly data set. All data was placed into one of the three categories. During the entire study period lasting 18 months, there were 758 events where flow changes occurred. Second, a determination was made as to which of the short-term flow changes were caused by Oneida plant operations. Returning to the hourly-defined events, visual inspection was made between the flows below the Soda plant and flows below the Oneida facility. The assumption was that if flows were different between the two stations, the difference was a result in operational changes at Oneida. The corollary to that assumption is that if no differences were found, then Oneida was under a run-of-river operational mode, with no short-term flow changes.

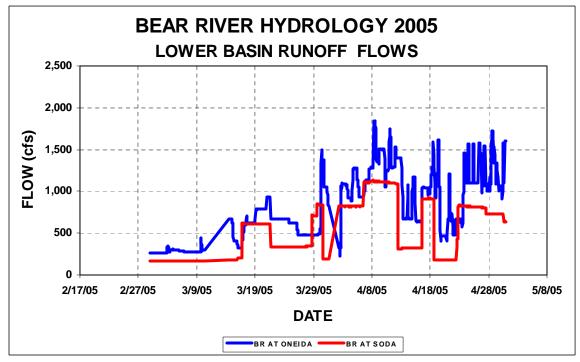

The comparison between these two stations for each hydrologic time period can be seen in Figures 4-33 through 4-38. Inspection of these figures clearly shows the operations of the Oneida project relative to the water made available below Soda and into the headwaters of Oneida Reservoir. It should be noted, depending upon the hydrologic period, the reach of river between the two projects can be a gaining reach due to watershed inputs (i.e. winter base flow) or a losing reach due to irrigation withdrawals via Last Chance Canal (i.e. June and July 2004 and 2005). Given this information, each "event" was further tagged as an operational event. The distribution of the duration of the increasing flow events in hours can be seen in Figure 4-39. These events were typically greater than six hours in length.

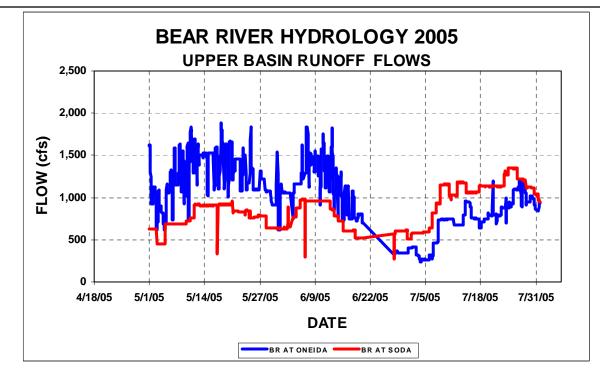

In summary, the hydrologic data which was used at the 3600 South Bridge site was subdivided into "events" based upon flow direction (increasing, decreasing or stable). The data were further categorized based upon operational effects. It should be noted that based upon the information in Section 3.0 of this report, these data also contained tags which indicate storm event influence or the presence of outliers.

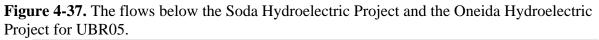

4.9 PacifiCorp Effects

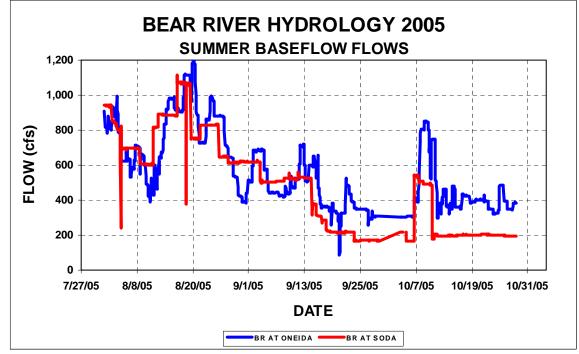
Once constructed, the hydrologic events were investigated on an individual basis for their impacts upon water quality (specifically turbidity). An example of a sequence of events (and their associated event number) for each hydrologic time period is shown in Figures 4-40 through 4-45. For each event, a regression analysis was conducted to determine if a statistically significant relationship was present between the independent variable (flow) and the dependent variable (turbidity). Inspection of these relationships indicated that there were some significant regressions in the increasing and decreasing flow events but not in the stable flow category. Logic dictated that the increasing flow category should be investigated in greater detail given that in the decreasing flow category, the significant relationships demonstrated that with lower flows, turbidity was also lower.

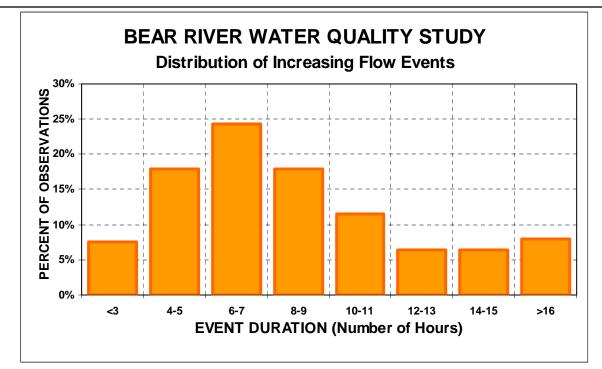

Further analysis of the increasing flow events indicated that they were interspersed throughout the study period. Figure 4-46 shows where these events occurred over the entire 18 month time period. In total, 251 individual hydrologically increasing events were defined.

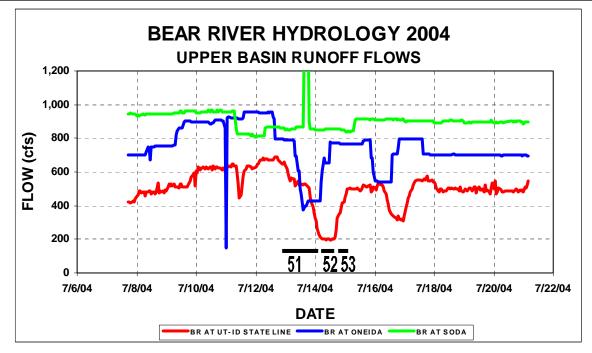


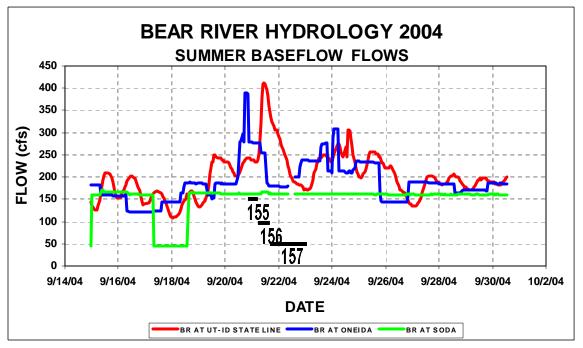

Figure 4-34. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for SBF04.

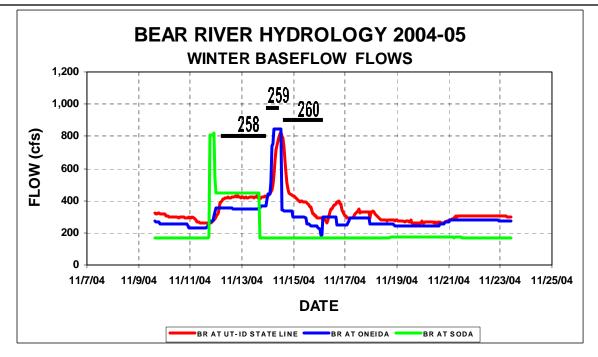


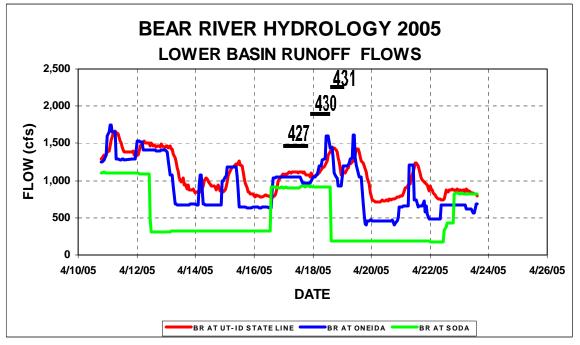

Figure 4-35. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for WBF.

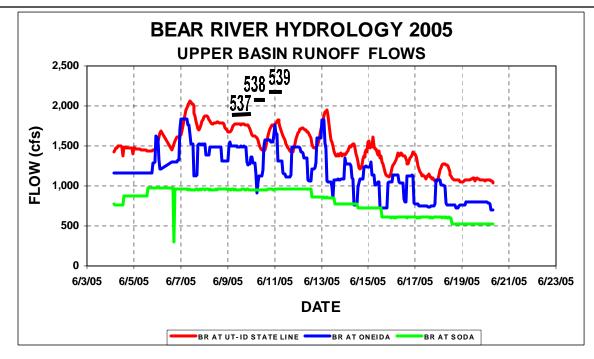

Figure 4-36. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for LBR05.




Figure 4-38. The flows below the Soda Hydroelectric Project and the Oneida Hydroelectric Project for SBF05.


Figure 4-39. The frequency distribution of the duration of the increasing flow events documented below Oneida Reservoir in 2004-2005.


Figure 4-40. An example of three sequential events (All Events Nos. 51, 52, and 53) during UBR04 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station.


Figure 4-41. An example of three sequential events (All Events Nos. 155, 156, and 157) during SBF04 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station.

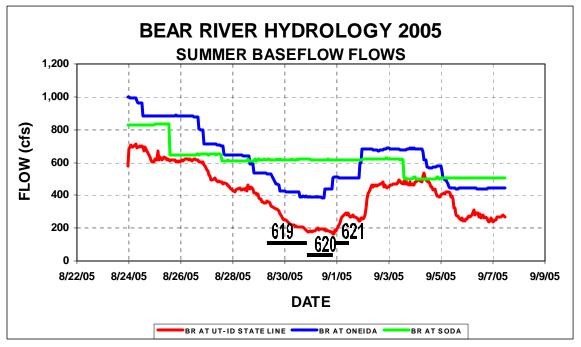

Figure 4-42. An example of three sequential events (All Events Nos. 258, 259, and 260) during WBF in 2004/2005 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station.

Figure 4-43. An example of three sequential events (All Events Nos. 427, 428, and 429) during LBR05 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station.

Figure 4-44. An example of three sequential events (All Events Nos. 537, 538, and 539) during UBR05 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station.

Figure 4-45. An example of three sequential events (All Events Nos. 619, 620, and 621) during SBF05 associated with operational effects due to the Oneida Hydroelectric Project. The timing of the event is associated with the flows at the Utah-Idaho stateline station.

Examples of the linear regressions between flow and turbidity for the events shown in Figures 4-40 through 4-45 are provided in Figures 4-47 through 4-52.

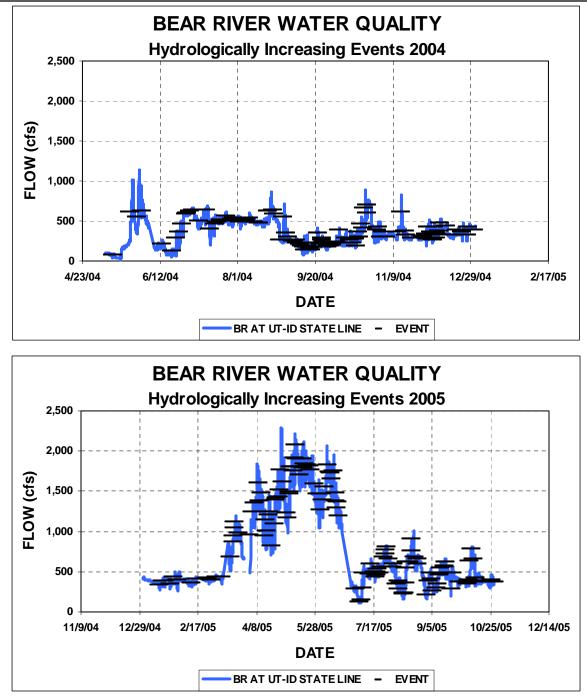
4.10 Statistical Analysis of Increasing Hydrological Effects

As noted above, 251 events were classified as hydrologically increasing. Within this data subset, 15 were compromised by turbidity outliers. The remaining 236 events were subjected to statistical analysis and their characteristics entered into a smaller database. The characteristics of each event in the database are shown in Table 4-1. This database was used in the determination of compliance with the State of Idaho Department of Environmental Quality Water Quality Standards and can be found in Appendix I.

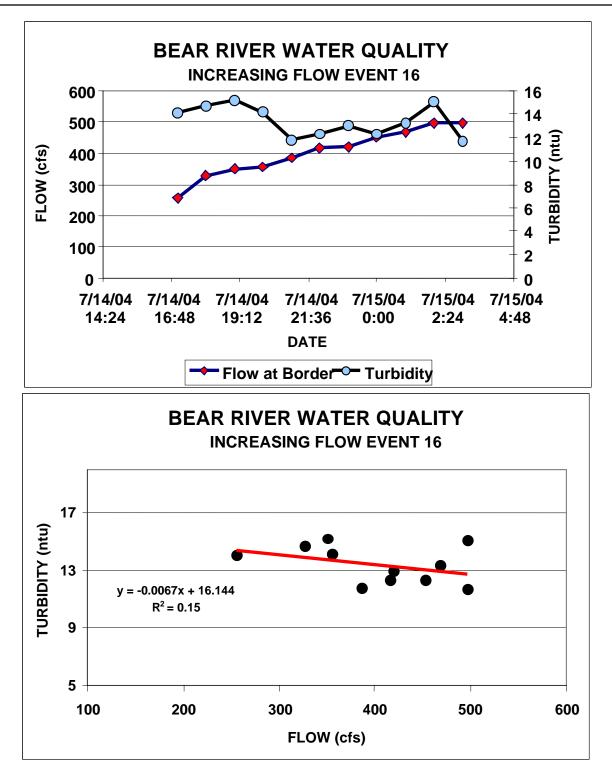
One characteristic of the increasing hydrologic events was the significance levels of each linear regression calculated between the flow and turbidity within the flow event (as shown in Figures 4-46 to 4-51). Inspection of the 236 individual events indicated that only 96 events had a significance level equal to or less than p=0.05. The remaining events did not have a significant linear relationship between flow (as affected by PacifiCorp) and turbidity. It was assumed, therefore, that without a significant relationship, liability for the change in turbidity as a result of flow change could not be assigned to PacifiCorp.

In the 96 remaining events, a comparison was made to the existing numeric criterion for turbidity, as well as the proposed TSS and TP TMDL targets. Specifically the criteria used are as follows.

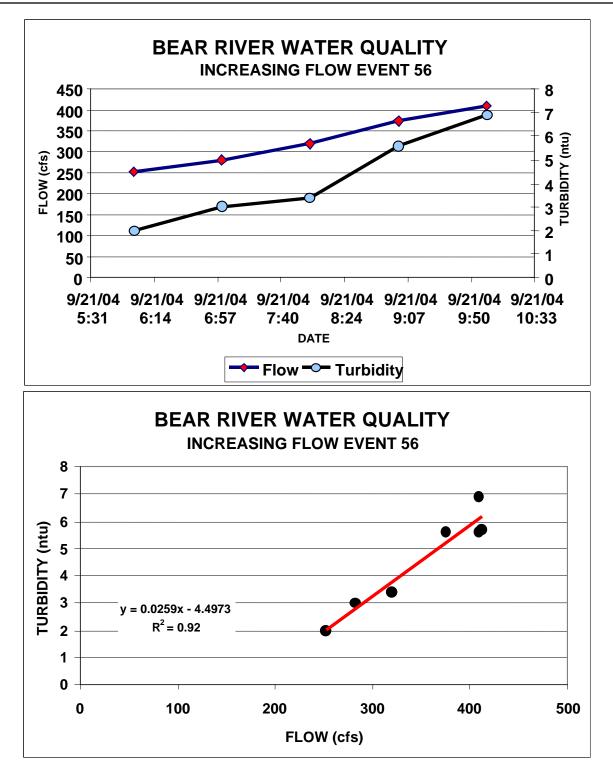
Turbidity Numeric Standard:

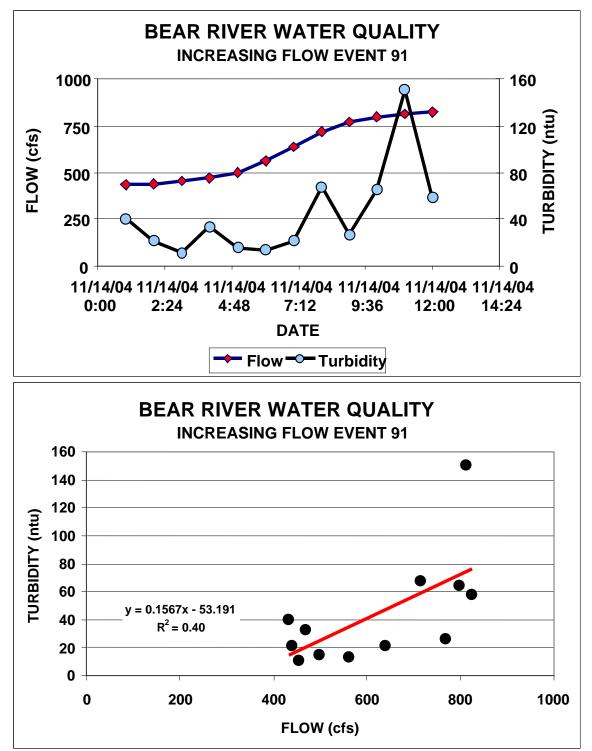

... Turbidity, below any applicable mixing zone set by the Department, shall not exceed background turbidity by more than fifty (50) NTU instantaneously or more than twenty-five (25) NTU for more than ten (10) consecutive days. (IDAPA 58.01.02, Section 250.02.e).

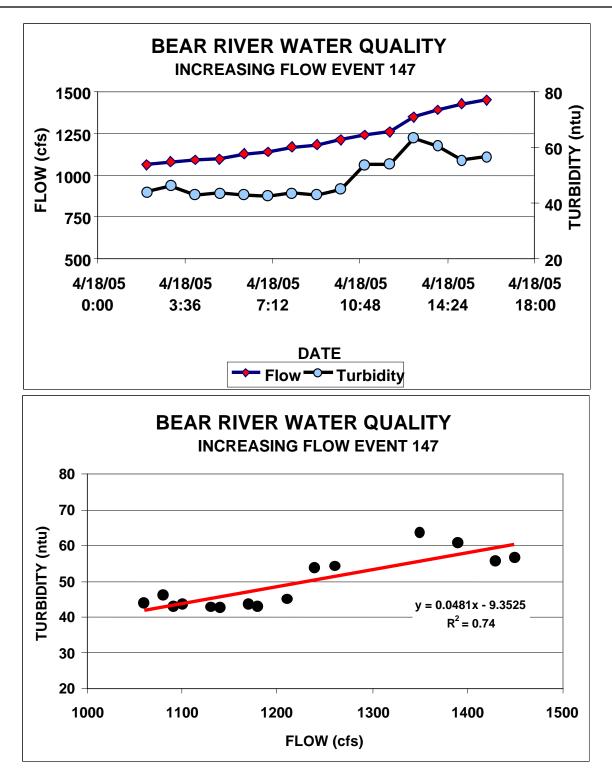
Proposed TMDL Targets:

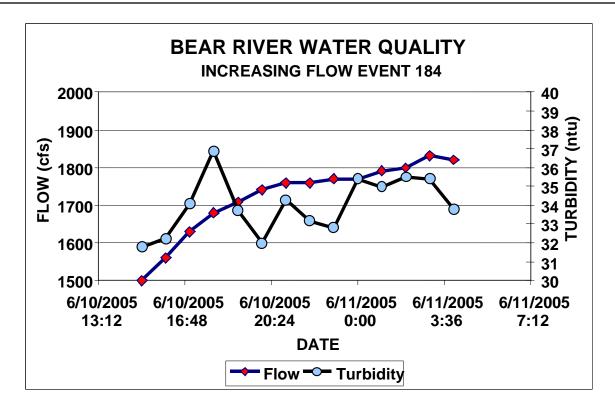

TSS TMDL numbers based on regression equation developed from grab samples collected 2004-2006 (r^2 =0.98). Baseflow TMDL is 60 mg/L TSS (21.6 NTU), runoff TMDL is 80 mg/L TSS (28.6 NTU).

TP TMDL numbers based on regression equation developed from grab samples collected 2004-2006 (r^2 =0.94). To match Utah's existing TMDL value, the TMDL for this reach is 0.050 mg/L TP (15.1 NTU).


The maximum turbidity recorded during the event was compared to the numeric criteria or the TMDL target value. In many cases, this represented a "worst case," in that the ambient turbidity occasionally reached a maximum turbidity at an intermediate flow within the event cycle. The results of this comparison are shown in Table 4-2. Within this table, several different analyses are presented. First, a comparison of the gain in turbidity (initial turbidity subtracted from maximum turbidity) was compared to the delta 50 NTU criterion noted above. In this analysis, no events exceeded this criterion that could be attributed to PacifiCorp operations.


Figure 4-46. The temporal location of the 236 hydrologically increasing events (increasing flow events) during the study period.


Figure 4-47. The temporal (above) and linear regression (below) relationship between flow and turbidity during an Increasing Flow Event (No. 16) in the Bear River during UBR04.


Figure 4-48. The temporal (above) and linear regression (below) relationship between flow and turbidity during an Increasing Flow Event (No. 56) in the Bear River in SBF04.

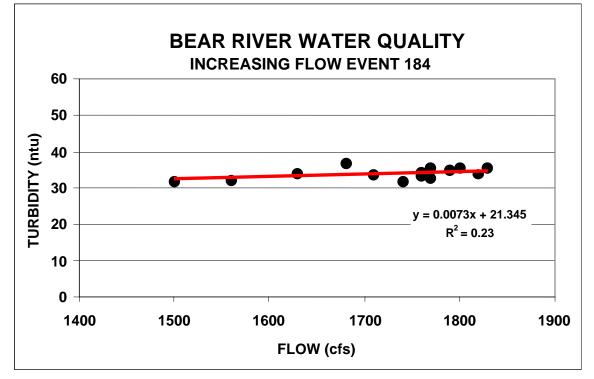


Figure 4-49. The temporal (above) and linear regression (below) relationship between flow and turbidity during an Increasing Flow Event (No. 91) in the Bear River in WBF 2004-2005.

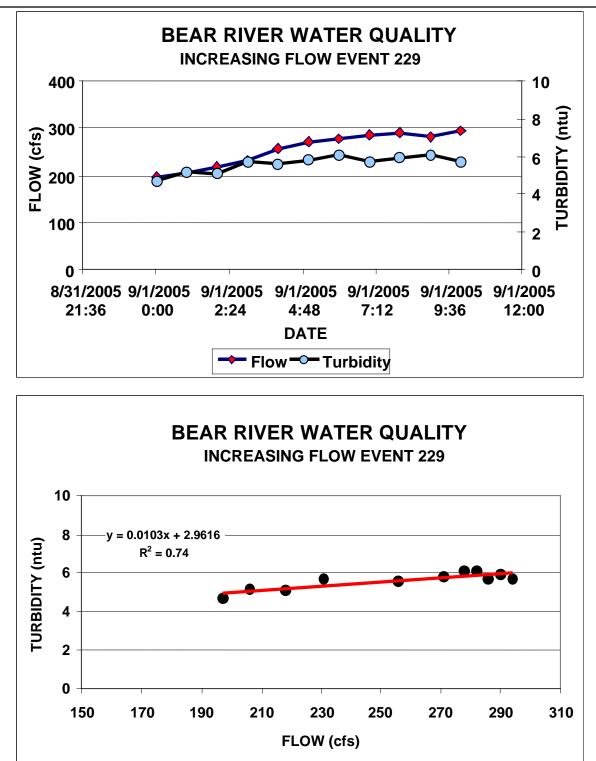


Figure 4-50. The temporal (above) and linear regression (below) relationship between flow and turbidity during an Increasing Flow Event (No. 147) in the Bear River in LBR05.

Figure 4-51. The temporal (above) and linear regression (below) relationship between flow and turbidity during an Increasing Flow Event (No. 184) in the Bear River in UBR05.

Figure 4-52. The temporal (above) and linear regression (below) relationship between flow and turbidity during an Increasing Flow Event (No. 229) in the Bear River in SBF05.

Table 4-1. Characteristics of the hydrologically increasing event database.

Turbidity

Average Change in turbidity Maximum Minimum Standard deviation Count Turbidity at start of event Turbidity at end of event

Stage and Flow at UT-ID border

Change in stage Maximum stage Minimum stage Change in flow Maximum flow Minimum flow

Flow at Oneida

Change in flow Maximum flow Minimum flow

Flow at Soda

Change in flow Maximum flow Minimum flow

Analysis Characteristics

Regression X-coefficient Regression Constant Regression r2 ANOVA Significance

Miscellaneous Characteristics

Number of Hours Included Hydrologic Time Period Rain Event or Outlier tag **Table 4-2.** Percent exceedence of IDEQ's current numeric criterion for turbidity and proposed TSS and TP TMDL targets (calculated from turbidity data) in database events categorized as hydrologically-increasing and statistically significant at the 0.05 level. Exceedence was based on whether the maximum turbidity recorded in the event exceeded criteria.

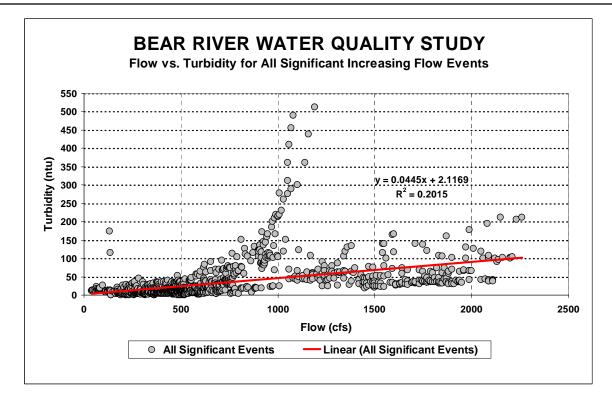
	Storm-related		Operations-related		TOTAL	
	%	Ν	%	Ν	%	Ν
IDEQ Turbidity Criterion ^a	3.8	9	0	0	3.8	9
Non-exceedence events that su	bsequently e	xceeded cr	iteria (turbst	art < criterio	on)	
TSS TMDL (Baseflow) ^b	0.4	1	0.8	2	1.3	3
TSS TMDL (Runoff) ^b	1.7	4	2.1	5	3.8	9
TP TMDL ^c	2.1	5	4.2 (2.5)	10	6.4	15
Events already in exceedence (turbstart > cr	iterion)				
TSS TMDL (Baseflow) ^b	0.4	1	0.4	1	0.8	2
TSS TMDL (Runoff) ^b	5.5	13	6.4	15	11.9	28
TP TMDL ^c	7.6	18	11.0 (5.5)	26	18.6	44
All exceedence events	·					
TSS TMDL (Baseflow) ^b	0.8	2	1.3	3	2.1	5
TSS TMDL (Runoff) ^b	7.2	17	8.5	20	15.7	37
TP TMDL ^c	9.7	23	15.3 (8.1)	36	25.0	59

^a Turbidity, below any applicable mixing zone set by the Department, shall not exceed background turbidity by more than fifty (50) NTU instantaneously or more than twenty-five (25) NTU for more than ten (10) consecutive days. (IDAPA 58.01.02, Section 250.02.e).

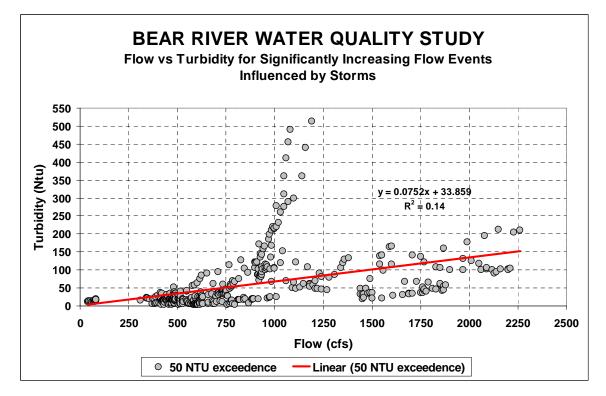
^b TSS TMDL numbers based on regression equation developed from grab samples collected 2004-2006 (r2=0.98). Baseflow TMDL is 60 mg/L TSS (21.6 NTU), runoff TMDL is 80 mg/L TSS (28.6 NTU).

^c TP TMDL numbers based on regression equation developed from grab samples collected 2004-2006 (r2=0.94). To match Utah's existing TMDL value, the TMDL for this reach is 0.050 mg/L TP (15.1 NTU). The number in parentheses is the percent attributed to PacifiCorp if the TMDL was 0.075 mg/L TP (22.7 NTU), in accordance with EPA guidelines and waters without receiving bodies.

However, the analysis indicated that nine events (3.8%) related to storms did exceed this criterion.


In the comparison to the proposed TSS and TP TMDL target concentrations, two separate comparisons were made. The first comparison was the environmental condition where the initial turbidity was less than the target concentration, but the maximum turbidity during the event exceeded the target level. Under these conditions, storms accounted for five events exceeding the TSS target and PacifiCorp operations accounted for seven exceedence events. For the TP TMDL target (the most stringent of the two targets), storms accounted for five events and PacifiCorp accounted for 10 events (4.2% of the total increasing flow observations or 1.3% of all event observations).

The second comparison was for those increasing flow events where the starting turbidity was already in excess of the TMDL target. In this comparison, storms accounted for 14 events which added total suspended solids to the river already in excess of the target TSS level. PacifiCorp operations accounted for 16 events in this category. In a similar manner, the TP TMDL target had 18 events starting in excess but added to by storms and PacifiCorp had 26 events which added total phosphorous to the water via flow increases.


Further inspection of the "storm-related" category is warranted as it is believed these values are compromised due to external factors and should be treated as separate from PacifiCorp operations. In Appendix I, a summary has been provided which describes the Increasing Flow Event number and the environmental conditions (flow, start turbidity, etc) associated it. Appendix II is a table which expands the storm-influenced events to the hourly data associated within. In the storm-influenced category, 25 events had significant relationships with turbidity and flow. Of these 25 events, 19 were found to exceed the TSS TMDL criteria, either starting below or over the criteria. Inclusive in these 19 events were the 9 instantaneous delta 50 NTU criteria exceedences. A plot of the turbidity/flow relationships for three separate categories is provided in Figure 4-53 to Figure 4-55.

In Figure 4-53, hourly data for all significant (p=0.05) regression relationships are plotted as flow vs. turbidity. For the entire data set (all 96 events), the statistical relationship between the two parameters had a coefficient of variation of only 0.20. This indicates that when the entire data sets are combined, flow only explains 20 percent of the variation in turbidity. Inspection of Figure 4-54 shows that the relationship of storm-influenced events (flow vs. turbidity) had a coefficient of variation of 0.14, while the relationship of all significant events that were not storm-influenced had the highest coefficient of variation (0.40). This analysis indicates that removal of storm-influenced events results in a better relationship between flow and turbidity in the Bear River at the UT-ID border station."

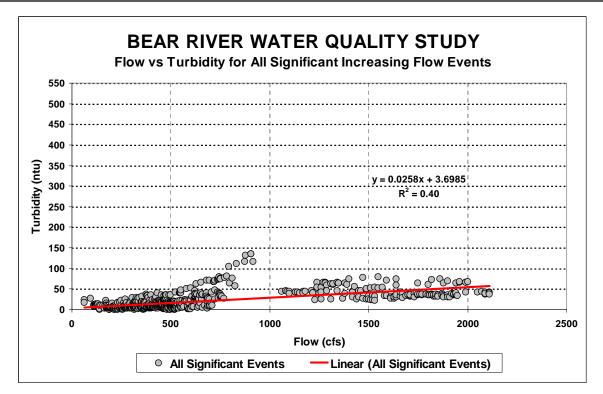

In Table 4-3, a detailed summary of the individual events that had statistically significant relationships between flow and turbidity but were removed from the analysis of operational effects is shown. As can be seen from this summary, tagged events occurred in all hydrological time periods, with some resulting in exceedences of state criteria or standards. These events are not considered in the analysis because of the uncertainty of the influence of the storms to the ambient turbidity.

Figure 4-53. The hourly data for all significant increasing flow events comparing flow and turbidity in the Bear River at the Idaho-Utah state border.

Figure 4-54. The hourly data for all significantly increasing flow events comparing flow and turbidity at the Idaho-Utah state border for just outlier and storm-influenced events.

Figure 4-55. The hourly data for all significantly increasing flow events comparing flow and turbidity at the Idaho-Utah state border after removing outlier and storm-influenced events.

			Turbid	ity (NTU)						
Event ID	Hours					Flow Change	Hydro Period	Precip (1/100in	R2	ANOVA SIG
		Average	Delta Change	Starting	Ending)		
1	17	15	7.8	13.5	19.5	44	UBR	2	0.356	0.009
2	29	49	106	16	104	689	UBR	69	0.926	0
3	24	59	133	23	152	698	UBR	152	0.963	0
14	79	18	39.3	15.6	25.2	215	UBR	33	0.198	0
32	38	7	16	12.6	8.3	395	SBF	2.05	0.179	0.007
81	11	10	11.8	5.5	17.3	87	SBF	204	0.794	0
134	15	119	196.3	86.4	278.3	97	LBR	12	0.809	0
136	5	363	237.2	275.6	512.8	140	LBR	11	0.906	0.003
137	20	233	371.3	120.8	490.2	177	LBR	52	0.848	0
139	11	85	84.9	50.9	133.9	290	LBR	76	0.905	0
145	11	58	27	71.5	44.5	350	LBR	9	0.835	0
149	32	64	88.2	33.9	90.5	523	LBR	108	0.75	0
155	14	133	164.6	47.5	211.2	820	LBR	155	0.879	0
162	6	62	13.9	68.4	54.5	210	UBR	39	0.823	0.005
165	14	117	67.4	140.4	99.6	660	UBR	60	0.698	0
166	6	110	39.8	130.6	90.8	170	UBR	17	0.959	0
179	6	35	4.4	33.6	36.4	60	UBR	31	0.809	0.006
181	6	25	16.4	18.4	34.8	240	UBR	25	0.898	0.001
182	4	47	8	51.3	44.9	110	UBR	68	0.931	0.008
183	6	39	13.6	33.3	40	90	UBR	17	0.614	0.037
224	11	14	9.1	10.6	19.7	230	SBF	5	0.818	0
225	34	21	8.1	22.4	24.8	198	SBF	5	0.592	0.002
237	7	6	3.7	4.2	7.8	157	SBF	15	0.937	0
243	7	6	4.3	4	7.1	134	SBF	29	0.698	0.01
248	16	22	27.6	5.6	26.1	308	SBF	15	0.888	0

Table 4-3. The details of the storm-influenced events that had significant relationships between flow and turbidity. These tagged events were removed from further analysis relative to operational effects due to PacifiCorp. Hourly data for these events are included in Appendix II.

5.0 DISCUSSION

This report has described the existing water quality conditions encountered at the 3600 South Street Bridge and placed the current water quality data collected into an historical perspective. The water quality conditions encountered during 2004 and 2005 fit into this historical framework. In 2004, flows in the Bear River were low when compared to historical watershed yields. This low flow resulted in water quality conditions similar to other low water years. In a similar manner, 2005, a much wetter year, reflected historical data from wetter years.

Comparisons between various gaging stations allowed the dissection of PacifiCorp operations at the Oneida facility when compared to background conditions. Further refining of hydrology into "events" where micro flow changes had occurred allowed an analysis of just increasing flow events associated with a ramping operations. Within this data set, only a fraction of the events had direct links between a change in flow (PacifiCorp operational effect) and a change in turbidity. Of that subset, no events exceeded the numeric state standard and only a few contributed to an exceedence of the proposed TMDL targets for total suspended solids and total phosphorus.

The general observation has been that historical ramping at the Oneida Hydroelectric Project has resulted in increased total suspended solids within the Bear River due to the destabilization of stream banks. In order to further investigate the possible mechanism of turbidity increases associated with increasing flow events, we used the database developed for this investigation to develop a predictive empirical model. Using a multiple regression approach, the following regression equation was built which predicts the final turbidity concentration at the 3600 South Bridge site.

Final Event Turbidity =	15.93+1.01*(Turbidity at Event Start)
	+ 0.032*(Event Flow Change at Border)
	- 1.716*(Maximum Event Stage at Border)
	- 0.033*(Number of Event Hours)

This statistical relationship had a coefficient of variation (r^2) of 0.93. It is interesting to note that both maximum event stage and event duration had negative regression coefficients indicating that the higher the maximum stage and the longer the event, the lower the final turbidity (assuming the two other variables are the same).

6.0 REFERENCES

Barker, K.W., D.L. Sorensen, J.C. Anderson, J.M. Ihnat. 1989. Bear River Water Quality: Bioavailable Phosphorus Measurement, Sources and Control. UWRL, Utah State University, Logan, Utah.

Clyde, C.G. 1953. Sediment Movement in Bear River, Utah. A Thesis Submitted to the Civil Engineering Department, Utah State University. Logan, Utah.

Ecosystems Research Institute. 1991. Water Quality Investigations: Lower Bear River. Prepared for Utah Department of Natural Resources, Division of Water Resources, and Utah Department of Environmental Quality, Division of Water Quality. Logan, Utah

Ecosystems Research Institute. 1998. Water Quality Study for the Bear River in Idaho. Logan, Utah.

Haws, F.W. and T.C. Hughes. 1973. Hydrologic Inventory of the Bear River Study Unit. UWRL, Utah State University, Logan, Utah.

Heimer, J.T. 1978. Turbidity concentrations and suspended sediment discharge in streams in southeastern Utah. Idaho Department of Fish and Game, Region 5.

Hill, R.W., E.K. Israelsen, and P.J. Riley. 1973. Computer Simulation of the hydrologic and salinity flow systems within the Bear River basin. Research Project Technical Completion Report. OWRT. Utah State University. Logan, Utah.

Mackenthun, K. M. 1973. Toward a cleaner environment. U. S. Environmental Protection Agency, Washington, D. C.

Perry, J. 1978. Water Quality Status Report. Bear River (Wyoming Border to the Utah Border). Idaho department of Health and Welfare, Division of Environment. Pocatello, Idaho.

Sorensen, D.L., C.W. Ariss, P. Ludrigsen, S.Eberl, W.J. Greeney, V.D. Adams. 1984. Water Quality Management Studies for Water Resources Development in the Bear River Basin: Second Progress Report. Utah Water Research Laboratory, Utah State University, Logan, Utah.

Sorensen, D.L., C. Caupp, W.J. Grenney. S Eberl, J.J. Messer, P. Ludrigsen, C.W. Ariss. 1986. Water Quality Management Studies of water Resources Development in the Bear River Basin. Utah Water Research Laboratory, Utah State University. Logan, Utah.

Waddell, K.M. 1970. Quality of Surface Water in the Bear River Basin, Utah, Wyoming and Idaho. Utah Basic Data Release No. 18. U.S. Geological Survey in Cooperation with the Utah Division of Water Rights.

APPENDIX I. Hydrologically Increasing Events Dataset

EVENT I	D Hours	TurbAvg	TurbChan	igeTurbMax	TurbMin	TurbSTD	TurbN	TurbStart	TurbEnd	BorderSta	ge Borderflov	wc Oneidaflov	vcSodaflowc	naHydroPer	io Code	MaxOfBo	ord MinOfBo	rdeMaxOfBor	d MinOfBor	deMaxOfSod	la MinOfSod	la MaxOfOn	ei MinOfOne	eidX-coeff	Constant	R2	Anova Sig
1	17	116	70	10.5	117	22	10.0	125	10.5	Change	hange	hange	nge		1.0	erStage	rStage	erFlow	rFlow	Flow 221 0	Flow	daFlow	aFlow	0.1	0 1	0.4	0.0
1	17 29	14.6 49.2	7.8 106.0	19.5 122.0	11.7 16.0	2.3 35.2	18.0 30.0	13.5	19.5 104.0	0.4	44.0 689.0	2.0 628.0	6.0 960.0	UBR UBR	1.0	8.6 11.3	8.2	82.0 1000.0	38.0 311.0	221.0 1096.0	215.0 136.0	130.0 1271.0	128.0 643.0	0.1	8.2 -52.5	0.4 0.9	0.0 0.0
2	29	49.2 58.9	133.0	122.0	19.0	40.7	25.0	16.0 23.0	152.0	1.9 1.9	698.0	1118.0	900.0 6.0	UBR	1.0	11.3	9.5 9.5	1000.0	342.0	398.0	392.0	1271.0	338.0	0.2 0.2	-52.5	1.0	0.0
5 Л	24 16	23.8	133.0	31.0	20.0	3.3	17.0	20.0	28.0	0.6	220.0	147.0	63.0	UBR	1.0	10.7	10.1	757.0	537.0	392.0	329.0	592.0	445.0	0.2	0.3	0.8	0.0
+ 5	9	12.4	2.7	13.5	10.8	0.9	10.0	11.5	10.8	0.3	83.0	64.0	11.0	UBR		9.4	9.1	260.0	177.0	392.0	336.0	260.0	196.0	0.0	13.7	0.0	0.6
6	24	12.4	6.6	13.5	7.6	1.5	24.0	12.7	11.3	0.5	90.0	67.0	0.0	UBR		9.4 9.0	8.5	156.0	66.0	341.0	341.0	200.0 334.0	267.0	0.0	10.4	0.0	1.0
7	19	17.0	14.9	27.1	12.2	3.7	19.0	22.8	18.6	1.1	311.0	23.0	38.0	UBR		9.6	8.5	375.0	64.0	807.0	769.0	604.0	581.0	0.0	24.0	0.5	0.0
8	17	29.5	22.3	36.8	14.5	7.6	18.0	14.7	35.2	0.9	323.0	151.0	238.0	UBR		10.0	9.1	497.0	174.0	945.0	707.0	632.0	481.0	0.1	5.1	0.8	0.0
9	7	33.7	18.3	45.2	26.9	7.1	8.0	29.1	45.2	0.8	292.0	1.0	10.0	UBR		10.3	9.6	620.0	328.0	999.0	989.0	899.0	898.0	0.1	5.4	0.9	0.0
10	30	32.7	15.1	40.1	25.0	3.7	31.0	34.8	36.0	0.2	60.0	113.0	10.0	UBR		10.3	10.2	617.0	557.0	987.0	977.0	909.0	796.0	0.0	11.7	0.0	0.4
11	41	27.1	10.1	31.4	21.3	2.6	31.0	31.3	29.2	0.1	46.0	6.0	18.0	UBR		10.3	10.2	624.0	578.0	985.0	967.0	903.0	897.0	-0.1	68.4	0.1	0.1
12	15	24.8	8.3	30.5	22.2	2.2	16.0	22.9	24.4	0.2	63.0	1.0	10.0	UBR		10.4	10.3	658.0	595.0	971.0	961.0	902.0	901.0	0.0	43.6	0.1	0.3
13	13	22.3	7.2	25.2	18.0	2.0	14.0	24.4	18.0	0.1	37.0	158.0	194.0	UBR		10.4	10.3	661.0	624.0	959.0	765.0	900.0	742.0	-0.1	68.5	0.2	0.1
14	79	18.5	39.3	52.4	13.1	5.7	80.0	15.6	25.2	0.6	215.0	247.0	127.0	UBR	1.0	10.4	9.8	631.0	416.0	967.0	840.0	902.0	655.0	0.0	-1.2	0.2	0.0
15	29	17.1	5.9	20.3	14.4	1.5	30.0	14.4	18.9	0.6	228.0	157.0	62.0	UBR		10.5	9.9	692.0	464.0	868.0	806.0	956.0	799.0	0.0	10.8	0.1	0.1
16	10	13.4	3.5	15.2	11.7	1.3	11.0	14.1	11.7	0.6	241.0	6.0	18.0	UBR		10.0	9.4	497.0	256.0	856.0	838.0	772.0	766.0	0.0	16.1	0.2	0.2
17	9	10.9	2.9	12.4	9.5	0.8	10.0	9.5	11.3	0.5	210.0	0.0	7.0	UBR		10.1	9.6	547.0	337.0	903.0	896.0	798.0	798.0	0.0	7.1	0.5	0.0
18	4	12.1	6.1	15.3	9.2	2.8	5.0	9.2	15.3	0.1	26.0	0.0	0.0	UBR		10.0	10.0	505.0	479.0	901.0	901.0	701.0	701.0	0.2	-100.4	0.6	0.1
19	6	7.2	1.5	7.6	6.1	0.5	7.0	7.6	7.5	0.2	65.0	5.0	8.0	UBR		10.2	10.0	547.0	482.0	895.0	887.0	701.0	696.0	0.0	18.0	0.6	0.0
20	7	7.2	2.4	8.3	5.9	0.8	8.0	7.4	8.2	0.2	79.0	16.0	8.0	UBR		10.2	10.0	550.0	471.0	900.0	892.0	717.0	701.0	0.0	3.4	0.1	0.6
21	5	7.0	1.3	7.8	6.5	0.5	6.0	6.5	6.7	0.2	79.0	0.0	8.0	UBR		10.3	10.1	606.0	527.0	908.0	900.0	763.0	763.0	0.0	5.4	0.0	0.7
22	15	6.1	1.7	6.8	5.1	0.5	16.0	5.7	5.3	0.2	82.0	5.0	11.0	UBR		10.2	10.0	553.0	471.0	711.0	700.0	733.0	728.0	0.0	12.8	0.3	0.0
23	11	1.1	1.4	2.1	0.7	0.4	12.0	1.4	1.2	0.3	94.0	0.0	15.0	UBR		10.1	9.9	540.0	446.0	825.0	810.0	774.0	774.0	0.0	4.3	0.2	0.1
24	4	1.2	0.2	1.3	1.1	0.1	5.0	1.2	1.3	0.0	17.0	0.0	4.0	UBR		10.2	10.1	547.0	530.0	798.0	794.0	774.0	774.0	0.0	-2.7	0.3	0.4
25	10	1.5	2.9	3.9	1.0	0.8	11.0	1.1	3.9	0.0	10.0	0.0	8.0	UBR		10.2	10.1	547.0	537.0	802.0	794.0	774.0	774.0	0.0	21.4	0.0	0.6
26	8	0.3	0.5	0.5	0.0	0.1	9.0	0.0	0.4	0.2	73.0	80.0	12.0	SBF		10.1	9.9	512.0	439.0	805.0	793.0	724.0	644.0	0.0	-1.3	0.3	0.1
27	9	0.8	1.1	1.4	0.3	0.4	10.0	0.3	1.1	0.1	41.0	1.0	4.0	SBF		10.1	10.0	523.0	482.0	801.0	797.0	750.0	749.0	0.0	-8.9	0.5	0.0
28	9	1.4	1.0	1.9	0.9	0.3	10.0	0.9	1.2	0.2	73.0	5.0	0.0	SBF		10.2	10.0	537.0	464.0	785.0	785.0	781.0	776.0	0.0	0.9	0.0	0.8
29	10	3.2	6.2	7.2	1.0	2.1	11.0	2.2	1.2	0.3	106.0	40.0	8.0	SBF		10.3	10.0	599.0	493.0	687.0	679.0	730.0	690.0	0.0	20.8	0.5	0.0
30	22	22.4	9.4	28.0	18.6	2.4	23.0	23.8	28.0	0.2	56.0	0.0	7.0	SBF		10.1	10.0	516.0	460.0	660.0	653.0	583.0	583.0	0.0	17.4	0.0	0.8
31	12	18.7	12.8	24.9	12.1	4.4	13.0	24.9	12.1	0.1	37.0	0.0	3.0	SBF		10.1	10.0	501.0	464.0	623.0	620.0	575.0	575.0	-0.4	188.5	0.8	0.0
32	38	7.2	16.0	18.9	2.9	3.6	39.0	12.6	8.3	0.9	395.0	301.0	97.0	SBF	1.0	10.9	10.0	866.0	471.0	737.0	640.0	896.0	595.0	0.0	17.4	0.2	0.0
33	7	5.2	2.5	6.5	4.0	0.9	8.0	5.7	4.2	0.3	124.0	154.0	8.0	SBF		10.5	10.3	684.0	560.0	644.0	636.0	763.0	609.0	0.0	15.2	0.7	0.0
34	5	15.2	8.4	18.9	10.5	2.9	6.0	16.5	14.0	0.3	110.0	0.0	0.0	SBF	1.0	10.5	10.2	650.0	540.0	438.0	438.0	605.0	605.0	0.0	-1.7	0.2	0.3
35	9	5.1	2.9	6.6	3.7	1.0	10.0	3.9	6.6	0.1	36.0	0.0	9.0	SBF		9.5	9.4	278.0	242.0	408.0	399.0	250.0	250.0	0.1	-13.1	0.8	0.0
36	8	12.5	8.9	15.7	6.8	3.8	8.0	6.8	14.5	1.2	458.0	4.0	5.0	SBF		10.6	9.4	707.0	249.0	284.0	279.0	474.0	470.0	0.0	0.8	0.9	0.0
37	5	4.8	1.7	5.7	4.0	0.6	6.0	4.3	5.7	0.3	136.0	3.0	0.0	SBF		9.8	9.5	399.0	263.0	244.0	244.0	400.0	397.0	0.0	3.1	0.2	0.4
38	6	4.2	0.7	4.6	3.9	0.2	7.0	4.2	4.2	0.0	17.0	60.0	36.0	SBF		9.6	9.5	307.0	290.0	223.0	187.0	288.0	228.0	0.0	7.2	0.1	0.6
39	12	4.8	0.8	5.1	4.3	0.2	13.0	4.7	5.1	0.1	29.0	0.0	0.0	SBF		9.5	9.4	278.0	249.0	185.0	185.0	228.0		0.0	1.4	0.2	0.1
40	10	17.0	9.0	22.2	13.2	3.3	11.0	13.6	16.7	0.1	45.0	0.0	9.0	SBF	0.0	9.5	9.3	260.0	215.0	184.0	175.0	233.0	233.0	0.1	-10.9	0.3	0.1
41	9	28.5	17.3	36.8	19.5	6.0	10.0	19.5	35.8	0.1	42.0	22.0	15.0	SBF	2.0	9.5	9.3	260.0	218.0	176.0	161.0	229.0		0.3	-42.5	0.5	0.0
42	15	52.0	85.4	98.7	13.3	25.2	15.0	98.7	22.0	0.2	78.0	19.0	0.0	SBF	2.0	9.5	9.3	278.0	200.0	46.0	46.0	248.0	229.0	-0.1	75.6	0.0	0.7
43	7	34.0	56.5	78.3	21.8	18.6	8.0	22.8	29.2	0.1	44.0	0.0	0.0	SBF	2.0	9.5	9.4	275.0	231.0	46.0	46.0	208.0	208.0	0.1	19.7	0.0	0.9
44	11	45.4	105.5	115.1	9.6	34.9	12.0	37.2	14.4	0.2	67.0	23.0	0.0	SBF	2.0	9.4	9.2	249.0	182.0	46.0	46.0	208.0	185.0	-0.4	142.8	0.1	0.3
45	8	78.1	131.6	177.3	45.7	48.7	8.0	177.3	129.2	0.1	40.0	3.0	0.0	SBF	2.0	9.4	9.2	228.0	188.0	46.0	46.0	167.0		-1.6	420.8	0.2	0.2
46	8	114.7	45.8	145.2	99.4	16.8	6.0	121.1	113.5	0.2	47.0	0.0	0.0	SBF	2.0	9.3	9.1	203.0	156.0	46.0	46.0	31.0	31.0	0.1	105.2	0.0	0.9
47	6	145.5	151.5	210.3	58.8	63.1	4.0	210.3	58.8	0.9	242.0	2.0	0.0	SBF	2.0	9.6	8.7	315.0	73.0	46.0	46.0	105.0	103.0	-0.5	228.4	0.7	0.1
48	7	49.1	173.3	174.0	0.7	76.3	6.0	174.0	0.9	0.0	8.0	287.0	0.0	SBF	2.0	9.0	9.0	139.0	131.0	46.0	46.0	394.0	107.0	-22.0		0.9	0.0
49 50	11	5.4	12.5	13.9	1.4	4.1	12.0	1.7	8.3	0.8	217.0	71.0	0.0	SBF	2.0	9.6	8.8	320.0	103.0	46.0	46.0	187.0	116.0	0.0	1.9	0.1	0.3
50 51	10	7.0	28.0	29.4	1.4	9.5	11.0	2.4	21.1	0.3	83.0	22.0	12.0	SBF	2.0	9.3	9.0	209.0	126.0	172.0	160.0	182.0	160.0	0.0	0.5	0.0	0.1
51	11	6.2	13.5	15.2	1.7	4.8	10.0	2.1	6.2	0.2	49.0	38.0	7.0	SBF	2.0	9.3	9.1	203.0	154.0	167.0	160.0	160.0	122.0	0.0	9.6	0.0	0.8
52 52	13	13.0	36.3	40.5	4.2	12.6	9.0	9.2	4.2	0.1	24.0	2.0	114.0	SBF	2.0	9.1	9.0	166.0	142.0	160.0	46.0	124.0	122.0	0.7	-90.9	0.2	0.2
53	20	39.1	122.3	133.1	10.8	37.2	17.0	114.6	11.2	0.3	62.0	47.0	119.0	SBF	2.0	9.1	8.9	169.0	107.0	165.0	46.0	190.0	143.0	0.0	35.2	0.0	0.9

EVENT II	0 Hours	TurbAvg	TurbCha	ngeTurbMax	TurbMin	TurbSTD	TurbN	TurbStar	t TurbEnd		0	wc Oneidaflov	wcSodaflowc	haHydroPer	io Code			rdeMaxOfBo						eidX-coeff	Constant	R2	Anova Sig
54	13	15.0	71.0	74.4	3.4	19.4	12.0	7.9	18.6	Change 0.4	<u>hange</u> 114.0	hange 37.0	<u>nge</u> 0.0	d SBF	1.0	erStage 9.4	rStage 9.0	erFlow 249.0	<u>rFlow</u> 135.0	Flow 165.0	Flow 165.0	daFlow 187.0	aFlow 150.0	0.2	-23.4	0.2	0.1
54 55	8	11.1	53.3	55.1	1.8	19.4	8.0	18.4	1.9	0.4	36.0	149.0	2.0	SBF	2.0	9.4 9.4	9.0	249.0	206.0	165.0	163.0	390.0	241.0	-0.7	-23.4 163.9	0.2	0.1
56	6	4.6	4.9	6.9	2.0	1.8	7.0	2.0	5.6	0.1	160.0	22.0	4.0	SBF	2.0	9.8	9.4	412.0	252.0	167.0	163.0	276.0	254.0	0.0	-4.5	0.9	0.2
50 57	15	2.5	3.1	4.8	1.7	0.9	16.0	2.5	1.7	0.2	75.0	40.0	0.0	SBF		9.4	9.2	249.0	174.0	161.0	161.0	276.0	236.0	0.0	4.9	0.1	0.0
58	5	2.4	0.3	2.6	2.3	0.1	6.0	2.4	2.3	0.1	33.0	95.0	0.0	SBF		9.5	9.4	275.0	242.0	161.0	161.0	308.0	213.0	0.0	2.1	0.0	0.8
59	3	2.6	0.1	2.6	2.5	0.1	4.0	2.6	2.6	0.2	62.0	3.0	0.0	SBF		9.5	9.4	307.0	245.0	161.0	161.0	213.0	210.0	0.0	2.7	0.1	0.6
60	9	2.9	0.6	3.1	2.5	0.2	10.0	2.5	2.8	0.2	50.0	0.0	0.0	SBF		9.4	9.3	256.0	206.0	161.0	161.0	233.0	233.0	0.0	2.0	0.1	0.3
61	14	3.9	3.9	5.9	2.0	1.3	14.0	3.7	2.1	0.3	61.0	3.0	1.0	SBF		9.3	9.0	203.0	142.0	161.0	160.0	190.0	187.0	0.0	8.3	0.2	0.1
62	6	3.4	3.6	6.0	2.4	1.2	7.0	2.8	2.6	0.1	18.0	0.0	1.0	SBF		9.3	9.2	206.0	188.0	161.0	160.0	185.0	185.0	0.0	-4.5	0.0	0.6
63	6	4.8	1.4	5.7	4.3	0.5	7.0	4.5	5.7	0.1	20.0	0.0	1.0	SBF		9.2	9.2	197.0	177.0	161.0	160.0	172.0	172.0	0.0	2.3	0.1	0.6
64	32	11.4	14.2	21.4	7.2	3.2	33.0	9.0	21.4	0.1	43.0	26.0	114.0	SBF		9.3	9.2	231.0	188.0	160.0	46.0	208.0	182.0	0.1	-1.1	0.1	0.1
65	7	27.5	27.5	44.8	17.3	9.1	8.0	17.3	36.3	0.3	109.0	2.0	0.0	SBF	2.0	9.5	9.2	303.0	194.0	46.0	46.0	259.0	257.0	0.2	-11.3	0.5	0.0
67	2	1.6	1.0	2.2	1.2	0.6	3.0	2.2	1.2	0.1	53.0	0.0	0.0	SBF		9.8	9.6	409.0	356.0	46.0	46.0	259.0	259.0	0.0	9.2	1.0	0.1
71	13	0.8	1.7	1.8	0.1	0.5	12.0	0.1	1.2	0.5	182.0	118.0	0.0	SBF		9.7	9.2	370.0	188.0	46.0	46.0	318.0	200.0	0.0	-0.8	0.6	0.0
72	2	1.7	0.9	2.1	1.2	0.5	3.0	1.2	1.8	0.0	3.0	0.0	0.0	SBF	1.0	9.3	9.3	231.0	228.0	46.0	46.0	175.0	175.0	0.2	-44.1	0.6	0.5
73	13	2.8	1.7	3.8	2.1	0.5	14.0	2.4	3.5	0.5	176.0	90.0	0.0	SBF		9.7	9.2	370.0	194.0	46.0	46.0	314.0	224.0	0.0	1.3	0.5	0.0
74	4	3.1	0.3	3.2	2.9	0.2	5.0	2.9	3.2	0.1	32.0	91.0	0.0	SBF		9.3	9.2	235.0	203.0	46.0	46.0	311.0	220.0	0.0	1.8	0.2	0.4
75	4	3.2	0.3	3.4	3.1	0.1	5.0	3.4	3.2	0.2	68.0	5.0	0.0	SBF		9.6	9.4	320.0	252.0	46.0	46.0	220.0	215.0	0.0	3.8	0.2	0.4
76	4	3.2	0.3	3.4	3.1	0.1	5.0	3.1	3.3	0.1	26.0	3.0	0.0	SBF		9.5	9.4	278.0	252.0	46.0	46.0	150.0	147.0	0.0	0.4	0.7	0.1
77	9	3.8	2.3	5.4	3.1	0.7	10.0	3.9	3.6	0.1	34.0	109.0	0.0	SBF		9.2	9.1	203.0	169.0	46.0	46.0	249.0	140.0	0.0	4.5	0.0	0.9
78	9	5.4	2.8	6.7	3.9	0.9	10.0	3.9	5.7	0.3	149.0	3.0	0.0	SBF		9.8	9.4	416.0	267.0	46.0	46.0	301.0	298.0	0.0	1.4	0.4	0.1
79	8	2.9	0.6	3.2	2.6	0.2	9.0	2.9	3.0	0.2	81.0	2.0	0.0	SBF	1.0	9.6	9.4	333.0	252.0	46.0	46.0	233.0	231.0	0.0	2.4	0.0	0.6
80	6	11.6	35.1	37.4	2.3	12.7	7.0	2.4	37.4	0.5	207.0	98.0	0.0	SBF	1.0	10.1	9.6	553.0	346.0	46.0	46.0	409.0	311.0	0.1	-36.4	0.5	0.1
81	11	9.9	11.8	17.3	5.5	4.1	11.0	5.5	17.3	0.2	87.0	3.0	114.0	SBF	1.0	9.9	9.6	457.0	370.0	160.0	46.0	229.0	226.0	0.1	-42.6	0.8	0.0
82	5	56.1	57.1	78.5	21.4	22.3	6.0	21.4	78.5	1.2	458.0	636.0	0.0	SBF	1.0	11.0	9.8	891.0	433.0	46.0	46.0	1061.0	425.0	0.1	3.3	0.6	0.1
83	11	15.8	26.7	36.8	10.1	7.9	12.0	10.9	12.3	0.3	101.0	5.0	7.0	SBF	1.0	10.4	10.1	631.0	530.0	445.0	438.0	584.0	579.0	0.0	20.8	0.0	0.9
84	14	13.4	7.4	16.9	9.5	1.9	15.0	11.4	16.9	0.3	130.0	58.0	1.0	SBF	1.0	10.7	10.4	761.0	631.0	439.0	438.0	670.0	612.0	0.0	3.4	0.1	0.2
85	8	9.8	11.6	18.6	7.0	4.0	9.0	7.0	18.6	0.3	129.0		0.0	SBF	1.0	9.8	9.5	419.0	290.0	163.0	163.0			0.0	-6.8	0.2	0.2
86	9	8.6	4.1	10.3	6.2	1.2	10.0	6.2	8.5	0.5	215.0		0.0	SBF		9.9	9.4	486.0	271.0	163.0	163.0			0.0	3.1	0.6	0.0
87	8	3.3	0.8	3.7	2.9	0.3	9.0	3.4	3.2	0.1	47.0	52.0	0.0	WBF		9.6	9.5	333.0	286.0	164.0	164.0	315.0	263.0	0.0	4.3	0.0	0.6
88	3	3.3	0.1	3.4	3.3	0.1	4.0	3.3	3.4	0.1	38.0	0.0	0.0	WBF		9.6	9.6	375.0	337.0	164.0	164.0	286.0	286.0	0.0	2.5	0.5	0.3
89 89	10	4.0	1.0	4.3	3.3	0.3	11.0	3.6	3.9	0.1	37.0	6.0	0.0	WBF	1.0	9.5	9.5	315.0	278.0	167.0	167.0	270.0	264.0	0.0	-0.5	0.3	0.1
90	9	25.1	28.8	39.7	10.9	9.6	10.0	34.1	10.9	0.3	133.0	25.0	94.0	WBF	1.0	9.7	9.5	419.0	286.0	541.0	447.0	353.0	328.0	-0.1	58.5	0.3	0.1
91		43.5	140.1	150.8	10.7	39.2	12.0	39.9	57.8	1.1	392.0	408.0	4.0	WBF	2.0	10.8	9.8	825.0	433.0	170.0	166.0	848.0	440.0	0.2	-53.2	0.4	0.0
92	6	7.8	0.7	8.2	7.5	0.3	7.0	7.5	7.5	0.1	45.0	55.0	0.0	WBF		9.7	9.6	396.0	351.0	167.0	167.0	301.0	246.0	0.0	7.1	0.0	0.8
93 04	5	8.5	0.6	8.9	8.3	0.2	6.0	8.3	8.3	0.1	44.0	0.0	0.0	WBF		9.6	9.5	351.0	307.0	167.0	167.0	292.0	292.0	0.0	7.0	0.1	0.6
94	/	5.4	0.4	5.6	5.2	0.2	8.0	5.3	5.6	0.1	25.0	12.0	3.0	WBF		9.5	9.4	303.0	278.0	172.0	169.0	282.0	270.0	0.0	3.4	0.2	0.3
95 06	12	5.4	0.6	5.7	5.1	0.2	13.0	5.1	5.7	0.1	40.0	53.0	0.0	WBF		9.5	9.4	311.0	271.0	169.0	169.0	301.0	248.0	0.0	2.7	0.4	0.0
96 07	10	5.8	1.8	6.9	5.1	0.6	11.0	5.2	5.7	0.1	43.0	14.0	1.0	WBF		9.6	9.5	337.0	294.0	169.0	168.0	312.0	298.0	0.0	4.2	0.0	0.7
97 08	6	9.4 7.4	5.7 3.0	13.1 8.9	7.4 5.9	1.8 1.4	7.0 6.0	7.4 5.9	8.3	0.4	178.0 23.0	25.0	110.0 3.0	WBF WBF		9.7 9.5	9.3 9.4	396.0 290.0	218.0 267.0	278.0 193.0	168.0 190.0	269.0 316.0	244.0 248.0	0.0	5.4	0.2 0.9	0.3 0.0
98 00	5 9		5.0 6.8					5.9 8.7	8.9 14-1	0.1 0.5		68.0 47.0		WBF WBF				290.0 512.0	207.0		190.0 190.0	483.0	248.0 436.0	0.1	-33.1	0.9	
99 100	3	12.6	0.8	15.5 6.4	8.7 5.9	2.5	10.0 4.0	8.7 5.9	14.1	0.5	222.0 53.0	47.0 27.0	0.0 0.0	WBF		10.0 9.6	9.5 9.6	390.0	290.0 337.0	190.0 190.0	190.0	483.0 331.0	436.0 304.0	0.0 0.0	-0.4	0.9	0.0 0.8
	2	6.1 5.8		7.2		0.2			6.0 4 7										235.0	190.0 189.0	190.0	260.0	260.0		6.6 17.9		
101 102	2 8	5.8 7.4	2.5 2.4	9.2	4.7 6.8	1.3 0.7	3.0 9.0	7.2 7.5	4.7	0.2 0.2	55.0 123.0	0.0 3.0	0.0 19.0	WBF WBF		9.5 9.6	9.3 9.4	290.0 390.0	235.0	189.0	189.0	260.0	260.0	0.0	17.9	1.0 0.1	0.0
102	8	7.4 6.1	1.4	9.2 7.0	0.8 5.6	0.7	9.0 9.0	7.0	6.8 6.4	0.2	68.0	0.0	0.0	W BF		9.0 9.9	9.4 9.7	390.0 464.0	207.0 396.0	189.0	170.0	265.0	266.0	0.0	9.0 7.1	0.1	0.5
103	3	14.0	11.4	19.4	8.2	4.9	9.0 4.0	8.2	6.4 19.4	0.2	162.0	0.0	5.0	WBF		9.9	9.7 9.4	433.0	271.0	175.0	170.0	266.0	266.0	0.0	-6.7	0.0	0.7 0.0
104	4	6.5	0.7	19.4 6.9	6.2	0.3	4.0 5.0	6.2	6.3	0.3	44.0	0.0	0.0	WBF		9.8	9.4 9.4	433.0 315.0	271.0	175.0	170.0	266.0	266.0	0.1	7.3	0.9	0.0
105	5	7.9	3.2	9.4	6.2	1.1	5.0 6.0	6.2	7.2	0.1	120.0	0.0	2.0	WBF		9.5	9.4 9.5	406.0	271.0	170.0	168.0	266.0	266.0	0.0	5.5	0.0	0.8
100	6	9.1	5.0	13.0	8.0	1.1	0.0 7.0	8.4	8.9	0.2	33.0	0.0	0.0	WBF		9.6	9.5 9.6	400.0 361.0	280.0 328.0	170.0	170.0	267.0	200.0 267.0	0.0	-0.7	0.1	0.3
107	7	8.1	2.3	9.4	7.1	0.8	8.0	9.4	7.8	0.0	27.0	29.0	3.0	WBF		9.6	9.6	351.0	328.0	170.0	167.0	314.0	285.0	0.0	13.4	0.0	0.7
108	6	7.4	2.0	8.5	6.5	0.8	7.0	9. 4 7.5	8.1	0.0	66.0	8.0	2.0	WBF		9.0 9.7	9.6	412.0	324.0 346.0	170.0	170.0	356.0	285.0 348.0	0.0	-0.3	0.5	0.1
110	6	11.7	5.5	13.3	7.8	2.2	7.0	7.8	13.0	0.1	92.0	0.0	4.0	WBF		10.0	9.0	508.0	416.0	172.0	170.0	493.0	493.0	0.0	-13.8	0.3	0.0
110	0	11./	5.5	15.5	1.0	2.2	7.0	1.0	15.0	0.5	12.0	0.0	1.0			10.0	2.1	500.0	110.0	177.0	170.0	175.0	175.0	0.1	10.0	0.0	0.0

EVENT ID	Hours	TurbAvg	TurbCha	ngeTurbMax	TurbMin	TurbSTD	TurbN	TurbStart	TurbEnd	BorderSta	ige Borderflov	wc Oneidaflov	wcSodaflowc	haHydroPeri	io Code	MaxOfBo	rd MinOfBoi	rdeMaxOfBor	d MinOfBord	leMaxOfSod	a MinOfSoda	a MaxOfOne	ei MinOfOne	idX-coeff	Constant	R2	Anova Sig
111	2	10.1	1.9	11.1	9.2	1.0	3.0	9.2	11.1	Change 0.1	hange 24.0	<u>hange</u> 136.0	nge 0.0	d WBF		erStage 9.8	<u>rStage</u> 9.8	erFlow 453.0	<u>rFlow</u> 429.0	Flow 169.0	Flow 169.0	<u>daFlow</u> 433.0	aFlow 297.0	0.1	-21.9	0.9	0.2
111	2	6.5	0.2	6.6	9.2 6.4	0.1	3.0	9.2 6.5	6.6	0.1	17.0	35.0	0.0	WBF		9.6	9.8 9.5	337.0	429.0 320.0	169.0	169.0	433.0 314.0	279.0	0.1	3.8	0.9	0.2
112	14	6.2	2.6	7.6	5.0	0.1	15.0	5.2	6.6	0.0	52.0	16.0	2.0	WBF		9.6	9.5	346.0	294.0	171.0	169.0	314.0	298.0	0.0	-5.6	0.6	0.0
113	8	9.2	4.2	11.7	7.5	1.4	9.0	7.5	11.1	0.2	88.0	10.0	3.0	WBF		9.7	9.6	416.0	328.0	171.0	169.0	348.0	338.0	0.0	-1.7	0.0	0.1
115	2	11.6	4.5	14.4	9.9	2.4	3.0	9.9	14.4	0.1	52.0	0.0	0.0	WBF		9.6	9.6	380.0	328.0	168.0	168.0	248.0	248.0	0.0	-16.6	0.7	0.3
115	23	5.8	6.3	9.4	3.1	1.4	24.0	4.4	4.5	0.1	200.0	76.0	2.0	WBF		9.9	9.4	471.0	271.0	170.0	168.0	324.0	248.0	0.0	4.1	0.0	0.4
117	8	18.9	29.6	37.5	7.9	9.0	9.0	14.4	18.5	0.4	167.0	115.0	4.0	WBF	2.0	9.7	9.4	412.0	245.0	170.0	166.0	425.0	310.0	0.1	-10.6	0.4	0.1
118	6	6.9	3.5	8.9	5.4	1.3	7.0	5.4	8.9	0.2	61.0	69.0	0.0	WBF		9.8	9.7	457.0	396.0	170.0	170.0	424.0	355.0	0.1	-16.2	1.0	0.0
119	335	9.8	9.4	14.2	4.8	4.0	11.0	13.2	4.9	0.3	135.0	65.0	1.0	WBF		9.8	9.5	433.0	298.0	170.0	169.0	323.0	258.0	0.1	-16.6	0.9	0.0
120	8	5.3	1.3	6.1	4.8	0.4	9.0	4.8	5.4	0.2	104.0	0.0	2.0	WBF		9.6	9.5	390.0	286.0	170.0	168.0	258.0	258.0	0.0	3.1	0.4	0.1
121	11	8.7	7.0	13.2	6.2	1.9	12.0	6.2	8.9	0.2	114.0	18.0	2.0	WBF		9.8	9.5	429.0	315.0	170.0	168.0	354.0	336.0	0.0	-3.8	0.5	0.0
122	9	9.5	3.0	10.8	7.8	0.9	10.0	7.8	10.8	0.1	72.0	3.0	0.0	WBF		9.7	9.6	409.0	337.0	170.0	170.0	325.0	322.0	0.0	-1.1	0.6	0.0
123	7	6.9	1.4	7.5	6.1	0.5	8.0	7.2	6.8	0.2	122.0	0.0	0.0	WBF		9.7	9.5	416.0	294.0	168.0	168.0	289.0	289.0	0.0	9.7	0.7	0.0
124	14	10.7	8.9	15.6	6.7	2.9	15.0	8.3	15.0	0.4	150.0	153.0	0.0	WBF		10.0	9.6	501.0	351.0	169.0	169.0	468.0	315.0	0.1	-11.6	0.9	0.0
125	15	14.2	12.7	22.1	9.4	4.3	16.0	10.0	11.6	0.5	227.0	170.0	0.0	WBF		9.9	9.4	490.0	263.0	170.0	170.0	430.0	260.0	0.0	0.6	0.5	0.0
126	4	5.3	1.3	6.1	4.8	0.6	5.0	5.8	5.0	0.1	55.0	0.0	0.0	WBF		9.6	9.6	383.0	328.0	170.0	170.0	284.0	284.0	0.0	9.4	0.1	0.5
127	8	16.0	15.2	26.9	11.7	5.2	9.0	11.7	21.4	0.2	88.0	4.0	3.0	WBF		9.8	9.6	439.0	351.0	173.0	170.0	359.0	355.0	0.0	9.0	0.0	0.8
128	6	10.3	2.4	11.4	9.0	0.8	7.0	10.3	9.0	0.1	34.0	4.0	0.0	WBF		9.8	9.7	436.0	402.0	172.0	172.0	338.0	334.0	0.0	11.1	0.0	1.0
129	23	7.3	5.3	10.0	4.7	1.8	24.0	9.8	6.0	0.1	22.0	10.0	0.0	WBF		9.7	9.6	412.0	390.0	172.0	172.0	290.0	280.0	-0.1	44.2	0.1	0.1
130	8	12.1	8.7	17.0	8.3	2.9	9.0	10.3	17.0	0.2	58.0	73.0	0.0	LBR		9.9	9.7	464.0	406.0	172.0	172.0	352.0	279.0	0.1	-36.8	0.9	0.0
131	5	19.2	10.8	23.8	13.0	4.1	6.0	13.0	23.8	0.2	85.0	78.0	0.0	LBR		9.9	9.6	475.0	390.0	172.0	172.0	360.0	282.0	0.1	-20.5	0.7	0.0
132	19	66.4	39.3	80.2	40.9	12.8	20.0	42.7	76.7	0.8	289.0	297.0	7.0	LBR		10.8	10.0	812.0	523.0	620.0	613.0	710.0	413.0	0.1	-31.2	0.9	0.0
133	6	121.8	31.3	135.6	104.3	12.5	7.0	104.3	117.0	0.3	124.0	5.0	0.0	LBR		11.1	10.7	916.0	792.0	606.0	606.0	787.0	782.0	0.2	-61.3	0.6	0.0
134	15	119.1	196.3	278.3	82.0	56.5	16.0	86.4	278.3	0.3	97.0	5.0	0.0	LBR	1.0	11.3	11.0	1010.0	913.0	606.0	606.0	792.0	787.0	1.7	-1509.2	0.8	0.0
135	6	225.7	26.7	237.7	211.0	10.3	7.0	231.3	237.7	0.1	40.0	5.0	0.0	LBR	1.0	11.5	11.4	1060.0	1020.0	606.0	606.0	792.0	787.0	0.2	-3.6	0.1	0.4
136	5	362.9	237.2	512.8	275.6	95.2	6.0	275.6	512.8	0.7	140.0	6.0	0.0	LBR	1.0	11.9	11.2	1190.0	1050.0	606.0	606.0	932.0	926.0	1.7	-1507.8	0.9	0.0
137	20	233.4	371.3	490.2	118.9	110.4	21.0	120.8	490.2	0.5	177.0	5.0	6.0	LBR	1.0	11.5	11.0	1080.0	903.0	336.0	330.0	670.0	665.0	1.8	-1493.1	0.8	0.0
138	10	106.6	83.3	143.4	60.1	24.0	11.0	60.1	83.1	1.7	600.0	46.0	2.0	LBR		11.7	10.0	1120.0	520.0	824.0	822.0	1095.0	1049.0		78.5	0.1	0.5
139	11	84.9	84.9	133.9	49.0	30.8	12.0	50.9	133.9	0.8	290.0	138.0	2.0	LBR	1.0	12.4	11.6	1380.0	1090.0	827.0	825.0	1280.0	1142.0	0.3	-268.9	0.9	0.0
140	44	96.6	662.7	715.8	53.1	99.3	45.0	54.2	119.5	2.1	770.0	839.0	31.0	LBR	1.0	13.6	11.5	1840.0	1070.0	1132.0	1101.0	1843.0	1004.0		-74.6	0.1	0.1
141	5	88.0	11.6	91.7	80.1	5.0	6.0	91.4	83.2	0.3	120.0	0.0	0.0	LBR		13.2	12.9	1670.0		1114.0	1114.0	1502.0	1502.0		226.1	0.6	0.1
142	15	67.0	19.9	78.8	58.9	6.0	16.0	66.5	73.5	1.1	400.0	506.0	10.0	LBR		13.1	12.0	1640.0	1240.0	1112.0	1102.0	1749.0	1243.0		16.4	0.6	0.0
143	4	50.3	11.3	55.7	44.4	4.4	5.0	50.9	44.4	0.4	130.0	123.0	0.0	LBR		12.8	12.5	1530.0	1400.0	1092.0	1092.0	1528.0	1405.0		115.9	0.2	0.4
144	3	62.3	8.3	65.9	57.6	3.5	4.0	63.3	57.6	0.5	167.0	397.0	0.0	LBR	1.0	11.4	10.9	1020.0	853.0	321.0	321.0	1072.0	675.0	0.0	90.6	0.4	0.4
145	11	58.1	27.0	71.5	44.5	9.3	12.0	71.5	44.5	1.1	350.0	526.0	5.0	LBR	1.0	12.1	11.1	1270.0	920.0	325.0	320.0	1177.0	651.0	-0.1	148.6	0.8	0.0
146	/	53.8	11.5	60.0	48.5	3.6	8.0	52.0	48.5	0.7	245.0	5.0	9.0	LBR		11.6	10.9	1090.0	845.0	915.0	906.0	1049.0	1044.0	0.0	72.3	0.2	0.3
147	13	48.8	20.9	63.5	42.6	7.3	14.0	44.0	55.7	1.1	370.0	546.0	725.0	LBR		12.6	11.5		1060.0		187.0		1049.0		-15.1		0.0
148	9	41.9	6.7	46.2	39.5	2.5	10.0	39.6	44.2	0.9	320.0	408.0	0.0	LBR	1.0	12.5	11.6	1420.0	1100.0	183.0	183.0	1609.0	1201.0		17.1	0.6	0.0
149	32 8	64.2 87.1	88.2	122.1	33.9	30.0	33.0	33.9	90.5 84.0	1.5	523.0 632.0	808.0	1.0	LBR	1.0	12.0	10.5	1230.0 1440.0		183.0 825.0	182.0	1213.0	405.0		-90.2	0.8	0.0
150 151	0	87.1 60.5	42.9 8.4	106.6 64.2	63.7 55.8	14.7 3.5	9.0 5.0	63.7 62.6	84.0 55.8	1.8 0.6	632.0 230.0	476.0 473.0	2.0 7.0	LBR LBR	1.0	12.6 12.7	10.8	1440.0			823.0 816.0	1463.0		0.0	54.6 99.9	0.2 0.6	0.2
151 152	4	67.6	8.6	04.2 71.6	55.8 63.0	3.3 3.7		62.6 63.0	55.8 68.1	0.8	230.0	473.0	0.0	LBR	1.0 1.0	12.7	12.1 12.2	1480.0	1230.0		816.0	1568.0	1095.0		31.1	0.6	0.1 0.2
	7	55.6	8.0 11.4	61.5	50.1	4.0	5.0 8.0	50.2	55.1			475.0	0.0	LBR	1.0	12.9	12.2	1650.0			814.0	1582.0				0.3	0.2
153 154	5	51.6	11.4	56.1	44.8	4.0 3.9		50.2 50.9	44.8	1.1 0.8	390.0 280.0	475.0	0.0	LBR		13.1	12.1	1650.0	1200.0		803.0	1582.0	1403.0		70.3	0.4	0.1
154	14	132.6	164.6	212.0	44.8	5.9 60.4	6.0 15.0	47.5	211.2	2.2	820.0	710.0	0.0	LBR	1.0	13.2	12.4	2260.0			733.0		1007.0		-195.4		0.0
155	4	91.6	104.0	97.9	83.0	5.8	5.0	93.5	83.0	0.6	230.0	481.0	89.0	LBR	1.0	14.0	12.3	1730.0			640.0					0.9	0.0
150	5	46.7	8.5	50.9	42.4	3.1	6.0	44.6	42.4	0.6	230.0	191.0	0.0	UBR	1.0	12.3	12.8		1120.0		454.0		896.0			0.0	0.6
157	16	89.3	8. <i>3</i> 316.7	352.4	42.4 35.7	91.4	17.0	36.1	42.4 58.6	1.2	394.0	455.0	0.0 7.0	UBR	1.0	12.3	11.7	1340.0		434.0 692.0	434.0 685.0			0.0		0.1	0.0
158	7	46.7	14.0	52.5	38.5	4.9	8.0	38.5	51.9	0.5	170.0	74.0	0.0	UBR	1.0	12.4	12.4				689.0		1257.0			0.1	0.2
160	9	56.3	28.9	76.5	47.6	10.3	10.0	76.5	51.6	1.5	560.0	447.0	2.0	UBR	1.0	13.5	12.4	1770.0	1210.0		687.0		1237.0		106.2	0.9	0.0
161	10	77.9	59.5	117.1	57.6	20.4	11.0	62.6	67.5	0.9	340.0	344.0	1.0	UBR	1.0	13.5	12.0	1950.0	1610.0		686.0		1294.0			0.4	0.1
162	6	62.3	13.9	68.4	54.5	5.0	7.0	68.4	54.5	0.5	210.0	347.0	9.0	UBR	1.0	13.7	13.0	1880.0	1670.0		684.0	1550.0	1294.0			0.3	0.0
162	2	57.2	2.4	58.4	56.0	1.2	3.0	58.4	56.0	0.2	70.0	410.0	0.0	UBR	1.0	13.7	13.3		1710.0		684.0		1028.0			0.8	0.3
105	2	51.2	2.1	50.7	50.0	1.2	5.0	50.7	50.0	0.2	70.0	110.0	0.0	ODI		15.5	15.5	1700.0	1/10.0	00 1.0	001.0	1150.0	1020.0	0.0	107.0	0.0	0.5

EVENT II	Hours	TurbAvg	TurbCha	angeTurbMax	TurbMin	TurbSTD	TurbN	TurbStart	TurbEnd		0	-	wcSodaflowc	haHydroPeri	io Code			rdeMaxOfBor						idX-coeff	Constant	R2	Anova Sig
164	9	61.9	13.6	66.8	53.2	5.1	10.0	53.2	66.3	Change 1.2	hange 470.0	hange 923.0	nge 2.0	d UBR		erStage 14.0	rStage 12.8	<u>erFlow</u> 2000.0	<u>rFlow</u> 1530.0	Flow 721.0	<u>Flow</u> 719.0	<u>daFlow</u> 1644.0	aFlow 721.0	0.0	12.3	0.9	0.0
165	14	117.2	67.4	166.8	99.4	23.8	15.0	140.4	99.6	1.6	660.0	419.0	38.0	UBR	1.0	14.5	12.9	2210.0	1550.0	757.0	719.0	1837.0	1418.0	-0.1	278.6	0.7	0.0
166	6	109.7	39.8	130.6	90.8	15.6	7.0	130.6	90.8	0.4	170.0	117.0	15.0	UBR	1.0	14.3	13.9	2140.0	1970.0	925.0	910.0	1699.0	1582.0		596.6	1.0	0.0
167	4	69.8	8.7	74.0	65.3	3.6	5.0	72.9	65.3	0.6	170.0	225.0	8.0	UBR	110	14.2	13.6	1990.0	1820.0	924.0	916.0	1636.0	1411.0		163.4	0.9	0.0
168	6	44.2	9.4	50.7	41.3	3.1	7.0	42.7	41.3	0.8	270.0	5.0	10.0	UBR		13.8	13.0	1860.0		912.0	902.0	1530.0	1525.0		64.4	0.1	0.4
169	8	33.2	5.6	35.5	29.9	2.0	9.0	29.9	35.5	0.8	330.0	7.0	0.0	UBR		13.9	13.0	1940.0	1610.0	908.0	908.0	1600.0	1593.0		4.7	0.9	0.0
170	20	38.4	9.6	43.2	33.6	2.8	21.0	42.0	38.3	1.1	450.0	632.0	9.0	UBR		14.3	13.2	2110.0	1660.0	922.0	913.0	1887.0	1255.0	0.0	20.7	0.3	0.0
171	6	37.1	6.9	41.2	34.3	2.5	7.0	34.3	36.5	0.9	200.0	123.0	8.0	UBR		14.2	13.3	1900.0	1700.0	919.0	911.0	1638.0	1515.0	0.0	-1.3	0.5	0.1
172	11	37.3	11.3	40.9	29.6	3.4	12.0	29.6	35.4	1.0	390.0	12.0	10.0	UBR		14.0	13.0	1990.0	1600.0	919.0	909.0	1665.0	1653.0	0.0	17.1	0.2	0.2
173	13	34.9	10.2	39.9	29.7	3.1	14.0	39.2	30.6	0.4	180.0	0.0	8.0	UBR		13.8	13.4	1910.0	1730.0	845.0	837.0	1460.0	1460.0	-0.1	128.9	0.9	0.0
174	13	33.6	5.0	36.4	31.4	1.7	14.0	32.1	31.4	0.6	240.0	315.0	38.0	UBR		13.8	13.2	1900.0	1660.0	826.0	788.0	1588.0	1273.0	0.0	27.1	0.0	0.5
175	7	33.3	12.8	39.4	26.6	5.6	8.0	26.6	38.0	0.8	320.0	544.0	86.0	UBR		13.9	13.0	1930.0	1610.0	840.0	754.0	1836.0	1292.0	0.0	-40.2	0.9	0.0
176	8	25.2	4.6	27.1	22.5	1.6	9.0	24.5	22.5	0.3	100.0	97.0	7.0	UBR		13.1	12.8	1620.0	1520.0	785.0	778.0	1314.0	1217.0	0.0	33.3	0.0	0.8
177	9	29.3	9.7	34.1	24.4	3.4	10.0	24.4	30.5	1.1	410.0	615.0	7.0	UBR		13.1	12.0	1640.0	1230.0	638.0	631.0	1543.0	928.0	0.0	1.4	0.8	0.0
178	6	27.8	9.6	31.3	21.7	3.5	7.0	21.7	26.3	1.0	330.0	104.0	0.0	UBR	1.0	12.5	11.5	1400.0	1070.0	631.0	631.0	1162.0	1058.0	0.0	8.3	0.3	0.2
179	6	34.9	4.4	37.4	33.0	1.6	7.0	33.6	36.4	0.2	60.0	0.0	7.0	UBR	1.0	12.7	12.6	1500.0	1440.0	639.0	632.0	1059.0	1059.0	0.1	-59.4	0.8	0.0
180	13	27.2	19.8	38.9	19.1	4.8	11.0	19.1	23.7	0.9	330.0	420.0	8.0	UBR		12.8	11.8	1500.0	1170.0	774.0	766.0	1165.0	745.0	0.0	1.7	0.2	0.2
181	6	25.4	16.4	34.8	18.4	5.8	7.0	18.4	34.8	0.6	240.0	408.0	17.0	UBR	1.0	13.2	12.6	1690.0	1450.0	986.0	969.0	1623.0	1215.0	0.1	-64.0	0.9	0.0
182	4	46.8	8.0	51.3	43.3	3.1	5.0	51.3	44.9	0.3	110.0	7.0	8.0	UBR	1.0	13.7	13.4	1870.0	1760.0	963.0	955.0	1525.0	1518.0	-0.1	169.4	0.9	0.0
183	6	38.8	13.6	46.9	33.3	4.8	7.0	33.3	40.0	0.2	90.0	0.0	8.0	UBR	1.0	13.5	13.2	1780.0	1690.0	964.0	956.0	1494.0	1494.0	0.1	-154.1	0.6	0.0
184	13	34.0	5.1	36.9	31.8	1.5	14.0	31.8	33.8	0.9	330.0	446.0	8.0	UBR		13.6	12.7	1830.0	1500.0	964.0	956.0	1757.0	1311.0	0.0	21.3	0.2	0.1
185	10	30.2	3.6	31.3	27.7	1.1	11.0	27.7	28.8	0.6	250.0	147.0	0.0	UBR		13.3	12.7	1720.0	1470.0	957.0	957.0	1491.0	1344.0	0.0	22.6	0.1	0.3
186	11	35.1	5.5	37.1	31.6	1.6	12.0	31.6	33.6	1.1	450.0	767.0	8.0	UBR		13.9	12.8	1950.0	1500.0	864.0	856.0	1825.0	1058.0	0.0	25.3	0.3	0.1
187	7	25.5	8.4	31.0	22.6	2.5	8.0	31.0	22.6	0.3	110.0	507.0	0.0	UBR		12.8	12.5	1530.0	1420.0	780.0	780.0	1272.0	765.0	-0.1	105.9	0.7	0.0
188	8	22.9	2.8	24.2	21.4	1.0	9.0	21.4	23.9	0.9	330.0	159.0	1.0	UBR		12.9	12.0	1550.0	1220.0	720.0	719.0	1247.0	1088.0	0.0	14.2	0.4	0.1
189	8	24.1	3.6	25.2	21.6	1.1	9.0	21.6	24.1	0.7	250.0	98.0	8.0	UBR		12.5	11.8	1410.0	1160.0	610.0	602.0	1142.0	1044.0	0.0	14.0	0.3	0.1
190	5	24.7	6.4	29.0	22.6	2.4	6.0	22.6	23.0	0.3	110.0	344.0	0.0	UBR		12.5	12.2	1420.0	1310.0	610.0	610.0	1136.0	792.0	0.0	32.8	0.0	0.9
191	5	24.2	3.2	26.1	22.9	1.2	6.0	22.9	23.1	0.5	180.0	68.0	7.0	UBR		12.1	11.6	1270.0	1090.0	611.0	604.0	1080.0	1012.0	0.0	24.1	0.0	1.0
192	5	13.2	1.2	13.6	12.4	0.4	6.0	13.2	12.4	0.1	55.0	0.0	0.0	UBR		9.5	9.3	315.0	260.0	511.0	511.0	408.0	408.0	0.0	15.0	0.1	0.5
193	6	12.0	3.0	13.1	10.1	1.1	7.0	10.1	12.9	0.1	21.0	0.0	0.0	UBR		8.9	8.8	135.0	114.0	598.0	598.0	266.0	266.0	0.1	-1.9	0.7	0.0
194	15	9.5	3.1	10.4	7.3	0.8	16.0	7.3	9.8	0.3	80.0	41.0	188.0	UBR		9.1	8.8	191.0	111.0	822.0	634.0	319.0	278.0	0.0	7.2	0.3	0.0
195	8	15.4	36.4	42.9	6.5	11.0	9.0	6.5	12.3	0.7	254.0	0.0	7.0	UBR		9.7	8.9	396.0	142.0	822.0	815.0	464.0	464.0	0.1	-1.5	0.3	0.1
196	6	17.6	5.4	20.7	15.3	1.8	7.0	15.3	16.5	0.6	198.0	0.0	0.0	UBR		10.2	9.6	578.0	380.0	927.0	927.0	737.0		0.0	14.7	0.0	0.7
197	6	13.4	3.6	15.4	11.8	1.4	7.0	11.8	13.8	0.3	111.0	0.0	5.0	UBR		10.0	9.7	530.0	419.0	1181.0	1176.0	798.0	798.0	0.0	1.3	0.7	0.0
198	8	22.0	10.5	25.8	15.3	4.0	9.0	15.8	24.6	0.4	120.0	11.0	116.0	UBR		10.4	10.0	643.0	523.0	1176.0	1060.0	954.0	943.0	0.1	-30.4	0.9	0.0
199	4	13.4	3.8	15.3	11.5	1.4	5.0	11.5	13.9	0.1	41.0	0.0	0.0	UBR		10.0	9.9	520.0	479.0	1062.0	1062.0	751.0	751.0	0.0	-1.0	0.1	0.6
200	6	15.2	5.2	18.6	13.4	1.9	7.0	13.4	18.6	0.2	60.0	0.0	8.0	UBR		9.8	9.6	453.0	393.0		1132.0		710.0	0.1	-7.0	0.5	0.1
201	4	19.2	2.3	20.0	17.7	0.9	5.0	19.8	19.2	0.1	47.0	0.0	8.0	UBR		9.9	9.8	486.0	439.0	1135.0	1127.0	745.0	745.0	0.0	21.6	0.0	0.9
202	15	19.1	5.7	22.4	16.7	1.7	16.0	22.4	20.6	0.2	77.0	6.0	8.0	UBR		10.0	9.8	520.0	443.0		1131.0			-0.1	51.9	0.6	0.0
203	3	25.4	5.0	27.5	22.5	2.2	4.0	22.5	26.7	0.3	95.0	6.0	5.0	UBR		10.2	9.9	581.0	486.0		1134.0		791.0	0.0	-0.8	0.9	0.1
204	9	15.4	4.8	17.9	13.1	1.5	10.0	17.0	14.4	0.2	66.0	5.0	9.0	UBR		10.0	9.8	512.0	446.0		1129.0			-0.1	44.1	0.7	0.0
205	15	20.0	9.7	26.6	16.9	2.6	16.0	19.5	26.6	0.3	120.0	16.0	145.0	UBR		10.2	9.9	602.0	482.0			887.0	871.0	0.0	2.0	0.2	0.1
206	19	33.8	43.4	46.8	3.4	9.4	20.0	3.4	32.6	0.4	165.0	175.0	13.0	UBR		10.7	10.2	757.0	592.0					0.1	-21.8	0.3	0.0
207	10	29.7	7.1	33.6	26.5	2.7	11.0	33.0	33.4	0.2	79.0	100.0	0.0	UBR		10.8	10.6	821.0	742.0	1215.0	1215.0	1205.0	1105.0		2.4	0.1	0.3
208	7	31.9	2.9	33.1	30.2	1.1	8.0	32.3	30.6	0.5	194.0	0.0	14.0	UBR		10.8	10.3	800.0	606.0	1215.0			1169.0		39.5	0.4	0.1
209	5	36.2	6.8	39.7	32.9	3.0	6.0	32.9	39.7	0.0	8.0	110.0	84.0	UBR		10.8	10.8	816.0	808.0			1163.0	1053.0		-654.0	0.5	0.1
210	9	33.4	13.1	38.9	25.8	4.7	10.0	38.9	25.8	0.2	68.0	34.0	5.0	UBR		10.5	10.3	688.0	620.0	1121.0		1024.0	990.0		138.8	0.7	0.0
211	7	31.3	7.7	35.1	27.4	2.7	8.0	28.3	27.4	0.2	73.0	55.0	4.0	SBF		10.2	10.0	585.0	512.0	854.0	850.0	934.0	879.0	0.0	18.0	0.0	0.6
212	4	32.4	2.8	33.6	30.8	1.4	5.0	30.8	33.0	0.1	49.0	76.0	0.0	SBF		10.3	10.1	606.0	557.0	804.0	804.0	912.0		0.1	-2.8	0.7	0.1
213	8	18.9	4.8	20.9	16.1	1.8	9.0	20.9	16.1	0.1	50.0	73.0	2.0	SBF		9.6	9.5	370.0	320.0	697.0	695.0	696.0	623.0	-0.1	46.9	0.9	0.0
214	4	15.9	2.1	17.0	14.9	0.8	5.0	17.0	15.3	0.1	52.0	5.0	0.0	SBF		9.5	9.4	315.0	263.0	698.0	698.0	589.0		0.0	26.8	1.0	0.0
215	4	21.0	4.5	23.6	19.1	1.9	5.0	19.1	23.6	0.2	91.0	10.0	7.0	SBF		9.7	9.5	419.0	328.0	698.0	691.0	716.0	706.0	0.0	4.2	0.8	0.0
216	6	13.0	1.8	14.2	12.4	0.7	7.0	12.6	12.4	0.1	60.0	5.0	0.0	SBF		9.6	9.5	380.0	320.0	606.0	606.0	661.0	656.0	0.0	13.9	0.0	0.9

bit bi	EVENT II	D Hours	TurbAvg	TurbCha	angeTurbMax	TurbMin	TurbSTD	TurbN	TurbStart	TurbEnd	BorderSta	age Borderflo	wc Oneidaflo	wcSodaflowc	haHydroPer	io Code	MaxOfBo	ord MinOfBo	rdeMaxOfBor	d MinOfBor	deMaxOfSod	a MinOfSod	la MaxOfOn	ei MinOfOn	eidX-coeff	Constant	R2	Anova Sig
1219 6 10.3 2.2 11.2 9.0 0.8 7.0 9.1 10.0 7.0 SBF 9.5 9.1 29.4 16.0 810 81.0 810 81.0 810 81.0 830 64.0 0.0 2.3 64.0 210 10.7 6.7 15.8 9.1 1.7 6.7 15.8 9.1 1.7 6.7 15.8 9.1 1.7 6.7 15.8 9.1 1.7 6.7 15.8 9.1 1.7 6.7 15.8 9.1 1.7 6.7 1.5 7.0 1.8 1.6 2.7 0.0 8.0 SBF 1.04 1.02 6.00 1.07.0 S90.0 84.0 95.0 95.0 84.0 95.0 95.0 85.0		0	0.1	1.0	10.1	0.0	0.7	0.0	0.7	10.1					d										0.0		0.4	0.1
19 6 8.3 2.1 9.3 7.2 0.8 7.0 8.1 9.0 2.2 7.0<		U																										0.1
11 9.6 2.9 10.8 7.9 9.7 9.4 39.0 28.0 88.10 88.30 68.70 88.70 88.70 98.8 98.0 98.70 68.70 78.70 78.00 79.00 68.70 78.70 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00																												0.1
221 20 11.7 6.7 15.8 9.1 1.7 21.0 1.0 9.9 21.0 82.0 1.0 SBF 1.0.4 9.5 63.0 41.0 884.0 883.0 91.8 884.0 91.0 1.0 1.6 0.0 223 4 9.8 2.3 10.8 8.5 1.1 5.0 8.5 10.8 0.2 74.0 0.0 8.0 BI 10.4 10.2 670.0 559.0 886.0 881.0 91.0 <		6																										0.0
222 6 14.4 4.5 15.5 11.0 1.5 11.8 13.6 0.2 74.0 0.0 8.0 8.1 10.2 653.0 58.0 88.0 88.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 0.0 -5.8 0.3 224 11 14.5 9.1 19.7 10.6 3.0 12.0 10.6 19.7 0.6 20.0 131.0 69.0 SBF 10.0 11.0 10.4 891.0 61.0 107.50 12.6 11.10 0.0 -5.8 0.3 225 4 12.2 0.1 1.1 0.1 3.0 9.0 8.0 SBF 10.0 10.0 650.7 75.0 18.60 78.0 0.0 10.1 228 7 12.6 2.4 13.6 0.0 10.0 SBF 10.0 10.0 630.7 630.0 82.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0 <td></td> <td>11</td> <td></td> <td>0.2</td>		11																										0.2
224 14 9.8 2.3 10.8 8.5 1.1 5.0 8.5 10.6 10.7 10.0 6.0 240 10.1 10.2 67.30 59.0 8880 91.0<																												0.6
124 11 14,5 9,1 10,6 30,0 12,0 10,6 12,0 10,6 12,0 10,6 12,0 10,0 11,0 10,0 10,4 81,0 61,0 107,0 37,60 111,0 91,0 0,0 -15,0 0,8 225 44 12,2 0,3 12,4 12,1 0,1 5,0 198,0 131,0 SBF 10,1 50 10,0 630,0 57,0 77,0 74,0 86,0 77,80 0,0 16,8 0,6 227 11 12,2 1,7 12,8 11,1 0,5 12,0 11,1 12,4 0,3 10,0 0,0 SBF 10,0 50,0 0,0 8BF 10,0 10,0 630,0 520,0 820,0 864,0 850,0 0,0 1,1 0,1 228 7 12,6 4,1 0,4 1,0 1,2 1,2 0,4 1,0 1,0 8,1 2,0 1,0 1,0 5,0 1,0 1,0 6,0 1,0 1,0 1,0 1,0 <td< td=""><td></td><td>6</td><td></td><td></td><td></td><td>11.0</td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10.4</td><td>10.2</td><td></td><td></td><td></td><td></td><td>985.0</td><td></td><td></td><td></td><td></td><td>0.2</td></td<>		6				11.0	1.5										10.4	10.2					985.0					0.2
225 34 20.6 8.1 25.0 16.9 2.6 13.0 21.4 24.8 0.5 15.0 31.0 SBF 1.0 11.3 10.8 101.00 81.20 105.00 123.0 11.1 10.0 10.00 81.00 75.0																												0.2
226 4 12.2 0.3 12.4 12.1 0.1 5.0 12.3 12.1 0.1 5.0 0.0 SBF 10.5 10.4 700.0 665.0 75.0 749.0 868.0 778.0 0.0 16.8 0.6 227 11 12.2 1.7 12.8 11.1 0.5 12.0 11.1 12.4 0.3 119.0 5.0 0.0 SBF 10.5 10.2 707.0 62.0 830.0 82.0 86.0 85.0 9.4 0.1 0.1 228 7 12.6 6.1 3.6 0.8 11.2 2.0 0.1 10.5 61.0 SBF 9.5 9.1 020.0 16.0 51.0 51.0 51.0 0.0 0.5 85.7 9.0 16.0 51.0 50.0 0.0 0.0 SBF 9.8 9.5 46.0 51.0 50.0 0.0 0.0 0.0 SBF 9.8 9.5 16.0 65.0 50.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>10.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0</td> <td></td> <td></td> <td>891.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td>						10.6										1.0			891.0									0.0
127 11 12.2 1.7 12.8 11.1 0.5 12.0 0.1 0.5 0.0 SBF 10.3 10.0 639.0 520.0 829.0 864.0 859.0 9.4 0.1 0.1 228 7 12.6 2.4 13.6 11.2 0.2 0.3 105.0 6.0 1.0 SBF 10.5 10.2 707.0 0.10 230.0 830.0 820.0 990.0 0.0 0.1 0.1 229 30 4.8 2.5 6.1 3.6 0.4 12.0 12.0 7.0 SBF 9.8 9.5 460.0 21.0 61.0 63.0 61.0 63.0 61.0 0.0 0.0 SBF 9.8 9.5 460.0 51.0 68.0 68.0 0.0 0.0 0.0 0.0 SBF 9.8 9.5 460.0 51.0 68.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>34</td> <td></td> <td></td> <td></td> <td></td> <td>2.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0</td> <td></td> <td>0.6</td> <td>0.0</td>		34					2.6									1.0											0.6	0.0
228 7 12.6 2.4 13.6 11.2 0.8 8.0 11.2 12.2 0.3 105.0 6.0 1.0 SBF 10.5 10.2 707.0 602.0 830.0 829.0 990.0 990.0 0.0 0.1 0.1 229 60 6.7 3.5 8.6 5.1 1.3 7.0 5.1 7.2 0.4 182.0 0.0 0.0 SBF 9.8 9.5 9.1 290.0 164.0 612.0 610.0 633.0 683.0 0.0 0.2 0.8 231 8 5.4 1.4 5.9 4.5 0.4 9.0 4.5 5.2 0.2 56.0 24.0 12.0 SBF 9.7 9.6 42.0 30.0 516.0 460.0 514.0 502.0 689.0 665.0 0.0 3.0 0.0 0.8 0.4 11.0 3.4 4.5 0.2 660.0 2.0 SBF 9.6 9.4 370.0 249.0 526.0 481.0 43.0 0.0 0.0 1.8 0.2 <td< td=""><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>12.3</td><td></td><td></td><td>35.0</td><td>90.0</td><td>8.0</td><td></td><td></td><td>10.5</td><td>10.4</td><td></td><td></td><td>757.0</td><td></td><td>868.0</td><td></td><td>0.0</td><td>16.8</td><td>0.6</td><td>0.1</td></td<>		4							12.3			35.0	90.0	8.0			10.5	10.4			757.0		868.0		0.0	16.8	0.6	0.1
229 30 4.8 2.5 6.1 3.6 0.8 31.0 5.0 6.1 0.4 1260 1290 7.0 SBF 9.5 9.1 290.0 164.0 623.0 616.0 513.0 384.0 0.0 1.3 0.6 230 6 6.7 3.5 8.6 5.1 1.3 7.0 5.1 7.2 0.4 182.0 0.0 0.0 SBF 9.8 9.5 460.0 278.0 619.0 619.0 683.0 683.0 0.0 0.2 0.8 232 10 4.7 1.3 5.4 4.1 0.4 11.0 5.4 4.6 0.1 32.0 129.0 7.0 SBF 9.7 9.6 422.0 390.0 590.0 502.0 570.0 450.0 0.0 11.0 0.3 234 11 3.2 1.6 4.1 1.0 4.4 4.6 0.1 32.0 12.0 2.8 SEF 9.6 9.4 31.0 24.0 50.0 52.0 51.8 0.0 4.6 0.0		11				11.1	0.5	12.0			0.3	119.0	5.0	0.0			10.3	10.0							9.4	0.1	0.1	0.3
230 6 6.7 3.5 8.6 5.1 1.3 7.0 5.1 7.2 0.4 182.0 0.0 0.0 SBF 9.8 9.5 460.0 278.0 619.0 619.0 683.0 683.0 0.0 0.2 0.8 231 8 5.4 1.4 5.9 4.5 0.4 9.0 4.5 5.2 0.2 56.0 24.0 12.0 SBF 10.0 9.8 516.0 460.0 514.0 50.0 650.0 0.0 3.0 0.0 1.0 0.3 233 10 4.0 1.1 4.5 3.4 0.4 11.0 3.4 4.5 0.2 66.0 4.0 2.0 SBF 9.5 9.4 311.0 245.0 505.0 50.0 480.0 481.0 481.0 483.0 0.0 1.8 0.2 235 12 3.5 1.9 4.6 2.7 0.6 13.0 3.0 3.2 0.2 10.0 7.0 SBF 9.8 9.5 436.0 294.0 528.0 516.0							0.8			12.2			6.0				10.5									0.1	0.1	0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	229	30	4.8	2.5		3.6	0.8	31.0	5.0		0.4		129.0	7.0	SBF		9.5	9.1	290.0	164.0			513.0			1.3	0.6	0.0
232 10 4.7 1.3 5.4 4.1 0.4 11.0 5.4 4.6 0.1 32.0 129.0 7.0 SBF 9.7 9.6 422.0 390.0 509.0 502.0 579.0 450.0 0.0 11.0 0.3 233 10 4.0 1.1 4.5 3.4 0.4 11.0 3.4 4.5 0.2 66.0 4.0 2.0 SBF 9.5 9.4 311.0 245.0 505.0 503.0 446.0 442.0 0.0 0.8 0.4 234 11 3.2 1.6 4.1 2.5 0.5 12.0 2.9 3.2 0.2 121.0 46.0 2.0 SBF 9.6 9.4 370.0 249.0 525.0 518.0 540.0 450.0 450.0 46.0 0.0 18.0 4.6 0.0 1.6 0.7 0.6 33.3 30 0.2 66.0 4.0 42.0 SBF 9.9 9.7 482.0 416.0 558.0 516.0 52.0 516.0 50.0 31.0	230	6	6.7	3.5	8.6	5.1	1.3	7.0			0.4	182.0	0.0				9.8	9.5	460.0				683.0	683.0	0.0	0.2	0.8	0.0
233 10 4.0 1.1 4.5 3.4 0.4 11.0 3.4 4.5 0.2 66.0 4.0 2.0 SBF 9.5 9.4 311.0 245.0 505.0 503.0 446.0 442.0 0.0 0.8 0.4 234 11 3.2 1.6 4.1 2.5 0.5 12.0 2.9 3.2 0.2 121.0 46.0 2.0 SBF 9.6 9.4 370.0 249.0 528.0 526.0 481.0 435.0 0.0 1.8 0.2 235 12 3.5 1.9 4.6 2.7 0.6 13.0 3.0 3.9 0.3 142.0 101.0 7.0 SBF 9.8 9.5 436.0 294.0 525.0 518.0 518.0 0.0 0.6 0.0 237 7 6.0 3.7 7.9 4.2 1.5 8.0 4.2 7.8 0.4 157.0 5.0 0.0 SBF 10.1 9.8 540.0 457.0 527.0 528.0 610.0 0.0 -1.6<	231	8	5.4	1.4	5.9	4.5	0.4	9.0	4.5	5.2	0.2	56.0	24.0	12.0	SBF		10.0	9.8	516.0	460.0	514.0	502.0	689.0	665.0	0.0	3.0	0.0	0.6
234 11 3.2 1.6 4.1 2.5 0.5 12.0 2.9 3.2 0.2 121.0 46.0 2.0 SBF 9.6 9.4 370.0 249.0 528.0 526.0 481.0 435.0 0.0 1.8 0.2 235 12 3.5 1.9 4.6 2.7 0.6 13.0 3.0 0.2 66.0 4.0 7.0 SBF 9.8 9.5 436.0 240.0 525.0 518.0 540.0 439.0 0.0 0.7 0.6 236 10 3.8 1.7 4.7 3.0 0.4 11.0 3.8 0.2 66.0 4.0 42.0 SBF 9.9 9.7 482.0 410.0 52.0 52.0 518.0 0.0 -7.3 0.9 238 14 3.2 1.3 3.8 2.5 0.4 15.0 2.5 3.8 0.2 83.0 88.0 2.0 SBF 10.1 9.8 540.0 457.0 52.0 52.0 61.0 60.0 0.5 63.0 0.0 <td>232</td> <td>10</td> <td>4.7</td> <td>1.3</td> <td>5.4</td> <td>4.1</td> <td>0.4</td> <td>11.0</td> <td>5.4</td> <td>4.6</td> <td>0.1</td> <td>32.0</td> <td>129.0</td> <td>7.0</td> <td>SBF</td> <td></td> <td>9.7</td> <td>9.6</td> <td>422.0</td> <td>390.0</td> <td>509.0</td> <td>502.0</td> <td>579.0</td> <td>450.0</td> <td>0.0</td> <td>11.0</td> <td>0.3</td> <td>0.1</td>	232	10	4.7	1.3	5.4	4.1	0.4	11.0	5.4	4.6	0.1	32.0	129.0	7.0	SBF		9.7	9.6	422.0	390.0	509.0	502.0	579.0	450.0	0.0	11.0	0.3	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	233	10	4.0	1.1	4.5	3.4	0.4	11.0	3.4	4.5	0.2	66.0	4.0	2.0	SBF		9.5	9.4	311.0	245.0	505.0	503.0	446.0	442.0	0.0	0.8	0.4	0.0
236 10 3.8 1.7 4.7 3.0 0.4 11.0 3.8 3.0 0.2 66.0 4.0 42.0 SBF 9.9 9.7 482.0 416.0 558.0 516.0 522.0 518.0 0.0 4.6 0.0 237 7 6.0 3.7 7.9 4.2 1.5 8.0 4.2 7.8 0.4 157.0 5.0 0.0 SBF 1.0 10.3 9.9 628.0 471.0 529.0 529.0 714.0 709.0 0.0 -7.3 0.9 238 14 3.2 1.3 3.8 2.5 0.4 15.0 2.5 3.8 0.2 83.0 88.0 2.0 SBF 10.1 9.8 540.0 457.0 527.0 529.0 61.0 603.0 0.0 -5.6 0.3 240 4 4.2 1.3 5.1 3.8 0.5 5.0 3.8 5.1 0.1 31.0 5.0 0.0 SBF 10.2 10.1 581.0 510.0 315.0 529.0 524.0<	234	11	3.2	1.6	4.1	2.5	0.5	12.0	2.9	3.2	0.2	121.0	46.0	2.0	SBF		9.6	9.4	370.0	249.0	528.0	526.0	481.0	435.0	0.0	1.8	0.2	0.2
237 7 6.0 3.7 7.9 4.2 1.5 8.0 4.2 7.8 0.4 157.0 5.0 0.0 SBF 1.0 10.3 9.9 628.0 471.0 529.0 529.0 714.0 709.0 0.0 -7.3 0.9 238 14 3.2 1.3 3.8 2.5 0.4 15.0 2.5 3.8 0.2 83.0 88.0 2.0 SBF 10.1 9.8 540.0 457.0 527.0 525.0 602.0 514.0 0.0 -1.6 0.7 239 7 4.1 2.2 5.5 3.3 0.8 8.0 3.3 3.9 0.2 65.0 48.0 0.0 SBF 10.2 10.0 592.0 527.0 379.0 651.0 603.0 0.0 -5.6 0.3 240 4 4.2 1.3 5.1 3.8 5.1 0.1 31.0 5.0 0.0 SBF 10.2 10.1 581.0 550.0 315.0 315.0 529.0 524.0 0.0 -12.5	235	12	3.5	1.9	4.6	2.7	0.6	13.0	3.0	3.9	0.3	142.0	101.0	7.0	SBF		9.8	9.5	436.0	294.0	525.0	518.0	540.0	439.0	0.0	0.7	0.6	0.0
238 14 3.2 1.3 3.8 2.5 0.4 15.0 2.5 3.8 0.2 83.0 88.0 2.0 SBF 10.1 9.8 540.0 457.0 527.0 525.0 602.0 514.0 0.0 -1.6 0.7 239 7 4.1 2.2 5.5 3.3 0.8 8.0 3.3 3.9 0.2 65.0 48.0 0.0 SBF 10.2 10.0 592.0 527.0 379.0 379.0 651.0 603.0 0.0 -5.6 0.3 240 4 4.2 1.3 5.1 3.8 0.5 5.0 3.8 5.1 0.1 31.0 5.0 0.0 SBF 10.2 10.1 581.0 550.0 315.0 529.0 524.0 0.0 -12.5 0.5 241 2 8.4 9.4 13.7 4.3 13.7 0.2 69.0 0.0 0.0 SBF 10.4 10.2 654.0 585.0 308.0 308.0 468.0 0.1 -63.4 0.8	236	10	3.8	1.7	4.7	3.0	0.4	11.0	3.8	3.0	0.2	66.0	4.0	42.0	SBF		9.9	9.7	482.0	416.0	558.0	516.0			0.0	4.6	0.0	0.8
239 7 4.1 2.2 5.5 3.3 0.8 8.0 3.3 3.9 0.2 65.0 48.0 0.0 SBF 10.2 10.0 592.0 527.0 379.0 651.0 603.0 0.0 -5.6 0.3 240 4 4.2 1.3 5.1 3.8 0.5 5.0 3.8 5.1 0.1 31.0 5.0 0.0 SBF 10.2 10.1 581.0 550.0 315.0 529.0 524.0 0.0 -12.5 0.5 241 2 8.4 9.4 13.7 4.3 4.8 3.0 4.3 13.7 0.2 69.0 0.0 0.0 SBF 10.4 10.2 654.0 585.0 308.0 468.0 468.0 0.1 -63.4 0.8 242 5 3.3 2.9 5.3 2.4 1.0 6.0 2.4 3.5 0.4 202.0 0.0 4.0 SBF 9.7 9.2 396.0 194.0 217.0 213.0 324.0 0.0 0.8 0.5 <tr< td=""><td>237</td><td>7</td><td>6.0</td><td>3.7</td><td>7.9</td><td>4.2</td><td>1.5</td><td>8.0</td><td>4.2</td><td>7.8</td><td>0.4</td><td>157.0</td><td>5.0</td><td>0.0</td><td>SBF</td><td>1.0</td><td>10.3</td><td>9.9</td><td>628.0</td><td>471.0</td><td>529.0</td><td>529.0</td><td>714.0</td><td>709.0</td><td>0.0</td><td>-7.3</td><td>0.9</td><td>0.0</td></tr<>	237	7	6.0	3.7	7.9	4.2	1.5	8.0	4.2	7.8	0.4	157.0	5.0	0.0	SBF	1.0	10.3	9.9	628.0	471.0	529.0	529.0	714.0	709.0	0.0	-7.3	0.9	0.0
240 4 4.2 1.3 5.1 3.8 0.5 5.0 3.8 5.1 0.1 31.0 5.0 0.0 SBF 10.2 10.1 581.0 550.0 315.0 529.0 524.0 0.0 -12.5 0.5 241 2 8.4 9.4 13.7 4.3 4.8 3.0 4.3 13.7 0.2 69.0 0.0 0.0 SBF 10.4 10.2 654.0 585.0 308.0 308.0 468.0 0.1 -63.4 0.8 242 5 3.3 2.9 5.3 2.4 1.0 6.0 2.4 3.5 0.4 202.0 0.0 4.0 SBF 9.7 9.2 396.0 194.0 217.0 213.0 324.0 0.0 0.8 0.5 243 7 5.6 4.3 8.3 4.0 1.6 8.0 4.0 7.1 0.4 134.0 0.0 0.0 SBF 1.0 10.1 9.7 553.0 419.0 215.0 484.0 484.0 0.0 -7.7 0.7	238	14	3.2	1.3	3.8	2.5	0.4	15.0	2.5	3.8	0.2	83.0	88.0	2.0	SBF		10.1	9.8	540.0	457.0	527.0	525.0	602.0	514.0	0.0	-1.6	0.7	0.0
241 2 8.4 9.4 13.7 4.3 4.8 3.0 4.3 13.7 0.2 69.0 0.0 0.0 SBF 10.4 10.2 654.0 585.0 308.0 308.0 468.0 0.1 -63.4 0.8 242 5 3.3 2.9 5.3 2.4 1.0 6.0 2.4 3.5 0.4 202.0 0.0 4.0 SBF 9.7 9.2 396.0 194.0 217.0 213.0 324.0 0.0 0.8 0.5 243 7 5.6 4.3 8.3 4.0 1.6 8.0 4.0 7.1 0.4 134.0 0.0 0.0 SBF 1.0 10.1 9.7 553.0 419.0 215.0 215.0 484.0 0.0 -7.7 0.7 244 4 3.4 1.5 4.3 2.8 0.7 5.0 2.8 3.9 0.1 48.0 3.0 0.0 SBF 9.7 9.6 399.0 351.0 170.0 170.0 306.0 303.0 0.0 -7.2	239	7	4.1	2.2	5.5	3.3	0.8	8.0	3.3	3.9	0.2	65.0	48.0	0.0	SBF		10.2	10.0	592.0		379.0	379.0	651.0		0.0		0.3	0.2
242 5 3.3 2.9 5.3 2.4 1.0 6.0 2.4 3.5 0.4 202.0 0.0 4.0 SBF 9.7 9.2 396.0 194.0 217.0 213.0 324.0 324.0 0.0 0.8 0.5 243 7 5.6 4.3 8.3 4.0 1.6 8.0 4.0 7.1 0.4 134.0 0.0 0.0 SBF 1.0 10.1 9.7 553.0 419.0 215.0 215.0 484.0 484.0 0.0 -7.7 0.7 244 4 3.4 1.5 4.3 2.8 0.7 5.0 2.8 3.9 0.1 48.0 3.0 0.0 SBF 9.7 9.6 399.0 351.0 170.0 170.0 306.0 303.0 0.0 -7.2 0.8 245 12 4.1 0.7 4.4 3.7 0.2 13.0 4.0 0.0 28.0 3.0 1.0 SBF 9.6 9.6 383.0 346.0 220.0 166.0 306.0 305.0 <td>240</td> <td>4</td> <td>4.2</td> <td>1.3</td> <td>5.1</td> <td>3.8</td> <td>0.5</td> <td>5.0</td> <td>3.8</td> <td>5.1</td> <td>0.1</td> <td>31.0</td> <td>5.0</td> <td>0.0</td> <td>SBF</td> <td></td> <td>10.2</td> <td>10.1</td> <td>581.0</td> <td>550.0</td> <td>315.0</td> <td>315.0</td> <td>529.0</td> <td>524.0</td> <td>0.0</td> <td>-12.5</td> <td>0.5</td> <td>0.2</td>	240	4	4.2	1.3	5.1	3.8	0.5	5.0	3.8	5.1	0.1	31.0	5.0	0.0	SBF		10.2	10.1	581.0	550.0	315.0	315.0	529.0	524.0	0.0	-12.5	0.5	0.2
243 7 5.6 4.3 8.3 4.0 1.6 8.0 4.0 7.1 0.4 134.0 0.0 0.0 SBF 1.0 10.1 9.7 553.0 419.0 215.0 215.0 484.0 484.0 0.0 -7.7 0.7 244 4 3.4 1.5 4.3 2.8 0.7 5.0 2.8 3.9 0.1 48.0 3.0 0.0 SBF 9.7 9.6 399.0 351.0 170.0 170.0 306.0 303.0 0.0 -7.2 0.8 245 12 4.1 0.7 4.4 3.7 0.2 13.0 4.0 0.0 37.0 1.0 SBF 9.6 9.6 383.0 346.0 220.0 166.0 306.0 305.0 0.0 3.1 0.0 246 9 4.3 1.8 5.4 3.6 0.5 10.0 3.6 5.4 0.0 28.0 3.0 1.0 SBF 9.6 9.6 365.0 337.0 168.0 167.0 306.0 303.0 0.0 <td>241</td> <td>2</td> <td>8.4</td> <td>9.4</td> <td>13.7</td> <td>4.3</td> <td>4.8</td> <td>3.0</td> <td>4.3</td> <td>13.7</td> <td>0.2</td> <td>69.0</td> <td>0.0</td> <td>0.0</td> <td>SBF</td> <td></td> <td>10.4</td> <td>10.2</td> <td>654.0</td> <td>585.0</td> <td>308.0</td> <td>308.0</td> <td>468.0</td> <td>468.0</td> <td>0.1</td> <td>-63.4</td> <td>0.8</td> <td>0.3</td>	241	2	8.4	9.4	13.7	4.3	4.8	3.0	4.3	13.7	0.2	69.0	0.0	0.0	SBF		10.4	10.2	654.0	585.0	308.0	308.0	468.0	468.0	0.1	-63.4	0.8	0.3
244 4 3.4 1.5 4.3 2.8 0.7 5.0 2.8 3.9 0.1 48.0 3.0 0.0 SBF 9.7 9.6 399.0 351.0 170.0 170.0 306.0 303.0 0.0 -7.2 0.8 245 12 4.1 0.7 4.4 3.7 0.2 13.0 4.0 0.0 37.0 1.0 54.0 SBF 9.6 9.6 383.0 346.0 220.0 166.0 306.0 305.0 0.0 3.1 0.0 246 9 4.3 1.8 5.4 3.6 0.5 10.0 3.6 5.4 0.0 28.0 3.0 1.0 SBF 9.6 9.6 365.0 337.0 168.0 167.0 306.0 303.0 0.0 -4.4 0.3	242	5	3.3	2.9	5.3	2.4	1.0	6.0	2.4	3.5	0.4	202.0	0.0	4.0	SBF		9.7	9.2	396.0	194.0	217.0	213.0	324.0	324.0	0.0	0.8	0.5	0.1
245 12 4.1 0.7 4.4 3.7 0.2 13.0 4.0 0.0 37.0 1.0 54.0 SBF 9.6 9.6 383.0 346.0 220.0 166.0 306.0 305.0 0.0 3.1 0.0 246 9 4.3 1.8 5.4 3.6 0.5 10.0 3.6 5.4 0.0 28.0 3.0 1.0 SBF 9.6 9.6 365.0 337.0 168.0 167.0 306.0 303.0 0.0 -4.4 0.3	243	7	5.6	4.3	8.3	4.0	1.6	8.0	4.0	7.1	0.4	134.0	0.0	0.0	SBF	1.0	10.1	9.7	553.0	419.0	215.0	215.0	484.0	484.0	0.0	-7.7	0.7	0.0
246 9 4.3 1.8 5.4 3.6 0.5 10.0 3.6 5.4 0.0 28.0 3.0 1.0 SBF 9.6 9.6 365.0 337.0 168.0 167.0 306.0 303.0 0.0 -4.4 0.3	244	4	3.4	1.5	4.3	2.8	0.7	5.0	2.8	3.9	0.1	48.0	3.0	0.0	SBF		9.7	9.6	399.0	351.0	170.0	170.0	306.0	303.0	0.0	-7.2	0.8	0.0
	245	12	4.1	0.7	4.4	3.7	0.2	13.0	4.0	4.0	0.0	37.0	1.0	54.0	SBF		9.6	9.6	383.0	346.0	220.0	166.0	306.0	305.0	0.0	3.1	0.0	0.6
	246	9	4.3	1.8	5.4	3.6	0.5	10.0	3.6	5.4	0.0	28.0	3.0	1.0	SBF		9.6	9.6	365.0	337.0	168.0	167.0	306.0	303.0	0.0	-4.4	0.3	0.1
24/ 6 6.8 5.5 9.7 4.2 2.3 7.0 4.3 8.7 0.3 132.0 27.0 3.0 SBF 9.9 9.6 460.0 328.0 541.0 538.0 419.0 392.0 0.0 -8.7 0.9	247	6	6.8	5.5	9.7	4.2	2.3	7.0	4.3	8.7	0.3	132.0	27.0	3.0	SBF		9.9	9.6	460.0	328.0	541.0	538.0	419.0	392.0	0.0	-8.7	0.9	0.0
248 16 21.5 27.6 33.2 5.6 10.7 17.0 5.6 26.1 0.8 308.0 248.0 3.0 SBF 1.0 10.7 9.8 761.0 453.0 509.0 506.0 807.0 559.0 0.1 -35.7 0.9	248	16	21.5	27.6	33.2	5.6	10.7	17.0	5.6	26.1	0.8	308.0	248.0	3.0	SBF	1.0	10.7	9.8	761.0	453.0	509.0	506.0	807.0	559.0	0.1	-35.7	0.9	0.0
249 5 28.8 53.5 71.2 17.7 20.9 6.0 17.7 19.8 0.1 39.0 5.0 3.0 SBF 1.0 10.8 10.7 808.0 769.0 492.0 489.0 850.0 845.0 -0.2 192.9 0.0	249	5	28.8	53.5	71.2	17.7	20.9	6.0	17.7	19.8	0.1	39.0	5.0	3.0	SBF	1.0	10.8	10.7	808.0	769.0	492.0	489.0	850.0	845.0	-0.2	192.9	0.0	0.8
250 7 8.6 3.7 10.4 6.7 1.3 8.0 6.7 10.4 0.4 144.0 10.0 310.0 SBF 10.5 10.1 711.0 567.0 488.0 178.0 751.0 741.0 0.0 -5.2 0.7	250	7	8.6	3.7	10.4	6.7	1.3	8.0	6.7	10.4	0.4	144.0	10.0	310.0	SBF		10.5	10.1	711.0	567.0	488.0	178.0	751.0	741.0	0.0	-5.2	0.7	0.0
251 5 5.7 1.5 6.4 4.9 0.6 6.0 4.9 6.4 0.2 78.0 44.0 3.0 SBF 9.7 9.6 402.0 324.0 195.0 192.0 383.0 339.0 0.0 -1.2 0.9		5						6.0			0.2	78.0	44.0	3.0	SBF				402.0	324.0	195.0	192.0	383.0	339.0			0.9	0.0
252 17 6.6 2.8 7.8 5.0 0.8 18.0 5.3 7.0 0.3 110.0 89.0 5.0 SBF 9.9 9.6 471.0 361.0 197.0 192.0 464.0 375.0 0.0 0.0 0.4	252	17	6.6	2.8	7.8	5.0	0.8	18.0	5.3	7.0	0.3	110.0	89.0	5.0	SBF		9.9	9.6	471.0	361.0	197.0	192.0	464.0	375.0	0.0	0.0	0.4	0.0
253 6 6.0 3.1 8.1 5.0 1.0 7.0 5.0 6.4 0.2 78.0 4.0 4.0 SBF 9.8 9.6 429.0 351.0 203.0 199.0 433.0 429.0 0.0 -0.5 0.2	253	6	6.0	3.1	8.1	5.0	1.0	7.0	5.0	6.4	0.2	78.0	4.0	4.0	SBF		9.8	9.6	429.0	351.0	203.0	199.0	433.0	429.0	0.0	-0.5	0.2	0.3
254 6 10.7 5.8 13.0 7.2 2.3 7.0 7.2 12.7 0.3 130.0 0.0 0.0 SBF 9.9 9.6 450.0 320.0 200.0 200.0 483.0 483.0 0.0 -7.5 1.0		6	10.7				2.3			12.7	0.3	130.0	0.0		SBF		9.9	9.6				200.0	483.0					0.0
255 6 10.0 3.3 12.5 9.2 1.2 7.0 9.2 9.8 0.1 47.0 4.0 0.0 SBF 1.0 9.7 9.6 393.0 346.0 197.0 197.0 386.0 382.0 0.0 -1.4 0.2		6		3.3			1.2	7.0	9.2		0.1		4.0	0.0	SBF	1.0	9.7	9.6	393.0						0.0		0.2	0.3

APPENDIX II.

Storm-Influenced Hourly Data for Hydrologically Increasing Events

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period		•		•	•		Stage	Flow	Flow	Flow	SIG
1	1	05/12/04	10:00	UBR	13.13	1.761	84.3	8.8	0.747	13.5		45	130	221	0.009
2	1	05/12/04	11:00	UBR	13.54	1.761	94.8	9.81	0.845	12.2	8.21	38	130	216	0.009
3	1	05/12/04	12:00	UBR	13.75	1.762	100.8	10.39	0.957	13.9	8.26	42	130	216	0.009
4	1	05/12/04	13:00	UBR	14.11	1.758	109.3	11.17	1.033	13	8.37	53	130	216	0.009
5	1	05/12/04	14:00	UBR	14.2	1.754	113.5	11.59	1.102	11.7	8.44	61	130	221	0.009
6		05/12/04	15:00	UBR	14.32	1.747	119.7	12.18	1.141	12.4	8.49	67	130	221	0.009
7		05/12/04	16:00		14.74	1.739	126.8	12.79	1.166	12.8		69	130		0.009
8		05/12/04	17:00		15.06	1.733	132.4	13.26	1.195	14.5			130		0.009
9		05/12/04	18:00		15.09	1.729	133.2	13.34	1.226	13.4			130		
10	1	05/12/04	19:00	UBR	15.2	1.724	131.1	13.1	1.261	12.5			130		0.009
11	1	05/12/04	20:00		15.03	1.719	124.4	12.47	1.295	15.9		78	130		
12		05/12/04	21:00		14.77	1.715	119.2	12.02	1.342	13.4			128		
13		05/12/04	22:00		14.49	1.707	112.2	11.37	1.379	15			128		
14		05/12/04	23:00		14.19	1.704	104.2	10.64	1.377	16.4			128		
15		05/13/04	0:00		13.88	1.702	96.5		1.387	16.9			128		
16		05/13/04	1:00		13.57	1.702	91.3	9.45	1.39	18.1			128		
17		05/13/04	2:00		13.25	1.7	87.3	9.1	1.384	18		81	128		
18		05/13/04		UBR	12.96	1.702	82.6	8.66	1.381	19.5		81	128		
19		05/23/04	23:00		14.8	1.13	97	9.8	2.463	16			644		
20		05/24/04	0:00		14.4	1.13	92	9.4	2.633	19		375	643		
21	2	05/24/04	1:00		14.1	1.13	88	9	2.773	23		419	643		
22	2	05/24/04	2:00		13.9	1.12	85	8.8	2.843	26		453	643		
23		05/24/04	3:00		13.6	1.08	83	8.6	2.893	27		475	643		
24		05/24/04	4:00		13.4	1.04	81	8.5	2.913	34		482	643		
25		05/24/04	5:00		13.3	1	78	8.2	2.913				643		
26		05/24/04	6:00		13.1	0.97	75	7.8	2.933	35		493	643		
27	2	05/24/04	7:00		12.8	0.96	72	7.6	2.953	29		493	643		
28		05/24/04	8:00		12.7	0.96	72	7.6	2.983	28		505	957	1096	
29		05/24/04	9:00		12.8	0.97	74	7.8	3.003	21		508	973		
30		05/24/04	10:00		13.1	0.97	77	8.1	2.993	22		508	1001	1086	
31	2	05/24/04	11:00		13.6	0.97	82	8.5	2.993	22		508	1007	1086	
32		05/24/04	12:00		14.2	0.97	87	8.9	2.993	24		508	1018		
33		05/24/04	13:00		14.6	0.97	91	9.2	2.973	22		508	1198		
34		05/24/04	14:00		15.2	0.97	96	9.6	2.963	21	9.98	508	1198		
35		05/24/04	15:00		15.7	0.97	100	9.9	2.943	28		508	1271	1086	
36		05/24/04	16:00		16.1	0.97	103	10.1	2.983	23			1271	1086	
37		05/24/04	17:00		16.1	0.97	103	10.1	3.173			550	1264		
38	2	05/24/04	18:00	UBR	16.1	0.97	101	9.9	3.363	39	10.3	620	1264	1076	0

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period	•	•		0	•		Stage	Flow	Flow	Flow	SIG
39	2	05/24/04	19:00	UBR	16.3	0.97	99	9.7	3.473	61		684	1271	1076	0
40	2	05/24/04	20:00	UBR	16.2	0.96	96	9.4	3.563	59	10.59	734	1271	971	0
41	2	05/24/04	21:00	UBR	15.9	0.93	89	8.8	3.673	70	10.72	784	1271	677	0
42	2	05/24/04	22:00	UBR	15.8	0.92	81	8	3.793	105	10.87	845	1264	623	0
43	2	05/24/04	23:00	UBR	15.9	0.91	76	7.4	3.883	122	11	900	1271	481	0
44	2	05/25/04	0:00	UBR	15.9	0.9	72	7.1	3.943	109	11.11	936	1264	266	0
45	2	05/25/04	1:00	UBR	15.7	0.89	69	6.9	3.983	105	11.18	959	1264	136	0
46	2	05/25/04	2:00	UBR	15.3	0.89	68	6.8	4.003	102	11.23	976	1264	136	0
47	2	05/25/04	3:00	UBR	14.8	0.89	68	6.9	3.983	107	11.29	997	1264	897	0
48	2	05/25/04	4:00	UBR	14.2	0.89	68	7	3.983	104	11.31	1000	1264	529	0
49	3	05/28/04	9:00	UBR	14.9	0.99	71	7.1	2.213	23	9.54	342	338	392	0
50	3	05/28/04	10:00	UBR	14.8	1	71	7.2	2.193	21	9.54	342	338	392	
51	3	05/28/04	11:00		14.7	1.01	72	7.3							
52	3	05/28/04	12:00		14.7	1.02	73	7.4					342		
53	3	05/28/04	13:00		14.6	1.02	75	7.6					342		
54	3	05/28/04	14:00		14.6	1.02	76	7.7	2.273				342		
55	3	05/28/04	15:00		14.5	1.02	77	7.8					360		
56	3	05/28/04	16:00		14.4	1.01	77	7.8					364		
57	3	05/28/04	17:00		14.2	1.01	78	7.9					364		
58	3	05/28/04	18:00		14	1	79	8.1	2.483			446			
59	3	05/28/04	19:00		13.8	1	79	8.1					617	392	
60	3	05/28/04	20:00		13.6	1	79	8.1	2.603			486		392	
61	3	05/28/04	21:00		13.3	1.01	78	8.1	2.713					392	
62	3	05/28/04	22:00		13.1	1.01	78	8.2				550			
63	3	05/28/04	23:00		12.9	1.01	78	8.1	2.863						
64	3	05/29/04	0:00		12.8	1	77	8.1	2.933			588		392	
65	3	05/29/04	1:00		12.6	0.99	76	8					1456		
66	3	05/29/04	2:00		12.5	0.97	75	8					1201	392	
67	3	05/29/04	3:00		12.4	0.95	74	7.9				624	850		0
68	3	05/29/04	4:00		12.2	0.93	74	7.9					845		
69	3	05/29/04	5:00		12.1	0.91	74	7.9					845		
70	3	05/29/04	6:00		11.9	0.88	73	7.9				765	845		
71	3	05/29/04	7:00		11.6	0.84	73	7.9					845		
72	3	05/29/04	8:00		11.4	0.79	74	8					845		
73	3	05/29/04	9:00	UBR	11.3	0.75	74	8.1	4.163	152	11.42	1040	845	392	0
262	14	07/07/04	4:00	UBR	22.18	0.937	82.9	7.2	2.982	15.6	9.78	416	655	840	0
263	14	07/07/04	5:00	UBR	21.9	0.929	78.7	6.87	2.993	18.3	9.82	429	655	840	0
264	14	07/07/04	6:00	UBR	21.61	0.921	74.9	6.58	2.983	14.4	9.82	429	655	840	0

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period							Stage	Flow	Flow	Flow	SIG
265	14	07/07/04	7:00		21.31	0.914	71.7	6.34	2.977	15.1	9.83			840	
266	14	07/07/04	8:00	UBR	21.09	0.912	70.1	6.22	2.976	13.7	9.83	433	665	942	
267	14	07/07/04	9:00		21	0.914	70	6.22	2.963	14.8		446		942	
268	14	07/07/04	10:00	UBR	21.08	0.919	72	6.39	2.958	15.1	9.82	429	670	942	
269	14	07/07/04	11:00		21.21	0.928	76.2	6.74	2.959	13.4		426		942	
270	14	07/07/04	12:00	UBR	21.61	0.939	82	7.21	2.954	13.8		422		942	
271	14	07/07/04	13:00		21.99	0.952	87.8	7.66	2.937	13.3		419		942	
272	14	07/07/04	14:00		22.48	0.963	95.1	8.22	2.885	15.2		419		942	
273	14	07/07/04	15:00		22.95	0.971	100.8	8.63	2.84	14.7	9.79	419		942	
274	14	07/07/04	16:00		22.98	0.975	104.6	8.95	2.833	14.8		426		942	
275	14	07/07/04	17:00		22.73	0.975	105.6	9.08	2.825	16.5		419		942	
276	14	07/07/04	18:00		22.64	0.975	105.7	9.11	2.858	13.7		419		942	
277	14	07/07/04	19:00		22.46	0.974	104.7	9.05	2.855	15		416		950	
278	14	07/07/04	20:00		22.3	0.972	103.4	8.97	2.881	13.9		419		942	
279	14	07/07/04	21:00		22.08	0.969	99.9	8.7	2.879	13.7	9.81	426		942	
280	14	07/07/04	22:00		21.95	0.964	97.7	8.53	2.945	20.1	9.79	419		942	
281	14	07/07/04	23:00		21.77	0.958	93.9	8.22	2.977	16.7		439		942	
282	14	07/08/04	0:00		21.63		90.1	7.91	3.023	18.3		457	699	932	
283	14	07/08/04	1:00		21.5	0.947	86.6	7.63	3.063	17.5		464		940	
284	14	07/08/04	2:00		21.37	0.94	82.9	7.32	3.063	21.9		486		932	
285	14	07/08/04	3:00		21.13		78.9	7	3.086	31.4		490		940	
286	14	07/08/04	4:00		20.89	0.926	75.3	6.71	3.088	17.6		475		940	
287	14	07/08/04	5:00		20.72	0.921	72.9	6.51	3.098	19.1	9.95	479		947	
288	14	07/08/04	6:00		20.59		70.7	6.33	3.091	17.5		479		940	
289	14	07/08/04	7:00		20.45		69.1	6.21	3.094	18.3				940	
290	14	07/08/04	8:00		20.32	0.921	68.4	6.17	3.111	17.1	9.95	479		947	
291	14	07/08/04	9:00		20.21	0.931	69.1	6.24	3.133	52.4		482		947	
292	14	07/08/04	10:00		20.29	0.941	71.9	6.49	3.144	27.3		486		947	
293	14	07/08/04	11:00		20.52	0.949	76.1	6.83	3.145	17.8		490		947	
294	14	07/08/04	12:00		20.9	0.954	82.4	7.34	3.143	15		471	750	947	
295	14	07/08/04	13:00		21.41	0.957	88.5	7.81	3.13	17.2		479		947	
296	14	07/08/04	14:00		22.09	0.959	95.5	8.32	3.105	15.3		482	750	947	
297	14	07/08/04	15:00		22.82	0.962	101.9	8.75	3.104	14.5		468		947	
298	14	07/08/04	16:00	UBR	23.44	0.965	107.8	9.15	3.093	13.1	9.95	479	755	947	
299	14	07/08/04	17:00	UBR	23.95	0.966	112.8	9.48	3.075	14.8	10.09	533	755	947	0
300	14	07/08/04	18:00	UBR	24.1	0.967	115.8	9.7	3.078	15.5	9.94	475	755	947	0
301	14	07/08/04	19:00	UBR	24.09	0.965	117.2	9.82	3.077	13.2	9.98	490	755	947	0
302	14	07/08/04	20:00		24.01	0.963	117.4	9.86	3.053	15.1	9.95	479		947	0

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period							Stage	Flow	Flow	Flow	SIG
303	14	07/08/04	21:00	UBR	23.85	0.96	115.8	9.75	3.054	14.9	9.98	490	755	947	0
304	14	07/08/04	22:00	UBR	23.69	0.955	112.8	9.53	3.089	14.7	9.94	475	755	947	
305	14	07/08/04	23:00	UBR	23.48	0.949	108.2	9.17	3.135	18.4	9.99	493	755	947	
306	14	07/09/04	0:00	UBR	23.35	0.943	103.3	8.78	3.168	17.1	9.98	490	754	945	0
307	14	07/09/04	1:00	UBR	23.17	0.94	98.2	8.37	3.182	16.4	10.04	512	754	945	0
308	14	07/09/04	2:00	UBR	23.02	0.933	93.1	7.96	3.192	14.7	10.07	527	754	945	0
309	14	07/09/04	3:00	UBR	22.84	0.922	88.1	7.56	3.204	16.5	10.05	516	754	945	0
310	14	07/09/04	4:00	UBR	22.57	0.914	82.8	7.15	3.202	18.5	10.07	527	754	945	0
311	14	07/09/04	5:00	UBR	22.27	0.906	77.9	6.76	3.22	18.3	10.05	516	754	945	0
312	14	07/09/04	6:00	UBR	21.93	0.9	73.9	6.45	3.234	14.9	10.07	527	759	953	0
313	14	07/09/04	7:00	UBR	21.58	0.898	70.6	6.21	3.236	18.7	10.04	512	759	953	0
314	14	07/09/04	8:00	UBR	21.25	0.901	68.7	6.08	3.231	15.8			822	953	
315	14	07/09/04	9:00		21.03	0.908	68.9	6.13	3.228	19.2	10.03		843		
316	14	07/09/04	10:00	UBR	20.97	0.917	71.5	6.36	3.222	17.8			859		
317	14	07/09/04	11:00	UBR	20.96	0.927	76.1	6.77	3.221	18.4	10.07	527	859	961	0
318	14	07/09/04	12:00	UBR	21.24	0.938	81.9	7.25	3.217	18	10.08	530	859	961	0
319	14	07/09/04	13:00	UBR	21.69	0.947	88.8	7.79	3.198	17.8	10.04	512	859	953	
320	14	07/09/04	14:00	UBR	22.26	0.952	96.1	8.34	3.189	16.1	10.04	512	897	953	
321	14	07/09/04	15:00	UBR	22.51	0.954	101.7	8.79	3.174	16.8	10.03	508	902	961	0
322	14	07/09/04	16:00	UBR	22.94	0.954	107.7	9.23	3.148	15.2	10.04	512	902	961	0
323	14	07/09/04	17:00	UBR	23.36	0.954	112.8	9.59	3.155	14.9	10.04		902	961	
324	14	07/09/04	18:00	UBR	23.52	0.952	116.1	9.84	3.175	18.3	10.09	533	902	961	0
325	14	07/09/04	19:00	UBR	23.61	0.949	118.5	10.02	3.225	18.1	10.13	547	902	961	0
326	14	07/09/04	20:00	UBR	23.65	0.948	118.6	10.02	3.28	20.5	10.2	571	897	961	0
327	14	07/09/04	21:00	UBR	23.55	0.942	115.9	9.82	3.312	22.4	10.21	574	897	961	0
328	14	07/09/04	22:00	UBR	23.32	0.935	112.3	9.55	3.332	22.8	10.25	592	897	961	0
329	14	07/09/04	23:00	UBR	23.1	0.924	106.8	9.12	3.369	27.8	10.05	516	897	961	
330	14	07/10/04	0:00	UBR	22.98	0.915	101.4	8.68	3.401	25.5	10.29	606	896	951	0
331	14	07/10/04	1:00	UBR	22.75	0.908	95.1	8.18	3.429	26.3	10.25	592	896	951	0
332	14	07/10/04	2:00	UBR	22.59	0.903	89.6	7.73	3.459	25.9	10.35	628	896	951	0
333	14	07/10/04	3:00	UBR	22.4	0.896	84	7.27	3.48	23	10.31	613	896	951	0
334	14	07/10/04	4:00	UBR	22.1	0.89	78.7	6.85	3.495	27.7	10.34	624	896	959	0
335	14	07/10/04	5:00	UBR	21.72	0.889	74.2	6.51	3.53	25.2	10.34	624	896	959	0
336	14	07/10/04	6:00	UBR	21.27	0.891	70.8	6.26	3.546	21.7	10.35	628	896	959	0
337	14	07/10/04	7:00	UBR	20.82	0.894	68.6	6.13	3.571	19			896	959	0 0
338	14	07/10/04	8:00		20.44	0.902	68.2	6.13	3.58				896		
339	14	07/10/04	9:00		20.18	0.91	70.1	6.33	3.594	18.1			896		
340	14	07/10/04	10:00		20.13	0.917	74	6.7	3.594	17.2			896		

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period							Stage	Flow	Flow	Flow	SIG
341	14	07/10/04	11:00		20.32	0.924	79.4	7.15	3.595	25.2	10.36		886	959	0
528	32	08/21/04	19:00		21.73	1.188	15.9	1.4	3.412	5.2		592	890	733	0.007
529	32	08/21/04	20:00		21.86	1.182	15.8	1.38	3.407	5.3		571	896	733	
530	32	08/21/04	21:00	SBF	21.92	1.238	14.4	1.25	3.433	5.3	10.32	588	896	733	
531	32	08/21/04	22:00	SBF	21.98	1.247	13.9	1.21	3.484	5.6	10.32	588	890	733	0.007
532	32	08/21/04	23:00		21.98	1.285	12.5	1.09	3.537	6.4		617	890	733	
533	32	08/22/04	0:00		21.97	1.308	12.6	1.1	3.568	7.1	10.36	606	890	737	0.007
534	32	08/22/04	1:00		21.97	1.258	12.9	1.12	3.608	6.7	10.39	617	890	737	0.007
535	32	08/22/04	2:00		21.94	1.241	13.2	1.16	3.601	6.1	10.42	631	890	737	0.007
536	32	08/22/04	3:00		21.9	1.345	11.9	1.04	3.603	6.8	10.38	613	890	737	0.007
537	32	08/22/04	4:00	SBF	21.83	1.263	12.8	1.12	3.651	6	10.49	661	890	737	0.007
538	32	08/22/04	5:00	SBF	21.74	1.283	13.4	1.18	3.723	5.7	10.54	684	885	737	0.007
539	32	08/22/04	6:00		21.67	1.264	12.4	1.09	3.804	6.7	10.56	692	885	737	0.007
540	32	08/22/04	7:00	SBF	21.54	1.359	13.6	1.2	3.86	6.1	10.72	765	885	737	0.007
541	32	08/22/04	8:00		21.34	1.242	14.7	1.3	3.873	5.9		784	692	640	0.007
542	32	08/22/04	9:00	SBF	21.07	1.229	15.7	1.39	3.871	4.8	10.7	757	595	640	0.007
543	32	08/22/04	10:00	SBF	20.48	1.09	17.7	1.59	3.867	3.5	10.7	757	595	640	0.007
544	32	08/22/04	11:00	SBF	20.62	1.109	17.8	1.6	3.854	4.4	10.79	796	648	640	0.007
545	32	08/22/04	12:00	SBF	20.46	1.148	17.3	1.56	3.852	9.5	10.74	773	648	640	0.007
546	32	08/22/04	13:00	SBF	20.38	1.15	17.4	1.57	3.831	8.3	10.93	866	648	640	0.007
849	32	08/20/04	23:00		22.18	1.153	18.1	1.57	3.291	12.6		471	667	729	
850	32	08/21/04	0:00	SBF	22.02	1.112	18.5	1.61	3.299	18.9	10.01	475	667	733	0.007
851	32	08/21/04	1:00	SBF	21.86	1.106	20.8	1.82	3.348	9.5	10.04	486	667	733	0.007
852	32	08/21/04	2:00	SBF	21.77	1.101	19.6	1.72	3.419	10.8	10.1	508	667	733	0.007
853	32	08/21/04	3:00		21.66	1.071	21.2	1.86	3.492	14.1	10.15	527	667	733	
854	32	08/21/04	4:00	SBF	21.63	1.083	21.5	1.88	3.533	13.2	10.22	550	667	733	0.007
855	32	08/21/04	5:00	SBF	21.6	1.126	20.7	1.82	3.556	10.2	10.31	585	667	733	0.007
856	32	08/21/04	6:00	SBF	21.5	1.154	20.4	1.79	3.56	9.9	10.29	578	667	733	0.007
857	32	08/21/04	7:00	SBF	21.45	1.166	20.3	1.78	3.573	12.5	10.27	567	667	733	0.007
858	32	08/21/04	8:00	SBF	21.13	1.069	20.9	1.85	3.574	9	10.29	578	667	733	0.007
859	32	08/21/04	9:00	SBF	20.96	1.053	22.9	2.04	3.573	9.6	10.31	585	667	733	0.007
860	32	08/21/04	10:00	SBF	20.72	1.018	23.6	2.11	3.57	2.9	10.34	595	667	733	0.007
861	32	08/21/04	11:00	SBF	20.69	1.025	24.3	2.17	3.553	2.9	10.36	606	692	733	0.007
862	32	08/21/04	12:00	SBF	20.77	1.11	20.9	1.86	3.552	3.2	10.34	595	722	733	0.007
863	32	08/21/04	13:00	SBF	20.85	1.137	16.2	1.45	3.539	3.6	10.04	600	748	733	
864	32	08/21/04	14:00		20.89	1.172	16.5	1.47	3.533	3.9	10.35	602	748	733	0.007
865	32	08/21/04	15:00		21.01	1.161	15.6	1.39	3.522	4.3		617	748	733	
866	32	08/21/04	16:00		21.15	1.207	15.3	1.35	3.497	4.5		588	742	733	

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period							Stage	Flow	Flow	Flow	SIG
867	32	08/21/04	17:00	SBF	21.29	1.206	14.7	1.3	3.472	4.8	10.3	581	742		
868	32	08/21/04	18:00		21.46	1.207	15.2	1.34	3.437	4.6	10.31	585	742	733	0.007
991	81	10/20/04	10:00	SBF	10.38	1.011	46.9	5.23	2.334	5.5	9.64	370	226		
992	81	10/20/04	12:00	SBF	10.41	1.052	46.5	5.18	2.362	6.7	9.68	386	226	46	0
993	81	10/20/04	13:00	SBF	10.42	1.071	45.4	5.05	2.409	7.1	9.69	390	226	46	
994	81	10/20/04	14:00	SBF	10.43	1.083	44.8	4.99	2.441	7	9.71	396	226	160	
995	81	10/20/04	15:00		10.48	1.092	48.6	5.41	2.462	8.2					
996	81	10/20/04	16:00	SBF	10.51	1.098	45.7	5.08	2.523	7.3	9.77	419	229	160	
997	81	10/20/04	17:00		10.48	1.1	43.7	4.87	2.549	10					
998	81	10/20/04	18:00		10.47	1.105	43.3	4.82	2.602	9.8	9.82	436	226	160	
999	81	10/20/04	19:00		10.44	1.112	41.4	4.61	2.635	16.3	9.84				
1000	81	10/20/04	20:00		10.4	1.117	38.6	4.3	2.688	13.7					
1001	81	10/20/04	21:00		10.34	1.119	36.8	4.11	2.673	17.3					
1478	134	03/19/05	15:00		6.93	0.982	89.7	10.88		86.4				606	
1479	134	03/19/05	16:00		7.16		90.9	10.96		87.7				606	
1480	134	03/19/05	17:00		7.36	0.978	91.9	11.02	2.967	86.9				606	
1481	134	03/19/05	18:00		7.43	0.974	92.5	11.07	2.965	84.4				606	
1482	134	03/19/05	19:00		7.52	0.97	92.8	11.09	2.978	83.3		923		606	
1483	134	03/19/05	20:00	LBR	7.68	0.967	93.2	11.09	3.004	82	11.09			606	
1484	134	03/19/05	21:00		7.82	0.964	93.1	11.04	3.027	87.4		933			
1485	134	03/19/05	22:00		7.88	0.962	92.9	11	3.066	89.4					
1486	134	03/19/05	23:00	LBR	7.89	0.963	92.2	10.91	3.058	95.2	11.1	933	787	606	
1487	134	03/20/05	0:00	LBR	7.84	0.964	90.9	10.78	3.064	99.8	11.16	953	787	606	
1488	134	03/20/05	1:00		7.79	0.964	89.6	10.64	3.088	108.3				606	
1489	134	03/20/05	2:00		7.64	0.965	88	10.48		115.4				606	
1490	134	03/20/05	3:00		7.39	0.967	86.2	10.33	3.132	135				606	
1491	134	03/20/05	4:00		7.09	0.964	84.2	10.17	3.157	167.1	11.26			606	
1492	134	03/20/05	5:00	LBR	6.79	0.959	82.3	10.01	3.188	219.4	11.27			606	0
1493	134	03/20/05	6:00	LBR	6.48	0.954	80.9	9.92	3.196	278.3			787	606	0
1501	136	03/20/05	23:00		6.4	0.899	87	10.69	3.483	275.6			926	606	0.003
1502	136	03/21/05	0:00	LBR	6.35	0.9	86.8	10.69	3.528	289.2	11.52	1070	932	606	0.003
1503	136	03/21/05	1:00	LBR	6.27	0.901	86.3	10.64	3.622	299.8	11.6	1100	932	606	0.003
1504	136	03/21/05	2:00	LBR	6.18	0.9	85.3	10.54	3.712	360.6	11.72	1140	932	606	0.003
1505	136	03/21/05	3:00	LBR	6.01	0.891	83.6	10.38	3.726	439.3	11.8	1160	932	606	0.003
1506	136	03/21/05	4:00	LBR	5.8	0.878	82.1	10.24	3.731	512.8	11.87	1190	932	606	
1507	137	03/23/05	2:00		6.47	0.958	86.9	10.66	2.723	120.8	11.01	903	665	330	0
1508	137	03/23/05	3:00		6.43		85.7	10.52	2.717	118.9		903			
1509	137	03/23/05	4:00		6.35	0.959	84.7	10.42	2.716	122.3					

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period	_	-		-	-		Stage	Flow	Flow	Flow	SIG
1510	137	03/23/05	5:00	LBR	6.24	0.957	83.5	10.3	2.714	172	11.06	920		330	0
1511	137	03/23/05	6:00	LBR	6.06	0.955	82.6	10.23	2.707	135.9	11.08	926	665	330	0
1512	137	03/23/05	7:00	LBR	5.88	0.953	81.5	10.15	2.71	143	11.11	936	665	330	0
1513	137	03/23/05	8:00	LBR	5.72	0.949	80.8	10.1	2.74	158.6	11.13	943	665	330	0
1514	137	03/23/05	9:00	LBR	5.6	0.945	80.2	10.06	2.749	166.6	11.15	949	665	330	
1515	137	03/23/05	10:00	LBR	5.53	0.941	79.9	10.03	2.783	185.1	11.21	970	665	330	
1516	137	03/23/05	11:00		5.47	0.938	79.8	10.04	2.796	199.7	11.22			330	
1517	137	03/23/05	12:00	LBR	5.48	0.936	79.8	10.04	2.805	210.5	11.25	983	665	330	0
1518	137	03/23/05	13:00	LBR	5.54	0.933	80	10.05	2.846	213.3	11.3	1000	665	330	
1519	137	03/23/05	14:00	LBR	5.62	0.932	80.1	10.05	2.863	216	11.3		665	330	
1520	137	03/23/05	15:00	LBR	5.78	0.934	80.8	10.08	2.879	220		1010	665	330	
1521	137	03/23/05	16:00		5.95	0.936	81	10.07	2.906	231.5	11.37	1020		330	
1522	137	03/23/05	17:00		6.07	0.936	81.5	10.1	2.932	260				330	
1523	137	03/23/05	18:00		6.14	0.932	81.7	10.1	2.978	311.3	11.45			330	
1524	137	03/23/05	19:00		6.13	0.927	81.7	10.11	3.016	360.3		1050		330	
1525	137	03/23/05	20:00		6.12	0.92	81.2	10.05	3.075	410.5			670	330	
1526	137	03/23/05	21:00		6.12	0.913	81	10.03	3.116	454.8	11.51	1070	665	336	
1527	137	03/23/05	22:00		6.13	0.907	80.8	10	3.152	490.2	11.54			330	
1539	139	04/04/05	17:00		6.68	0.903	234.1	28.56	3.462	50.9				825	
1540	139	04/04/05	18:00		6.82	0.902	222.3	27.03	3.567	49				825	
1541	139	04/04/05	19:00		6.98	0.896	388.7	47.08	3.685	52.4	11.7	1130		825	
1542	139	04/04/05	20:00		7.03	0.89	290.1	35.09	3.805	60.8		1180	1268	825	
1543	139	04/04/05	21:00		7	0.882	364	44.07	3.901	69.4	11.95			825	
1544	139	04/04/05	22:00		6.96	0.881	206.6	25.04	4.011	80.2	12.03			825	
1545	139	04/04/05	23:00		6.99	0.883	212.2	25.69	4.091	79.1	12.14			825	
1546	139	04/05/05	0:00		7	0.882	207.1	25.07	4.169	87.5				827	
1547	139	04/05/05	1:00		6.97	0.883	166.6	20.18	4.237	106.1	12.31	1340		827	
1548	139	04/05/05	2:00		6.89	0.885	260.7	31.65	4.233	119.2	12.33			827	
1549	139	04/05/05	3:00		6.69	0.886	193.1	23.56	4.261	130			1274	827	
1550	139	04/05/05	4:00		6.44	0.885	180.1	22.11	4.284	133.9		1380		827	
1627	145	04/15/05	1:00		9.4	0.785	100.6	11.49	3.737	71.5				325	
1628	145	04/15/05	2:00		9.21	0.769	97.7	11.21	3.853	68				320	
1629	145	04/15/05	3:00		8.88	0.75	95	10.99	3.949	69.1	11.48			325	
1630	145	04/15/05	4:00		8.36	0.744	93.2	10.91	4.03	65.4	11.6		1177	320	
1631	145	04/15/05	5:00		7.86	0.742	91.9	10.9	4.088				1177	325	
1632	145	04/15/05	6:00	LBR	7.51	0.735	91.1	10.9	4.105	59	11.86	1180	1177	320	
1633	145	04/15/05	7:00	LBR	7.19	0.734	91.2	10.99	4.122	55	11.85	1180	1177	325	0
1634	145	04/15/05	8:00	LBR	6.96	0.739	92.1	11.16	4.135	57.5	11.92	1200	1177	320	0

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period	-	•		Ū	•		Stage	Flow	Flow	Flow	SIG
1635	145	04/15/05	9:00	LBR	6.97	0.743	93.4	11.32	4.128	49		1220	1177	32	0 0
1636	145	04/15/05	10:00	LBR	7.2	0.743	94.8	11.43	4.109	49.2	11.95	1210	1049	32	0 0
1637	145	04/15/05	11:00	LBR	7.6	0.741	96.6	11.52	4.033	47.1	12.02	1240	867	32	0 0
1638	145	04/15/05	12:00	LBR	8.16	0.74	98.5	11.59	3.907	44.5	12.11	1270	651	32	0 0
1671	149	04/20/05	4:00	LBR	8.97	0.849	79	9.11	2.499	33.9	10.52	707	463	18	3 0
1672	149	04/20/05	5:00	LBR	8.87	0.843	78.2	9.04	2.526	34.4	10.52	707	463	18	3 0
1673	149	04/20/05	6:00	LBR	8.67	0.837	77.7	9.03	2.563	36.1	10.54	715	463	18	3 0
1674	149	04/20/05	7:00	LBR	8.41	0.833	77.6	9.08	2.598	35.7	10.55	719	463	18	
1675	149	04/20/05	8:00	LBR	8.11	0.83	78.1	9.2	2.62	36.4	10.57	726	463	18	3 0
1676	149	04/20/05	9:00	LBR	8.02	0.828	79.1	9.34	2.646	41.6	10.59	734	463	18	
1677	149	04/20/05	10:00	LBR	8.19	0.83	80.7	9.49	2.663	40.2	10.58	730	463	18	
1678	149	04/20/05	11:00		8.34	0.832	82.6	9.67	2.699	41					
1679	149	04/20/05	12:00		8.35	0.832	84.3	9.87	2.707	41.2					
1680	149	04/20/05	13:00		8.43	0.835	85.8	10.04	2.726						
1681	149	04/20/05	14:00		8.52	0.84	87.3	10.18	2.742						
1682	149	04/20/05	15:00	LBR	8.58	0.844	88.5	10.31	2.784	40.5	10.63	749	463	18	
1683	149	04/20/05	16:00	LBR	8.52	0.847	89.8	10.47	2.795	41	10.62	745	463	18	
1684	149	04/20/05	17:00		8.57	0.846	91.4	10.64	2.826	42.2				18	
1685	149	04/20/05	18:00		8.5	0.843	92.7	10.82	2.852	42.7					
1686	149	04/20/05	19:00		8.43	0.845	93.9	10.98	2.887	46					
1687	149	04/20/05	20:00		8.41	0.848	94.4	11.04	2.924						
1688	149	04/20/05	21:00		8.45	0.849	94.3	11.02	2.978	52.7			454		
1689	149	04/20/05	22:00		8.51	0.849	93.8	10.94	2.985	56.8	10.7	777	493	18	
1690	149	04/20/05	23:00		8.58	0.847	93.1	10.84	2.996	60.1	10.69			18	
1691	149	04/21/05	0:00		8.7	0.843	92.1	10.69	3.05					18	
1692	149	04/21/05	1:00		8.84	0.836	90	10.42	3.151	66.9					
1693	149	04/21/05	2:00		8.9	0.837	88	10.17	3.241	74.7					
1694	149	04/21/05	3:00		8.93	0.833	84.7	9.78	3.299	91.9	10.91	862	665		
1695	149	04/21/05	4:00	LBR	8.96	0.812	81.8	9.44	3.34	106.3	11	900	665	18	
1696	149	04/21/05	5:00		8.97	0.79	80.3	9.27	3.364	102.3					
1697	149	04/21/05	6:00		8.84	0.783	79.8	9.23	3.387	101.6	11.12				
1698	149	04/21/05	7:00	LBR	8.62	0.783	79.9	9.3	3.478	106	11.16	953	1213		
1699	149	04/21/05	8:00		8.38	0.786	80.3	9.39	3.724	113.8	11.18	959	1213		
1700	149	04/21/05	9:00	LBR	8.14	0.783	80.9	9.52	3.985	118.8	11.38	1030	1213	18	
1701	149	04/21/05	10:00	LBR	8.05	0.758	81.5	9.62	4.144	122.1	11.64	1110	1213	18	
1702	149	04/21/05	11:00	LBR	8.14	0.719	82.4	9.71	4.199	107.6	11.83	1170	736	18	2 0
1703	149	04/21/05	12:00	LBR	8.31	0.711	83.2	9.76	4.11	90.5	12.01	1230	736	18	2 0
1737	155	04/28/05	6:00		10.18	0.666	90	10.09	3.956						

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period	-	•		U	•		Stage	Flow	Flow	Flow	SIG
1738	155	04/28/05	7:00		10.01	0.667	89.5	10.08	3.994	47.4			1090	73	3 0
1739	155	04/28/05	8:00	LBR	9.77	0.665	89.9	10.18	4.047	48.7	12.67	1470	1090	73	3 0
1740	155	04/28/05	9:00	LBR	9.46	0.664	89.9	10.26	4.112	75.3	12.72	1490	1172	73	3 0
1741	155	04/28/05	10:00	LBR	9.21	0.661	90	10.33	4.172	139.3	12.85	1540	1090	73	3 0
1742	155	04/28/05	11:00	LBR	8.98	0.663	90	10.38	4.286	115.4	12.85	1540	1528	73	
1743	155	04/28/05	12:00	LBR	8.82	0.665	90	10.43	4.463	99.3	12.92	1560	1623	73	
1744	155	04/28/05	13:00	LBR	8.76	0.663	89.9	10.43	4.717	116.5	12.45	1600	1720		
1745	155	04/28/05	14:00	LBR	8.67	0.646	90.4	10.51	4.934	137.8	13.39	1750	1528	73	
1746	155	04/28/05	15:00	LBR	8.72	0.635	90.4	10.51	5.08	160	13.7	1870	1720		
1747	155	04/28/05	16:00		8.97	0.637	89.8	10.37	5.194	178.3		1990	1720		
1748	155	04/28/05	17:00	LBR	9.18	0.64	89.8	10.32	5.254	195.3	14.21	2080	1623	73	
1749	155	04/28/05	18:00		9.25	0.639	90	10.32	5.313	212		2150			
1750	155	04/28/05	19:00		9.3	0.64	90.4	10.35	5.359	205.2					
1751	155	04/28/05	20:00		9.31	0.642	90.5	10.36	5.389	211.2					
1809	162	05/08/05	19:00		13.31	0.668	95.1	9.93	4.571	68.4	13.19				
1810	162	05/08/05	20:00		13.29	0.654	93.7	9.8	4.692	67.8					
1811	162	05/08/05	21:00		13.29	0.633	91.9	9.6	4.784	64.8		1790	1550		
1812	162	05/08/05	22:00		13.46	0.628	89.7	9.34	4.827	60.3					
1813	162	05/08/05	23:00		13.47	0.632	87.7	9.13	4.867	61.3					
1814	162	05/09/05	0:00		13.28	0.632	85.9	8.98	4.823	58.8					
1815	162	05/09/05		UBR	13.03	0.631	84.2	8.85	4.792	54.5		1870			
1829	165	05/10/05	11:00		10.05	0.736	94.7	10.66	4.172	140.4			1418		
1830	165	05/10/05	12:00		10.08	0.709	95.7	10.76	4.294	163.6					
1831	165	05/10/05	13:00		10.19	0.675	96.3	10.8	4.436	166.8		1600	1418		
1832	165	05/10/05	14:00		10.56	0.659	97.7	10.86	4.565	140.3					
1833	165	05/10/05	15:00		11.01	0.654	99.2	10.92	4.643	121.5					
1834	165	05/10/05	16:00		11.34	0.655	100.4	10.97	4.696	107.3					
1835	165	05/10/05	17:00		11.64	0.66	101.7	11.03	4.783	106.2			1778		
1836	165	05/10/05	18:00		11.8	0.66	102.9	11.12	4.864	101.2			1837		
1837	165	05/10/05	19:00		11.94	0.653	104.2	11.23	4.975	99.7	13.95				
1838	165	05/10/05	20:00		11.98	0.647	103.7	11.16	5.078	99.4					
1839	165	05/10/05	21:00		12.01	0.646	102.1	10.99	5.152	102.9					
1840	165	05/10/05	22:00		12.11	0.649	99.6	10.69	5.216	102.7	14.4	2160			
1841	165	05/10/05	23:00		12.09	0.652	98.7	10.59	5.255	102.7	13.92	2200	1815		
1842	165	05/11/05	0:00		11.97	0.653	96.7	10.41	5.262	103.4	14.5	2210			
1843	165	05/11/05	1:00	UBR	11.71	0.651	94.6	10.24	5.241	99.6	14.48	2200	1522	75	
1844	166	05/11/05	17:00	UBR	11.42	0.668	96.3	10.49	4.964	130.6	13.93	1970	1699	91	0 0
1845	166	05/11/05	18:00	UBR	11.64	0.66	98.3	10.66	5.09	126.1	14.03	2010	1685	91	0 0

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period	-	•		•	-		Stage	Flow	Flow	Flow	SIG
1846	166	05/11/05	19:00	UBR	11.78	0.645	99.1	10.71	5.19	118.6		2050	1671	910	0
1847	166	05/11/05	20:00	UBR	11.9	0.643	98.9	10.66	5.25	106.8	14.22	2090	1644	917	0
1848	166	05/11/05	21:00	UBR	12.04	0.647	98.6	10.6	5.298	99.4	14.29	2120	1630	925	0
1849	166	05/11/05	22:00	UBR	12.03	0.648	97.7	10.5	5.309	95.5	14.34	2140	1582	917	0
1850	166	05/11/05	23:00	UBR	11.95	0.648	96.1	10.35	5.302	90.8	14.31	2130	1582	917	0
1974	179	06/02/05	0:00	UBR	16.1	0.61	99.5	9.78	4.152	33.6	12.61	1450	1059	639	0.006
1975	179	06/02/05	1:00	UBR	15.87	0.609	96.7	9.55	4.184	33.5	12.59	1440	1059	639	0.006
1976	179	06/02/05	2:00	UBR	15.53	0.608	92.5	9.21	4.21	33	12.65	1460	1059	632	0.006
1977	179	06/02/05	3:00	UBR	15.1	0.607	87.2	8.76	4.223	35	12.7	1480	1059	632	0.006
1978	179	06/02/05	4:00	UBR	14.65	0.605	82.2	8.34	4.229	37.4	12.74	1500	1059	632	0.006
1979	179	06/02/05	5:00	UBR	14.15	0.601	79.3	8.14	4.216	35.3	12.71	1490	1059	632	0.006
1980	179	06/02/05	6:00	UBR	13.66	0.601	77.7	8.05	4.22	36.4	12.72	1490	1059	632	0.006
1992	181	06/05/05	22:00	UBR	16.57	0.594	127.4	12.4	4.037	18.4	12.62	1450	1299	969	0.001
1993	181	06/05/05	23:00	UBR	16.59	0.594	119.5	11.63	4.065	22.4	12.64	1460	1623	977	0.001
1994	181	06/06/05	0:00	UBR	16.58	0.592	111.2	10.83	4.173	21.7	12.75	1500	1597	978	0.001
1995	181	06/06/05	1:00		16.42	0.592	102.5	10.01	4.294	22	12.89	1550	1597	986	0.001
1996	181	06/06/05	2:00	UBR	16.06	0.595	93.8	9.23	4.442	28.1	13.03	1610	1319	978	0.001
1997	181	06/06/05	3:00	UBR	15.55	0.593	88.4	8.79	4.527	30.2	13.18	1660	1215	978	0.001
1998	181	06/06/05	4:00		14.96	0.593	85.5	8.62	4.506	34.8	13.24	1690	1215	970	0.001
1999	182	06/07/05	21:00		12.16	0.591	86.4	9.26	4.839	51.3			1518		
2000	182	06/07/05	22:00		12.05	0.576	88.1	9.47	4.906	47.9		1810	1525	963	
2001	182	06/07/05	23:00		12.08	0.578	88.2	9.48	4.953	46.5	13.61	1830	1518	963	0.008
2002	182	06/08/05	0:00	UBR	12.17	0.583	86.6	9.28	4.963	43.3		1860	1519	963	0.008
2003	182	06/08/05		UBR	12.09	0.584	84.9	9.11	4.958	44.9		1870	1519	955	0.008
2004	183	06/09/05	3:00		12.34	0.565	85.4	9.12	4.639	33.3			1494	956	
2005	183	06/09/05		UBR	11.96	0.564	83.2	8.96	4.715			1710	1494	964	
2006	183	06/09/05		UBR	11.67	0.559	81.5		4.759	37.1	13.39		1494	964	
2007	183	06/09/05	6:00		11.43	0.557	80.5		4.776	37.2			1494	956	
2008	183	06/09/05		UBR	11.27	0.56	80.3	8.78	4.797	42.9			1494	964	
2009	183	06/09/05		UBR	11.13	0.561	80.3		4.799	46.9			1494	956	
2010	183	06/09/05	9:00		11.07	0.561	80.8		4.811	40			1494	956	0.037
2372	224	08/18/05	2:00		22.31	0.983	-0.1	-0.01	2.855	10.6	10.4	661	981	1067	0
2373	224	08/18/05	3:00	SBF	22.14	0.981	-0.1	-0.01	2.885	13.1	10.45	681	987	1067	
2374	224	08/18/05	4:00		21.87	0.98	-0.1	-0.01	2.925	12.3	10.47	688	981	1067	0
2375	224	08/18/05	5:00	SBF	21.67	0.981	-0.1	-0.01	2.942	11.3	10.51	704	1112	1067	0
2376	224	08/18/05	6:00	SBF	21.44	0.984	-0.1	-0.01	2.945	14.2	10.55	719	1112	1067	0
2377	224	08/18/05	7:00	SBF	21.16	0.988	-0.1	-0.01	2.962	12.3	10.58	730	1118	1075	0
2378	224	08/18/05	8:00		20.84	0.994	-0.1	-0.01	3.017	12.6		780	1112		

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period	•	•			•		Stage	Flow	Flow	Flow	SIG
2379	224	08/18/05	9:00	SBF	20.5	1.002	-0.1	-0.01	3.101	15.6		777	1112	1067	0
2380	224	08/18/05	10:00	SBF	20.25	1.007	-0.1	-0.01	3.136	16.2	10.71	780	1112	1067	0
2381	224	08/18/05	11:00	SBF	19.97	1.007	-0.1	-0.01	3.213	17.9	10.8	816	1118	1067	0
2382	224	08/18/05	12:00	SBF	19.86	1.002	-0.1	-0.01	3.219	18.1	10.81	821	1112	1067	0
2383	224	08/18/05	13:00	SBF	19.92	0.996	0	0	3.22	19.7	10.98	891	1112	376	0
2384	225	08/18/05	22:00	SBF	19.89	0.986	-0.1	-0.01	3.285	22.4	10.86	841	1112	1067	0.002
2385	225	08/18/05	23:00	SBF	19.8	0.985	-0.1	-0.01	3.283	19.9	10.88	849	1112	1067	0.002
2386	225	08/19/05	0:00	SBF	19.71	0.986	-0.1	-0.01	3.277	19.2	10.97	887	1113	1060	0.002
2387	225	08/19/05	1:00	SBF	19.51	0.986	-0.1	-0.01	3.304	20.2	10.96	883	1113	1068	0.002
2388	225	08/20/05	0:00	SBF	22.22	0.978	-0.1	-0.01	3.378	18.1	10.79	812	1184	755	0.002
2389	225	08/20/05	1:00	SBF	22.17	0.974	-0.1	-0.01	3.468	16.9	10.86	841	1263	755	0.002
2390	225	08/20/05	2:00	SBF	22.05	0.962	-0.2	-0.01	3.514	17.9	10.96	883	1263	755	0.002
2391	225	08/20/05	3:00		21.87	0.951	-0.2	-0.01	3.564	18.5	10.98	891	1263	755	0.002
2392	225	08/20/05	4:00	SBF	21.58	0.949	-0.1	-0.01	3.612	19.5	11.05	916	1263	755	0.002
2393	225	08/20/05	5:00		21.18	0.955	-0.1	-0.01	3.653	21.9	11.19	963	1263	755	0.002
2394	225	08/20/05	6:00	SBF	20.68	0.963	-0.1	-0.01	3.704	23.1	11.22	973	1263	755	0.002
2395	225	08/20/05	7:00	SBF	20.08	0.967	-0.1	-0.01	3.735	25	11.23	976	1178	755	0.002
2396	225	08/20/05	8:00		19.51	0.968	-0.1	-0.01	3.769	24.8		1010	1178		
2527	237	09/12/05	2:00	SBF	17.31	1.014	99.6	9.54	2.246	4.2	9.87	471	714	529	0
2528	237	09/12/05	3:00		17.2	1.014	94.2	9.04	2.298	4.9		486	709		
2529	237	09/12/05	4:00		17.06	1.012	88	8.47	2.359	4.4	9.97	508	709	529	
2530	237	09/12/05	5:00		16.94	1.008	82.5	7.96	2.416	5.4	9.99	516	709		
2531	237	09/12/05	6:00		16.88	1	78.8	7.61	2.505	6.4		560	709	529	
2532	237	09/12/05	7:00		16.77	0.984	76.5	7.41	2.585	6.9		560	709	529	
2533	237	09/12/05	8:00		16.67	0.974	73.7	7.16	2.678	7.9		617	709		
2534	237	09/12/05	9:00		16.56	0.956	71.6	6.96	2.74	7.8		628	709		
2572	243	09/22/05	1:00		16.38	1.039	32.9	3.21	2.171	4		419	484	215	
2573	243	09/22/05	2:00		16.03	1.043	74.3	7.3	2.211	4.2		457	484	215	
2574	243	09/22/05	3:00	SBF	15.69	1.047	131.1	12.99	2.299	4	9.76	433	484	215	0.01
2575	243	09/22/05	4:00		15.4	1.046	136.6	13.61	2.422	5.3		464	484	215	
2576	243	09/22/05	5:00		15.17	1.042	84.6	8.47	2.512	5.5	9.98	512	484	215	0.01
2577	243	09/22/05	6:00	SBF	14.96	1.037	130.9	13.17	2.551	8.3	9.98	512	484	215	0.01
2578	243	09/22/05	7:00	SBF	14.72	1.026	136.2	13.77	2.564	6.5	10.02	527	484	215	0.01
2579	243	09/22/05	8:00	SBF	14.48	1.009	119.8	12.18	2.553	7.1	10.1	553	484	215	0.01
2615	248	10/07/05	18:00	SBF	14.06	1.018	120	12.32	2.067	5.6	9.84	453	559	506	0
2616	248	10/07/05	19:00	SBF	13.93	1.018	120.3	12.38	2.1	6.8	9.88	471	559	506	0
2617	248	10/07/05	20:00	SBF	13.7	1.017	114.4	11.83	2.167	7.7	9.92	486	729	506	0
2618	248	10/07/05	21:00		13.39	1.019	103.3	10.76	2.218	8.9		512	734		0

ID	Event	Date	Time	Hydro	temp	spcond	DO%	domgl	depth	Turb	Border	Border	Oneida	Soda	ANOVA
	ID			Period							Stage	Flow	Flow	Flow	SIG
2619	248	10/07/05	22:00	SBF	13.1	1.014	90.8	9.52	2.267	11.9	10.04	533	734	506	0
2620	248	10/07/05	23:00	SBF	12.9	1.004	80	8.42	2.336	12.3	10.1	553	734	506	0
2621	248	10/08/05	0:00	SBF	12.8	0.993	71.2	7.52	2.437	15.6	10.19	585	781	509	0
2622	248	10/08/05	1:00	SBF	12.75	0.981	62.5	6.6	2.505	22.4	10.31	628	807	509	0
2623	248	10/08/05	2:00	SBF	12.7	0.972	54.8	5.8	2.543	31.5	10.39	658	807	509	0
2624	248	10/08/05	3:00	SBF	12.65	0.967	47.7	5.05	2.566	33.2	10.44	677	807	509	0
2625	248	10/08/05	4:00	SBF	12.54	0.957	41.3	4.38	2.6	27.1	10.5	700	807	509	0
2626	248	10/08/05	5:00	SBF	12.38	0.949	36.9	3.93	2.641	31.5	10.54	715	807	509	0
2627	248	10/08/05	6:00	SBF	12.22	0.948	33.6	3.59	2.672	33	10.6	738	807	509	0
2628	248	10/08/05	7:00	SBF	12.1	0.95	30.7	3.29	2.71	31	10.62	745	807	509	0
2629	248	10/08/05	8:00	SBF	11.97	0.951	29.9	3.22	2.738	32.4	10.63	749	807	509	0
2630	248	10/08/05	9:00	SBF	11.79	0.956	30.9	3.33	2.756	29.1	10.65	757	807	509	0
2631	248	10/08/05	10:00	SBF	11.59	0.959	34.8	3.77	2.769	26.1	10.66	761	807	509	0