# Analysis of Microcystin in Resident Fish and Mussel Tissues in the Vicinity of the Klamath Hydroelectric Project in 2008

Prepared by CH2M HILL Incorporated

Portland, Oregon

Prepared for PacifiCorp Energy

Portland, Oregon

December 2009

**CH2MHILL** 

This report should be cited as:

CH2M HILL. 2009. Analysis of Microcystin in Resident Fish and Mussel Tissues in the Vicinity of the Klamath Hydroelectric Project in 2008. Prepared by CH2M HILL Inc. Prepared for PacifiCorp Energy. December 2009.

### Table of Contents

| Executive Summary                                                | 1  |
|------------------------------------------------------------------|----|
| Introduction                                                     | 3  |
| Background                                                       | 3  |
| Methods                                                          | 6  |
| Field Procedures                                                 | 6  |
| Fish and Mussel Collection                                       | 6  |
| Laboratory Analyses                                              | 8  |
| Method for Determination of Tissue Concentrations of Microcystin | 8  |
| Data on Microcystins in Waters of the Study Area                 | 10 |
| Results                                                          | 11 |
| Specimens Obtained                                               | 11 |
| May-June Sampling Event                                          | 11 |
| July Sampling Event                                              | 12 |
| September Sampling Event                                         | 13 |
| November Sampling Event                                          | 14 |
| Analysis of Microcystin in Fish and Mussel Tissues               | 15 |
| Discussion                                                       | 35 |
| Potential Effects on Fish and Mussels in the Klamath River       | 35 |
| Relevant Findings from the Research Literature                   | 35 |
| Discussion of 2008 Fish and Mussel Tissue Analyses               | 37 |
| Comparison to 2007 Sample Results                                | 41 |
| Analysis with Respect to Public Health Guideline Values          | 44 |
| Relevant Findings from the Research Literature                   | 44 |
| Discussion of 2008 Fish and Mussel Tissue Analyses               | 46 |
| References                                                       | 47 |
|                                                                  |    |

### List of Figures and Tables

| Figure 1. Map of Klamath River showing locations that demark areas from which fish and           |
|--------------------------------------------------------------------------------------------------|
| mussel specimens were collected during 20087                                                     |
| <b>Table 1.</b> Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in 2008 |
| and Analyzed for Microcystin for Three Species of Resident Fish and Two Species of               |
| Freshwater Mussels11                                                                             |
| Table 2. Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in May-        |
| June 2008 and Analyzed for Microcystin for Three Species of Resident Fish12                      |
| <b>Table 3.</b> Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in July |
| 2008 and Analyzed for Microcystin for Three Species of Resident Fish13                           |
| Table 4. Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in             |
| September 2008 and Analyzed for Microcystin for Three Species of Resident Fish13                 |
| Table 5. Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in             |
| November 2008 and Analyzed for Microcystin for Three Species of Resident Fish and                |
| Two Species of Freshwater Mussels14                                                              |
|                                                                                                  |

| <b>Table 6</b> . Analysis Results of Microcystin in Muscle Tissues of Rainbow Trout, Yellow Perch, |
|----------------------------------------------------------------------------------------------------|
| and Crappie Specimens Collected during May-June 2008 in the Vicinity of the                        |
| Klamath Hydroelectric Project16                                                                    |
| Table 7. Analysis Results of Microcystin in Muscle Tissues of Rainbow Trout, Yellow Perch,         |
| and Crappie Specimens Collected during July 2008 in the Vicinity of the Klamath                    |
| Hydroelectric Project                                                                              |
| Table 8. Analysis Results of Microcystin in Muscle Tissues of Rainbow Trout, Yellow Perch,         |
| and Crappie Specimens Collected during September 2008 in the Vicinity of the                       |
| Klamath Hydroelectric Project24                                                                    |
| Table 9. Analysis Results of Microcystin in Muscle Tissues of Rainbow Trout, Yellow Perch,         |
| and Crappie Specimens, and Oregon Floater and Western Ridge Mussel Specimens                       |
| Collected during November 2008 in the Vicinity of the Klamath Hydroelectric                        |
| Project                                                                                            |
| <b>Table 10</b> . Average Method Detection Limits (MDL) for LCMS Full-Scan Analysis of Total       |
| Free Microcystin and SIM Mode Analysis of Microcystin Cogeners LA, LR, and RR                      |
| by Species and Sampling Events34                                                                   |
| <b>Figure 2</b> . Microcystin data obtained in water samples at three Klamath River sites during   |
| May to November 2008. Note that the y-axis is logarithmic in scale                                 |
| Figure 3. Microcystin data obtained in water samples from the surface waters over the              |
| deepest part (near the log boom) in Copco and Iron Gate reservoirs, May to                         |
| November 2008. Note that the y-axis is logarithmic in scale                                        |
| Figure 4. Microcystin data obtained in water samples from shoreline and open water                 |
| locations throughout both Copco and Iron Gate reservoirs. May to November 2008.                    |
| Note that the y-axis is logarithmic in scale40                                                     |
| Figure 5. Data obtained on September 10, 2008 to assess in-water concentrations of                 |
| microcystin at various depths in Iron Gate reservoir in the forebay and near the log               |
| boom. Note that the y-axis is logarithmic in scale                                                 |
| Figure 6. Box plots showing the distribution of microcystin data obtained at open water and        |
| shoreline sites in Copco and Iron Gate reservoir in May to November 2007 and 2008.                 |
| Box plots graphically depict groups of numerical data through their five-number                    |
| summaries: the smallest observation (sample minimum), lower quartile (Q1),                         |
| median (Q2), upper quartile (Q3), and largest observation (sample maximum). Note                   |
| that the y-axis is logarithmic in scale43                                                          |
| <b>Table 11</b> . Guideline values for freshwater fish consumption derived from Ibelings and       |
| Chorus (2007)                                                                                      |

#### List of Appendices

Appendix A: SUNY-CESF Laboratory Reports

## **Executive Summary**

This report provides the results of sampling conducted in 2008 for the presence of microcystin in tissues of resident fish and mussels in the vicinity of the Klamath Hydroelectric Project (Project) on the Klamath River in California and Oregon. The resident fish include yellow perch (*Perca flavescens*) and black crappie (*Pomoxis nigromaculatus*) from two Project reservoirs (i.e., Copco and Iron Gate), and rainbow trout (*Oncorhynchus mykiss*) from the Klamath River upstream and downstream of the reservoirs. The mussels include the Oregon floater (*Anodonta oregonensis*) and western ridge mussel (*Gonidea angulata*) from the Klamath River upstream and downstream of the reservoirs.

Field sampling collected a total of 272 fish tissue samples over four seasonal sampling events (i.e., May-June, July, September, and November), and 14 mussel tissue samples during one sampling event (November) during 2008. The fish tissue samples consisted of 38 rainbow trout samples from the Klamath River above Copco reservoir, 38 rainbow trout samples from the Klamath River below Iron Gate reservoir, 81 yellow perch samples from Copco reservoir, 85 yellow perch samples from Iron Gate reservoir, 11 crappie samples from Copco reservoir, and 19 crappie samples from Iron Gate reservoir. The mussel tissue samples consisted of two western ridge mussel samples from the Klamath River above Copco reservoir, and seven western ridge mussel and five Oregon floater samples from the Klamath River below Iron Gate reservoir.

The analysis of microcystin was conducted on filet (muscle) tissues from edible-sized resident fish specimens and composite samples of mussel specimens. The laboratory analysis of microcystin in the tissue samples was conducted by the State University of New York (SUNY) College of Environmental Science and Forestry (CESF) Laboratory in Syracuse, NY under the direction of Dr. Greg Boyer. Filet (muscle) tissues from edible-sized specimens were used to allow analysis results to be compared to literature-based guideline values for tolerable microcystin concentrations in freshwater fish tissues subject to potential human consumption.

The SUNY-CESF Laboratory determined that un-bound or "free" microcystin was not detected in any of the tissue samples analyzed by high performance liquid chromatography with mass spectral detection (LCMS). Microcystin also was not detected in additional analyses of the tissue samples using selected ion monitoring (SIM) mode to specifically enhance detection of the common and potentially most-toxic microcystin-LR and -LA congeners.

Ibelings and Chorus (2007) have proposed guideline values for the Tolerable Daily Intake (TDI) of microcystin-LR in freshwater "seafood". The non-detection results indicate that the tissue samples for all fish species across the four sampling events and the November mussel samples are less than the TDI guidance values and therefore would pose no unacceptable health risk from consumption.

## Introduction

PacifiCorp Energy operates the Klamath Hydroelectric Project (Project) on the Klamath River in California and Oregon. In the California portion of the Project area, Project facilities include Iron Gate reservoir (located between about River Mile [RM] 190 and 196.8) and Copco reservoir (located between about RM 198.6 and 203.2). In recent years, blooms of the cyanobacteria (blue-green algae) *Microcystis aeruginosa* (MSAE) have occurred during the summer in Iron Gate and Copco reservoirs. MSAE has the capability to produce microcystin – a peptide substance that in sufficient quantity can have adverse health effects on animals including humans. As a result of the occurrence of these recent MSAE blooms, PacifiCorp and other entities have monitored MSAE and microcystin levels in the reservoirs and elsewhere in the Klamath River. This information has been used to facilitate decisions regarding California's voluntary guidance for posting health advisories in recreational waters related to cyanobacteria (SWRCB 2007).

This report provides the results of the analysis of the presence of microcystin in tissues of resident fish and mussels in the vicinity of the Project. The resident fish include yellow perch (*Perca flavescens*) and black crappie (*Pomoxis nigromaculatus*) from Copco and Iron Gate reservoirs, and rainbow trout (*Oncorhynchus mykiss*) from the Klamath River upstream and downstream of the reservoirs. The mussels include the Oregon floater (*Anodonta oregonensis*) and western ridge mussel (*Gonidea angulata*) from the Klamath River upstream and downstream of the reservoirs.

Fish tissue sample collection occurred on four occasions during 2008, including once in the spring (in May-June 2008) before the expected cyanobacteria bloom period, twice in summer (in July and September 2008) during the bloom period, and once in late fall (November 2008) after the bloom period. Mussel tissue sample collection occurred once in November 2008, since mussel tissue analysis was not an original task planned for this study but rather was added later in the study. This report provides results of the analysis of samples collected on each of these four occasions during 2008.

The analysis of microcystin was conducted on filet (muscle) tissues from edible-sized resident fish specimens and composite samples of mussel specimens. The laboratory analysis of microcystin in the 2008 fish and mussel tissue samples was conducted by the State University of New York (SUNY) College of Environmental Science and Forestry (CESF) Laboratory in Syracuse, NY under the direction of Dr. Greg Boyer. Filet (muscle) tissues from edible-sized specimens were used to allow analysis results to be compared to literature-based guideline values for tolerable microcystin concentrations in freshwater fish tissues subject to potential human consumption (see Discussion section).

### Background

In recent years, sampling was conducted by PacifiCorp and others related to the occurrence of microcystin in the tissues of Klamath River biota (Fetcho 2006, Kann 2008, PacifiCorp

2008a, PacifiCorp 2008b, CH2M HILL 2009). Fetcho (2006) collected liver and muscle tissue samples from five Chinook salmon and two steelhead specimens taken from the Klamath River at or near Weitchpec (near RM 43) and from Iron Gate Hatchery (at RM 189) during September and October 2005. All Chinook salmon tissue samples (liver and muscle) collected by Fetcho (2006) did not contain detectable levels of microcystin. The two steelhead muscle samples collected by Fetcho (2006) also did not contain detectable levels of microcystin. The two steelhead liver samples (obtained from the river at Weitchpec) did contain detectable levels of microcystin of 0.17 and 0.54  $\mu$ g/g, respectively (based on a method detection limit of 0.15  $\mu$ g/g<sup>1</sup>).

CH2M HILL collected liver and muscle tissue samples from eleven adult Chinook salmon and eight adult steelhead specimens taken from various locations in the Klamath River during October 2007 (PacifiCorp 2008a, PacifiCorp 2008b, CH2M HILL 2009). Four Chinook salmon and two steelhead were obtained from angling in the lower Klamath River below the Trinity River from about River Mile (RM) 6 to RM 36. One steelhead and one Chinook salmon were obtained from angling in the middle Klamath River from about RM 75 to RM 143. Six Chinook salmon and five steelhead were obtained from collection at the Iron Gate Hatchery (near RM 189).

All Chinook salmon and steelhead tissue samples (liver and muscle) collected by CH2M HILL (2009) did not contain detectable levels of un-bound or "free" microcystin at the specified Method Detection Limit (MDL). CH2M HILL (2009) reported that the MDL varied with sample type and recovery from 0.09 to 0.24  $\mu$ g/g on a dry weight<sup>2</sup> (dw) basis, with an average MDL of 0.13  $\mu$ g/g dw. Correcting for sample moisture content (75 percent), the equivalent MDL on a wet weight<sup>3</sup> (ww) basis varied by sample from 0.02 to 0.06  $\mu$ g/g ww, with an average MDL of 0.03  $\mu$ g/g ww<sup>4</sup>. Following receipt of the laboratory results of the October 2007 fish tissue sample analyses, PacifiCorp reported the results to the California Environmental Protection Agency's Office of Environmental Health Hazard Assessment (OEHHA), Siskiyou County Department of Health, and the North Coast Regional Water Quality Control Board (PacifiCorp 2008a, PacifiCorp 2008b).

Kann (2008) reported on the concentrations of eight individual microcystin congeners<sup>5</sup> in three composite samples of liver, stomach, and muscle tissue from six juvenile Chinook salmon obtained at Iron Gate Hatchery in August 2007. The composite liver sample showed a detectable level of microcystin–LA, but not of the other seven congeners analyzed<sup>6</sup>. The composite stomach and muscle samples did not contain detectable levels of any of the eight

<sup>&</sup>lt;sup>1</sup> Although not discussed by Fetcho (2006), it is assumed that this reported analytical detection limit of 0.15 μg/g is on a wet weight basis, whereby the weight of microcystin found in the analysis is divided by weight of the tissue, including the fraction of weight made up of the tissue's original water content.

 $<sup>^2</sup>$  Dry weight is the weight of microcystin found in subsequent analysis divided by weight of the dried tissue which once contained it.

<sup>&</sup>lt;sup>3</sup> Wet weight is the weight of microcystin found in analysis divided by weight of the tissue before water is removed by drying.

<sup>&</sup>lt;sup>4</sup> To convert dry-weight concentrations to wet-weight concentrations, the dry-weight concentration is multiplied by a factor of 1 minus the percentage of moisture content expressed as a decimal.

<sup>&</sup>lt;sup>5</sup> Congener is a term in chemistry that refers to one of many variants or configurations of a chemical structure. For example, more than 80 microcystin variants or congeners have been identified to date, although only a relative handful are prevalent in nature, including microcystin–LR, –YR, –RR, and –LA and their demethylated analogs. Microcystin-LR is among the most frequent and most toxic microcystin congeners.

<sup>&</sup>lt;sup>6</sup> Kann (2008) included results from the analysis of eight congeners: microcystin–LA, –LF, –LR, –LW, –YR, –RR, and the demethylated analogs of microcystin–LR and –RR.

individual microcystin congeners detectable with the analytical method employed (Kann 2008).

Kann (2008) also reported on the concentrations of eight individual microcystin congeners in freshwater mussel tissue samples obtained from the Klamath River in July and November 2007. One composite sample of whole mussel tissue (a composite of 13 individual mussel specimens) taken in July 2007 from the Klamath River near Seiad Valley (at RM 129) showed a detectable level of microcystin–LA, but not of the other seven congeners. Four individual mussel samples taken in July 2007 from the Klamath River at Big Bar (near RM 51), near Seiad Valley (at RM 129), and near the Klamath Highway Rest Area (at RM 178) showed detectable levels of three to five microcystin congeners (of the eight microcystin congeners analyzed). Fifteen individual mussel samples taken in November 2007 from the Klamath River near Orleans (at RM 59), near Happy Camp (at RM 108), near Seiad Valley (at RM 129), at the Brown Bear River Access (at RM 157.5), and near the Klamath Highway Rest Area (at RM 178) did not contain detectable levels of total microcystin or any of the eight microcystin congeners analyzed.

Kann (2008) further reported on the concentrations of eight individual microcystin congeners analyzed in muscle and liver tissue samples of yellow perch (*Perca flavescens*) obtained in September 2007 from Iron Gate and Copco reservoirs. Muscle tissue samples ("filets") from 36 yellow perch specimens were analyzed – 18 specimens from each reservoir. Twenty-four of the 36 yellow perch muscle tissue samples showed detectable levels of the demethylated analog<sup>7</sup> of the microcystin–LR congener (i.e., -LR-DM), and 16 of the 36 muscle samples showed detectable levels of the microcystin–YR congener. The 36 muscle samples did not contain detectable levels of the other microcystin congeners analyzed.

Liver tissue samples from six yellow perch specimens were analyzed – three specimens from each reservoir (Kann 2008). Five of the 6 yellow perch liver tissue samples showed detectable levels of the microcystin–LA congener and the demethylated analog of the microcystin–RR congener (i.e., -RR-DM). Three of the six yellow perch liver tissue samples showed detectable levels of the demethylated analog of the microcystin–LR congener (i.e., -LR-DM), and one liver tissue sample had detectable levels of the microcystin–RR congener. The six liver samples did not contain detectable levels of the other microcystin congeners analyzed.

<sup>&</sup>lt;sup>7</sup> The demethylated analog is a variant of a particular microcystin congener in which a methyl group is removed, but otherwise is of similar chemical structure. The methyl group is a small molecule made of one carbon and three hydrogen atoms.

## **Methods**

### **Field Procedures**

The object of the field collection was to obtain fillet tissues from edible-sized resident fish and composite mussel samples in the vicinity of the Project for analytical determination of microcystin compounds. Resident fish and mussels in Copco and Iron Gate reservoirs, or in the river upstream and downstream of the reservoirs, are a focus of this investigation because of the recent occurrences in the reservoirs of summertime blooms of the cyanobacteria MSAE, which are capable of producing microcystin.

#### Fish and Mussel Collection

The field sampling effort focused on collecting fish tissue samples from the following four reservoir and river segments in the Project vicinity (Figure 1):

- Iron Gate reservoir (located on the Klamath River from RM 190 to RM 196.8)
- Copco reservoir (located between RM 198.6 to RM 203.2)
- Klamath River downstream of the Iron Gate dam to the I-5 freeway crossing (RM 176.7 to RM 190.5)
- Klamath River upstream of the Copco reservoir to the Stateline (RM 204 to RM 209)

Yellow perch and crappie were targeted in the reservoirs to represent resident sport fish in the reservoirs that are typically captured and consumed. Ten to twenty adult yellow perch and three to ten crappie were targeted for collection from each reservoir on each sampling occasion as practicable.

Rainbow trout (or steelhead) were targeted in the river segments to represent resident sport fish in the river that are typically captured and consumed. Three to ten rainbow trout (or steelhead) specimens were targeted for collection from each of the river segments on each sampling occasion as practicable.

Fish were collected by hook and line sampling ("angling"). PacifiCorp, CH2M HILL, and fishing guide personnel performed the fish collections.

Mussel sample collection was targeted in the river segments to represent specimens that are available to be collected and potentially consumed. Mussels were collected by hand by CH2M HILL scientists after a visual search of shallow water substrates at the river margins.



Figure 1. Map of Klamath River showing locations that demark areas from which fish and mussel specimens were collected during 2008.

#### Fish and Mussel Tissue Sample Preparation and Handling

Immediately following capture, each fish specimen was sacrificed and placed whole into a clean zip-lock bag. The bag was labeled using a permanent marking pen with a unique identification number and immediately placed on ice in an insulated cooler. At the end of each day's sampling activity, individual fish specimens were processed to obtain tissue samples. First, each specimen was weighed to the nearest gram, and a total length was obtained and recorded. Each fish specimen was examined and noted for any abnormal external conditions (e.g., lesions, parasites).

Each fish specimen was then dissected to obtain a skinless fillet. From a skinless fillet, a subsample of approximately two to ten grams was obtained and placed into a new pre-labeled 50-ml polyethylene sampling bottle. For quality assurance purposes, a second sample was obtained from a skinless fillet from the opposite side of every twentieth fish specimen processed on a given day. A sample label was placed on each bottle that provided the unique sample number assigned to the fish, the time and date of capture, the species common name, and the collector's initials.

For mussel samples, the external shell of each mussel was cleaned and three to five specimens were combined into each composite sample per site and placed into clean plastic bags. No further preparation was done in the field. The mussels were frozen as whole composite samples for removal and compositing of soft tissue later in the laboratory.

Each completed sample bottle containing fish and mussel tissue samples for analytical determination of microcystin concentrations was placed in a freezer immediately after processing and held in the freezer until shipped to the SUNY-CESF Laboratory in Syracuse, NY for microcystin analyses. During shipment to the analytical laboratory, the samples were contained in an insulated cooler containing dry ice to insure all tissue samples remained frozen during shipment. Frozen samples were shipped using overnight courier service to the SUNY-CESF Laboratory. Upon receipt at the laboratory, samples were held in an ultracold freezer until analysis.

### Laboratory Analyses

#### Method for Determination of Tissue Concentrations of Microcystin

#### **Sample Preparation**

To prepare the samples for analysis, the frozen samples were lyophilized (i.e., freeze-dried) to dryness at the SUNY-CESF Laboratory and the lyophilizate was vortexed (i.e., mixed by whirlpool effect) to ensure uniformity. A 100 mg (0.1 g dry weight) subsample was mixed with 1 ml of water containing 4  $\mu$ g of the internal standard 7cys-S-propyl-microcystin-LR (per the methodology of Smith and Boyer 2008). Five ml of 50 percent aqueous methanol was added and the samples were sonicated (21 watts power) on ice for 1 minute. Following sonication, the samples were allowed to stand for 30 min at -20°C, centrifuged to settle debris, and the clarified supernatant decanted into a clean glass tube. The solvent was removed in vacuo and the dry material reconstituted in 1 ml of 80 percent aqueous methanol. The sample was again allowed to stand for 30 minutes at -20°C, clarified by

centrifugation, and the supernatant transferred to an autosampler vial, which was sealed and stored at -20°C for subsequent analysis.

#### Analysis of Total Free Microcystins

Following tissue sample preparation, the total concentrations of microcystin compounds were quantified in each sample by high performance liquid chromatography with mass spectral detection (LCMS). The LCMS assay measured the molecular weight of total microcystin variants or congeners that are not bound to proteins (i.e., free microcystins). The free microcystins are considered the most important from a potential toxicity standpoint, since the mechanism of toxic action by microcystins involves covalent binding to proteins. The bound (i.e., non-free) fraction is no longer accessible or "bioavailable" for toxicity (Ibelings and Chorus 2007).

The LCMS assay was performed using a ZQ4000 single quad instrument and Ace C18 column operating with a 0.02 percent trifluoroacetic acid (TFA) acetonitrile gradient. The LCMS analysis was run in two different formats. First, samples were scanned looking at all masses between 750 and 1250 atomic mass units (amu), a range that encompasses the molecular ions of all of the 80 known microcystin congeners. The molecular ions corresponding to 12 common microcystin congeners found in North America (i.e., microcystin-RR, -dmRR, Nod, -YR, -LR, -dmLR, -AR, -FR, -WR, -LA, -LW, -LF) and the internal standard -tLR were extracted from that total ion trace. Additional mass spectra were scanned for any other peaks of interest that exhibited diagnostic microcystin ultraviolet (UV) signatures. Microcystins were identified on the basis of their UV signatures, liquid chromatography retention times relative to microcystin-RR, -LR, -tLR and -LF standards, and comparison of their molecular weights against a database of the 80 known microcystin congeners.

In addition to the LCMS spectra scan (discussed above), the LCMS also was used in selected ion monitoring (SIM) mode to enhance the selectivity and detectability of the microcystin-LR, -LA, and -RR congeners. The vast majority of reported research on microcystin toxicity is focused on the -LR congener, which is generally regarded as the most toxic microcystin congener (Funari and Testai 2008). The -LA congener was the predominant congener present in the additional LCMS analysis of algal samples from the Project reservoirs provided to SUNY-CESF for this analysis<sup>8</sup>. The -RR congener also was included because it is a very common congener in North American samples (G. Boyer, SUNY, pers. comm.).

The SIM mode considers only four congener ions (i.e., -LR, , -tLR, -LA, and –RR), rather than all of the many ions located between 750 and 1250 amu and is therefore significantly more sensitive than full scan mode. This results in an approximately 100-fold increase in sensitivity but provides less information about the sample in terms of fragment ions and isotope peaks. The instrument was standardized in SIM mode using microcystin-LR at a

<sup>&</sup>lt;sup>8</sup> CH2M HILL provided samples collected on August 27, 2008 at two open-water reservoir sites in the lower ends of Iron Gate and Copco reservoirs (near the log booms) that were associated with PacifiCorp's 2008 water quality monitoring study (as described in Raymond 2009). These samples were taken as horizontal integrated samples (over a distance of about 50 m) at a depth of 0.5 m below the surface. These particular samples were provided to SUNY because of known levels of microcystin (of 22.2 and 23.1 μg/L, respectively, in the Iron Gate and Copco samples) that were detected in aliquots of these samples by CH2M HILL Applied Sciences Laboratory using the competitive Enzyme-Linked ImmunoSorbent Assay (ELISA) method. The ELISA method does not distinguish between the specific microcystin congeners, but yields one value as the sum of all measurable microcystin variants.

specific mass-to-charge ratio (m/z) = 995.5, -tLR at m/z = 1087.5, -LA at m/z = 910.5 and 932.5, and -RR at m/z = 1038.5.

All results were reported on a weight basis in units of  $\mu g/g$  dry weight of tissue. The Instrument Detection Limit (IDL)<sup>9</sup> is approximately 1 ng microcystin-LR on column<sup>10</sup> in the full scan mode and 0.01 ng on column in the SIM mode. The Method Detection Limit (MDL)<sup>11</sup> relative to the LCMS spectra scan was determined for each sample from the recoveries of the internal standard (7cys-S-propyl microcystin LR) in full scan mode. Analysis in the SIM mode resulted in a second more-sensitive MDL for -LR, -LA, and -RR congeners in each sample, determined from the recoveries of the internal standard (7cys-S-propyl-microcystin-LR) in SIM mode.

Kann (2008) reported the presence of demethylated forms of the -LR and -RR congeners (dmLR and -dmRR) in some samples following microcystin analysis of fish and freshwater mussel tissues collected in the Klamath River in 2007. To assess if these two demethylated forms would be present in 2008, water samples were provided to the SUNY-CESF laboratory that were representative of the phytoplankton flora present at the time of fish exposure. These water samples were lyophilized to dryness and extracted in 50 percent acidified methanol with ultrasound (Boyer 2007). The resulting samples were clarified by centrifugation and analyzed for microcystins by LCMS using both the full scan and SIM modes as described above.

### Data on Microcystins in Waters of the Study Area

The Discussion section of this report includes graphs of data on the concentrations of microcystins in waters of the Klamath River and Project reservoirs in 2008 concurrent with the period of tissue specimen sampling described above. The sources for these data on inwater concentrations are Raymond (2009) and Kann and Corum (2009).

<sup>&</sup>lt;sup>9</sup> Instrument Detection Limit (IDL) is the concentration equivalent to a signal, due to the analyte of interest, which is the smallest signal that can be distinguished from background noise by a particular instrument. The IDL is similar to the "critical level" and "criterion of detection" as defined in the literature. (Standard Methods, 18th edition).

<sup>&</sup>lt;sup>10</sup> On-column detection occurs when analytes are detected on the analytical column (LCMS Ace C18) over which the injected sample flows.

<sup>&</sup>lt;sup>11</sup> Method Detection Limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero, and is determined from analysis of a sample in a given matrix containing the analyte. MDLs are statistically determined values that define how easily measurements of a substance by a specific analytical protocol can be distinguished from measurements of a blank (background noise).

## Results

### **Specimens Obtained**

A total of 272 fish tissue samples were obtained over the four seasonal sampling events (i.e., May-June, July, September, and November), and 14 mussel tissue samples in November during this study (Table 1). The 272 fish tissue samples consisted of 38 rainbow trout samples from the Klamath River above Copco reservoir, 38 rainbow trout samples from the Klamath River below Iron Gate reservoir, 81 yellow perch samples from Copco reservoir, 85 yellow perch samples from Iron Gate reservoir. The 14 mussel tissue samples consisted of two western ridge mussel samples from the Klamath River above Copco reservoir. The 14 mussel tissue samples consisted of two western ridge mussel and 5 Oregon floater samples from the Klamath River below Iron Gate reservoir.

| Mussels.             |                               |                      |
|----------------------|-------------------------------|----------------------|
| Species              | Location                      | Number of<br>Samples |
| Resident Fish        |                               |                      |
| Painhow trout        | Klamath River above Copco     | 38                   |
| Kallibow trout       | Klamath River Below Iron Gate | 38                   |
| Vellow perch         | Copco Reservoir               | 81                   |
| renow perch          | Iron Gate Reservoir           | 85                   |
| Plack grappin        | Copco Reservoir               | 11                   |
| ыаск старріе         | Iron Gate Reservoir           | 19                   |
| Freshwater Mussels   |                               |                      |
| Western ridge museel | Klamath River above Copco     | 2                    |
| western hage mussel  | Klamath River Below Iron Gate | 7                    |
| Oregon floater       | Klamath River Below Iron Gate | 5                    |

Table 1. Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in 2008 and Analyzed for Microcystin for Three Species of Resident Fish and Two Species of Freshwater

#### May-June Sampling Event

A total of 61 fish tissue samples (including three duplicate samples) were obtained during the May-June sampling event (Table 2). Eighteen yellow perch and six crappie samples were obtained on May 28 and 29, 2008 from Copco reservoir. These yellow perch averaged 198 mm (7.8 inches) and ranged from 131 to 275 mm (5.1 to 10.8 inches) in length. The six

crappie averaged 201 mm (7.9 inches) and ranged from 153 to 256 mm (6.0 to 10.0 inches) in length.

Twenty-two yellow perch and one crappie samples were obtained on May 29 from Iron Gate reservoir. These yellow perch averaged 210 mm (8.2 inches) and ranged from 168 to 270 mm (6.6 to 10.6 inches) in length. The one crappie was 153 mm (6.0 inches) in length.

Six rainbow trout samples were obtained from the Klamath River downstream of the Iron Gate reservoir, including one rainbow trout caught on May 28, three caught on June 7, and one caught on June 13 (also used to obtain a duplicate sample). These five trout averaged 331 mm (13 inches) and ranged from 240 to 455 mm (9.4 to 17.9 inches) in length. Seven rainbow trout samples were obtained from the Klamath River upstream of Copco reservoir – all caught on June 19. These five trout measured averaged 261 mm (10.3 inches) and ranged from 220 to 291 mm (8.7 to 11.5 inches) in length.

| Species              | Location                      | Number of<br>Samples |
|----------------------|-------------------------------|----------------------|
| <u>Resident Fish</u> |                               |                      |
| Painbow trout        | Klamath River above Copco     | 7                    |
| Rainbow trout        | Klamath River Below Iron Gate | 6                    |
| Vollow porch         | Copco Reservoir               | 18                   |
| renow perch          | Iron Gate Reservoir           | 23                   |
| Plack grappia        | Copco Reservoir               | 6                    |
| ыаск старріе         | Iron Gate Reservoir           | 1                    |

 Table 2. Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in May-June

 2008 and Analyzed for Microcystin for Three Species of Resident Fish.

#### July Sampling Event

A total of 65 fish tissue samples (including three duplicate samples) were obtained during the July sampling event (Table 3). Twenty yellow perch and one crappie samples were obtained on July 15, 2008 from Iron Gate reservoir. These yellow perch averaged 204 mm (8.0 inches) and ranged from 151 to 266 mm (5.9 to 10.4 inches) in length. The one crappie was 216 mm (8.5 inches) in length.

Twenty-one yellow perch and three crappie samples were obtained on July 16 from Copco reservoir. These yellow perch averaged 214 mm (8.4 inches) and ranged from 183 to 237 mm (7.2 to 9.3 inches) in length. The three crappie averaged 241 mm (9.5 inches) and ranged from 239 to 243 mm (9.4 to 9.5 inches) in length.

Ten rainbow trout samples were obtained on July 15, 2008 from the Klamath River downstream of the Iron Gate reservoir. These ten trout averaged 267.5 mm (10.5 inches) and ranged from 266 to 344 mm (8.5 to 13.5 inches) in length. Ten rainbow trout samples were obtained on July 16 from the Klamath River upstream of Copco reservoir. These trout averaged 285.6 mm (11.2 inches) and ranged from 175 to 435 mm (6.9 to 17.1 inches) in length.

| Species        | Location                      | Number of<br>Samples |
|----------------|-------------------------------|----------------------|
| Resident Fish  |                               |                      |
| Doinhous trout | Klamath River above Copco     | 10                   |
| Raindow trout  | Klamath River Below Iron Gate | 10                   |
| Vollow porch   | Copco Reservoir               | 21                   |
| Tellow perch   | Iron Gate Reservoir           | 20                   |
| Plack grappia  | Copco Reservoir               | 3                    |
| ыаск старріе   | Iron Gate Reservoir           | 1                    |

| Table 3. Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in July 2008 and |
|----------------------------------------------------------------------------------------------------|
| Analyzed for Microcystin for Three Species of Resident Fish.                                       |

#### September Sampling Event

A total of 77 fish tissue samples (including five duplicate samples) were obtained during the September sampling event (Table 4). Twenty-one yellow perch and 11 crappie samples were obtained on September 9, 2008 from Iron Gate reservoir. These yellow perch averaged 199 mm (7.8 inches) and ranged from 167 to 250 mm (6.5 to 9.8 inches) in length. The 11 crappie averaged 204 mm (8.0 inches) and ranged from 180 to 245 mm (7.1 to 9.6 inches) in length. Twenty-one yellow perch and two crappie samples were obtained on September 9 and 10 from Copco reservoir. These yellow perch averaged 222 mm (8.7 inches) and ranged from 197 to 246 mm (7.7 to 9.6 inches) in length. The two crappie were 197 mm (7.7 inches) and 251 mm (9.8 inches) in length.

| Species              | Location                      | Number of<br>Samples |
|----------------------|-------------------------------|----------------------|
| <u>Resident Fish</u> |                               |                      |
| Painhow trout        | Klamath River above Copco     | 10                   |
| Kallibow trout       | Klamath River Below Iron Gate | 12                   |
| Vollow porch         | Copco Reservoir               | 21                   |
| reliow perch         | Iron Gate Reservoir           | 21                   |
| Plack grappio        | Copco Reservoir               | 2                    |
| black clapple        | Iron Gate Reservoir           | 11                   |

 Table 4. Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in September

 2008 and Analyzed for Microcystin for Three Species of Resident Fish.

Twelve rainbow trout samples were obtained on September 9, 2008 from the Klamath River downstream of the Iron Gate reservoir. These trout averaged 231 mm (9.1 inches) on average and ranged from 181 to 261 mm (7.1 to 10.3 inches) in length. Ten rainbow trout samples were obtained on September 10 from the Klamath River upstream of Copco

reservoir. These trout measured 293.3 mm (11.5 inches) on average and ranged from 196 to 389 mm (7.7 to 15.4 inches) in length.

#### November Sampling Event

A total of 69 fish tissue samples (including four duplicate samples) were obtained during the November sampling event (Table 5). Twenty-one yellow perch and six crappie samples were obtained on November 13, 2008 from Iron Gate reservoir. These yellow perch averaged 210 mm (8.2 inches) and ranged from 174 to 275 mm (6.8 to 10.8 inches) in length. The six crappie averaged 208 mm (8.2 inches) and ranged from 186 to 232 mm (7.3 to 9.1 inches) in length.

Twenty-one yellow perch (but no crappie) samples were obtained on November 13 from Copco reservoir. These yellow perch averaged 221 mm (8.2 inches) and ranged from 117 to 257 mm (4.6 to 10.1 inches) in length.

| Species              | Location                      | Number of<br>Samples |
|----------------------|-------------------------------|----------------------|
| Resident Fish        |                               |                      |
| Deinkeut             | Klamath River above Copco     | 11                   |
| Rainbow trout        | Klamath River Below Iron Gate | 10                   |
| Vallaw parah         | Copco Reservoir               | 21                   |
| reliow perch         | Iron Gate Reservoir           | 21                   |
| Diask grannia        | Copco Reservoir               | 0                    |
| васк старріе         | Iron Gate Reservoir           | 6                    |
| Freshwater Mussels   |                               |                      |
| Mootorn ridgo mussol | Klamath River above Copco     | 2                    |
| western nage musser  | Klamath River Below Iron Gate | 7                    |
| Oregon floater       | Klamath River Below Iron Gate | 5                    |

Table 5. Number of the Tissue Samples Collected at the PacifiCorp Klamath Project in November 2008 and Analyzed for Microcystin for Three Species of Resident Fish and Two Species of Freshwater Mussels.

Ten rainbow trout samples were obtained on November 12, 2008 from the Klamath River downstream of the Iron Gate reservoir. These trout averaged 295 mm (11.6 inches) on average and ranged from 215 to 416 mm (8.5 to 16.4 inches) in length. Eleven rainbow trout samples were obtained on November 14 from the Klamath River upstream of Copco reservoir. These ten fish measured 309.5 mm (12.1 inches) on average and ranged from 232 to 415 mm (9.1 to 16.3 inches) in length.

A total of 14 mussel tissue samples were obtained during the November sampling event (Table 5). Two replicate samples of western ridge mussel were obtained on November 11, 2008 from the Klamath River upstream of Copco reservoir. The two replicate samples consisted of composites of three mussels each. The mean lengths of the mussels for these two replicates ranged from 88 to 89.3 mm (around 3.5 inches), with individuals ranging from 80 to 93 mm each (3.1 to 3.7 inches). Seven replicate samples of western ridge mussel were obtained on November 11 from the Klamath River downstream of Iron Gate reservoir. The seven replicate samples consisted of composites of five mussels each. The mean lengths of the mussels for these seven replicates ranged from 72.7 to 87.2 mm (2.9 to 3.4 inches), with individuals ranging from 53 to 99 mm each (2.1 to 3.9 inches). Five replicate samples of Oregon floater were obtained on November 11 from the Klamath River downstream of Iron Gate reservoir. The five replicate samples consisted of composites of five mussels each. The mean lengths of the mussels for these replicate samples consisted of soft of composites of five runce downstream of Iron Gate reservoir. The five replicate samples consisted of composites of five mussels each. The mean lengths of the mussels for these replicates ranged from 53.8 to 75.4 mm (2.1 to 3.0 inches), with individuals ranging from 43 to 88 mm each (1.7 to 3.5 inches).

### Analysis of Microcystin in Fish and Mussel Tissues

Analyses conducted by the SUNY-CESF Laboratory indicate that all of the fish and mussel tissue samples collected in this 2008 study were below detection for total free microcystins. Tables 6, 7, 8, and 9 summarize the analytical results for all tissue samples obtained from fish specimens in the Klamath River area upstream and downstream and within Copco and Iron Gate reservoirs for the May-June, July, September, and November sampling events, respectively. Table 9 also summarizes the analytical results for tissue samples obtained from the two species of mussels collected for whole-body tissue analysis from the river below Iron Gate and above Copco reservoirs during the November sampling event. The SUNY-CESF Laboratory reports are contained in Appendix A.

Of the 286 fish tissue samples, 283 were below detection in the SIM mode specifically for the -LR, -LA, and -RR congeners. Of the remaining three samples, two samples (in the May-June sample set) were classified by the SUNY-CESF lab as "ambiguous" because of interfering peaks detected near the -LR mass-to-charge ratio (m/z) locus in the SIM mode (Table 6). The third sample (also in the May-June sample set) could not be analyzed in the SIM mode because of a broken vial (Table 6).

The SUNY-CESF laboratory also reported no specific detection of the microcystin metabolites desmethyl-LR (dm-LR) and desmethyl-RR (dm-RR) in the LCMS scans for total free microcystins for the May-June, July, and September sample sets (Tables 6, 7, and 8). The SUNY-CESF laboratory did not perform an analysis on detection of -dmLR and -dmRR in LCMS scans for November samples.

|              |                 |             |                   |                                    | MDL (LCMS<br>Full Scan) <sup>12</sup> |                     | MDL (LCMS<br>Full Scan) <sup>12</sup> |                     | SIM for             | MDL<br>Mod       | (SIM<br>le) <sup>13</sup> | lon<br>Trace | lon<br>Trace |
|--------------|-----------------|-------------|-------------------|------------------------------------|---------------------------------------|---------------------|---------------------------------------|---------------------|---------------------|------------------|---------------------------|--------------|--------------|
| Species      | Location        | Sample ID   | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt.                   | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only           | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM          |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-01 | 28-May            | BDL                                | 21.1                                  | 3.7                 | BDL                                   | 0.8                 | 0.1                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-02 | 28-May            | BDL                                | 19.1                                  | 3.1                 | BDL                                   | 1.0                 | 0.2                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-03 | 28-May            | BDL                                | 21.0                                  | 3.6                 | BDL                                   | 1.5                 | 0.3                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-04 | 28-May            | BDL                                | 20.9                                  | 3.3                 | BDL                                   | 0.7                 | 0.1                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-05 | 29-May            | BDL                                | 21.3                                  | 4.2                 | BDL                                   | 0.7                 | 0.1                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-06 | 29-May            | BDL                                | 21.2                                  | 4.2                 | BDL                                   | 0.8                 | 0.2                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-07 | 29-May            | BDL                                | 19.1                                  | 3.2                 | BDL                                   | 1.1                 | 0.2                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-08 | 29-May            | BDL                                | 21.4                                  | 4.0                 | BDL                                   | 0.8                 | 0.1                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-09 | 29-May            | BDL                                | 21.8                                  | 4.1                 | BDL                                   | 1.0                 | 0.2                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-10 | 29-May            | BDL                                | 21.6                                  | 3.7                 | BDL                                   | 0.8                 | 0.1                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-11 | 29-May            | BDL                                | 21.9                                  | 4.3                 | BDL                                   | 1.0                 | 0.2                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-12 | 29-May            | BDL                                | 21.9                                  | 4.4                 | BDL                                   | 0.8                 | 0.2                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-13 | 29-May            | BDL                                | 21.3                                  | 4.0                 | BDL                                   | 0.7                 | 0.1                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-14 | 29-May            | BDL                                | 21.2                                  | 3.6                 | BDL                                   | 0.6                 | 0.1                 | ND               | ND                        |              |              |
| Yellow perch | Copco reservoir | COP-1-YP-15 | 29-May            | BDL                                | 22.0                                  | 3.7                 | BDL                                   | 1.0                 | 0.2                 | ND               | ND                        |              |              |

<sup>13</sup> The selected ion monitoring (SIM) mode was used to enhance the selectivity and detectability of the microcystin-LR, -LA, and -RR congeners. The SIM mode considers only four congener ions (i.e., -LR, , -tLR, -LA, and –RR), rather than all of the many ions located between 750 and 1250 amu and is therefore significantly more sensitive than Full Scan mode.

<sup>&</sup>lt;sup>12</sup> LCMS Full Scan mode is used to scan for all masses between 750 and 1250 atomic mass units (amu), a range that encompasses the molecular ions of all of the 80 known microcystin congeners. The 12 most common microcystin congeners found in North America (i.e., microcystin-RR, -dmRR, Nod, -YR, -LR, -dmLR, -AR, -FR, -WR, -LA, -LW, -LF) and the internal standard -tLR were extracted from that total ion trace.

RESULTS

|              |                     |              |                   | MDL (LCMS<br>Full Scan) <sup>12</sup> SIM for Mode) <sup>13</sup><br>RR L R |                     | MDL (LCMS<br>Full Scan) <sup>12</sup> SIM for<br>BR, I B |                             | or MDL (SIM<br>Mode) <sup>13</sup> |                     | L (SIM<br>ode) <sup>13</sup> Ion<br>Trace T | lon<br>Trace     |
|--------------|---------------------|--------------|-------------------|-----------------------------------------------------------------------------|---------------------|----------------------------------------------------------|-----------------------------|------------------------------------|---------------------|---------------------------------------------|------------------|
| Species      | Location            | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level                                          | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt.                                      | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt.                | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM                            | for<br>RR-<br>DM |
| Yellow perch | Copco reservoir     | COP-1-YP-16  | 29-May            | BDL                                                                         | 21.8                | 3.7                                                      | BDL                         | 1.1                                | 0.2                 | ND                                          | ND               |
| Yellow perch | Copco reservoir     | COP-1-YP-17  | 29-May            | BDL                                                                         | 22.0                | 4.2                                                      | BDL                         | 0.5                                | 0.1                 | ND                                          | ND               |
| Yellow perch | Copco reservoir     | COP-1-YP-18  | 29-May            | BDL                                                                         | 21.2                | 3.6                                                      | BDL                         | 0.6                                | 0.1                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-01 | 29-May            | BDL                                                                         | 60.3                | 9.8                                                      | BDL                         | 1.8                                | 0.3                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-02 | 29-May            | BDL                                                                         | 60.5                | 9.7                                                      | BDL                         | 1.6                                | 0.3                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-03 | 29-May            | BDL                                                                         | 62.2                | 13.6                                                     | BDL                         | 2.0                                | 0.4                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-04 | 29-May            | BDL                                                                         | 61.8                | 11.0                                                     | BDL                         | 1.6                                | 0.3                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-05 | 29-May            | BDL                                                                         | 60.6                | 9.3                                                      | BDL                         | 1.6                                | 0.2                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-06 | 29-May            | BDL                                                                         | 61.1                | 12.4                                                     | BDL                         | 2.4                                | 0.5                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-07 | 29-May            | BDL                                                                         | 61.4                | 12.5                                                     | BDL                         | 1.6                                | 0.3                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-08 | 29-May            | BDL                                                                         | 60.3                | 9.9                                                      | BDL                         | 1.5                                | 0.2                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-09 | 29-May            | BDL                                                                         | 61.0                | 12.3                                                     | BDL                         | 1.8                                | 0.4                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-10 | 29-May            | BDL                                                                         | 61.9                | 12.9                                                     | BDL                         | 1.7                                | 0.4                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-11 | 29-May            | BDL                                                                         | 57.1                | 10.2                                                     | BDL                         | 1.8                                | 0.3                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-12 | 29-May            | BDL                                                                         | 62.2                | 10.6                                                     | BDL                         | 1.8                                | 0.3                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-13 | 29-May            | BDL                                                                         | 62.1                | 12.1                                                     | BDL                         | 1.5                                | 0.3                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-14 | 29-May            | BDL                                                                         | 57.1                | 10.1                                                     | BDL                         | 1.6                                | 0.3                 | ND                                          | ND               |
| Yellow perch | Iron Gate reservoir | IGR-01-YP-15 | 29-May            | BDL                                                                         | 19.1                | 2.6                                                      | BDL                         | 1.1                                | 0.1                 | ND                                          | ND               |

RESULTS

|               |                     |               |                   |                                    | MDL (LCMS<br>Full Scan) <sup>12</sup> |                     | SIM for                     | MDL<br>Mod          | (SIM<br>le) <sup>13</sup> | lon<br>Trace     | lon<br>Trace     |
|---------------|---------------------|---------------|-------------------|------------------------------------|---------------------------------------|---------------------|-----------------------------|---------------------|---------------------------|------------------|------------------|
| Species       | Location            | Sample ID     | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt.                   | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt.       | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Yellow perch  | Iron Gate reservoir | IGR-01-YP-15  | 29-May            | BDL                                | 19.2                                  | 2.7                 | BDL                         | 2.4                 | 0.3                       | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-01-YP-17  | 29-May            | BDL                                | 19.1                                  | 3.1                 | BDL                         | 1.2                 | 0.2                       | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-01-YP-18  | 29-May            | BDL                                | 19.1                                  | 3.0                 | Ambiguous                   | NA                  | NA                        | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-01-YP-19  | 29-May            | BDL                                | 19.1                                  | 2.7                 | BDL                         | 0.5                 | 0.1                       | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-01-YP-20a | 29-May            | BDL                                | 19.1                                  | 3.2                 | BDL                         | 1.1                 | 0.2                       | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-01-YP-20b | 29-May            | BDL                                | 19.2                                  | 3.5                 | BDL                         | 0.9                 | 0.2                       | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-01-YP-21a | 29-May            | BDL                                | 19.1                                  | 2.1                 | BDL                         | 0.9                 | 0.1                       | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-01-YP-21b | 29-May            | BDL                                | 21.9                                  | 4.2                 | Broken                      | NA                  | NA                        | ND               | ND               |
| Crappie       | Copco reservoir     | COP-1-CR-01   | 29-May            | BDL                                | 22.0                                  | 4.9                 | BDL                         | 1.4                 | 0.3                       | ND               | ND               |
| Crappie       | Copco reservoir     | COP-1-CR-02   | 29-May            | BDL                                | 21.6                                  | 3.6                 | BDL                         | 1.4                 | 0.2                       | ND               | ND               |
| Crappie       | Copco reservoir     | COP-1-CR-03   | 29-May            | BDL                                | 22.8                                  | 4.2                 | BDL                         | 0.9                 | 0.2                       | ND               | ND               |
| Crappie       | Copco reservoir     | COP-1-CR-04   | 29-May            | BDL                                | 22.2                                  | 3.8                 | BDL                         | 1.0                 | 0.2                       | ND               | ND               |
| Crappie       | Copco reservoir     | COP-1-CR-05a  | 29-May            | BDL                                | 22.0                                  | 4.2                 | BDL                         | 1.3                 | 0.2                       | ND               | ND               |
| Crappie       | Copco reservoir     | COP-1-CR-05b  | 29-May            | BDL                                | 21.3                                  | 3.8                 | BDL                         | 1.1                 | 0.2                       | ND               | ND               |
| Crappie       | Iron Gate reservoir | IGR-01-CR-01  | 29-May            | BDL                                | 21.3                                  | 4.2                 | BDL                         | 1.0                 | 0.2                       | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-1-RT-01  | 19-Jun            | BDL                                | 21.1                                  | 4.1                 | BDL                         | 0.8                 | 0.2                       | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-1-RT-02  | 19-Jun            | BDL                                | 22.2                                  | 4.0                 | Ambiguous                   | NA                  | NA                        | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-1-RT-03  | 19-Jun            | BDL                                | 21.2                                  | 6.1                 | BDL                         | 0.7                 | 0.2                       | ND               | ND               |

|               |                       |              |                   |                                    | MDL (<br>Full S     | LCMS<br>can) <sup>12</sup> | SIM for                     | MDL<br>Mod          | (SIM<br>le) <sup>13</sup> | lon<br>Trace     | lon<br>Trace     |
|---------------|-----------------------|--------------|-------------------|------------------------------------|---------------------|----------------------------|-----------------------------|---------------------|---------------------------|------------------|------------------|
| Species       | Location              | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt.        | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt.       | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Rainbow trout | River above Copco     | UKRC-1-RT-04 | 19-Jun            | BDL                                | 19.1                | 3.7                        | BDL                         | 1.1                 | 0.2                       | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-1-RT-05 | 19-Jun            | BDL                                | 21.8                | 4.4                        | BDL                         | 0.7                 | 0.1                       | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-1-RT-06 | 19-Jun            | BDL                                | 21.8                | 4.3                        | BDL                         | 1.0                 | 0.2                       | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-1-RT-07 | 19-Jun            | BDL                                | 22.0                | 5.3                        | BDL                         | 1.1                 | 0.3                       | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-1-RT-01  | 28-May            | BDL                                | 21.9                | 5.3                        | BDL                         | 1.0                 | 0.2                       | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-1-RT-02  | 7-Jun             | BDL                                | 21.9                | 4.4                        | BDL                         | 1.1                 | 0.2                       | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-1-RT-03  | 7-Jun             | BDL                                | 21.8                | 4.6                        | BDL                         | 1.0                 | 0.2                       | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-1-RT-04  | 7-Jun             | BDL                                | 21.8                | 5.5                        | BDL                         | 1.2                 | 0.3                       | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-1-RT-05a | 13-Jun            | BDL                                | 21.8                | 4.7                        | BDL                         | 1.1                 | 0.2                       | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-1-RT-05b | 13-Jun            | BDL                                | 21.8                | 4.6                        | BDL                         | 1.0                 | 0.2                       | ND               | ND               |

|              |                 |             |                   |                                    | MDL (<br>Full \$    | (LCMS<br>Scan)      | SIM for                     | MDL<br>Mo           | (SIM<br>de)         | lon<br>Trace     | lon<br>Trace     |
|--------------|-----------------|-------------|-------------------|------------------------------------|---------------------|---------------------|-----------------------------|---------------------|---------------------|------------------|------------------|
| Species      | Location        | Sample ID   | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Yellow perch | Copco reservoir | COP-2-YP-01 | 15-Jul            | BDL                                | 82.4                | 12.8                | BDL                         | 1.6                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-02 | 16-Jul            | BDL                                | 82.9                | 14.9                | BDL                         | 2.2                 | 0.4                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-03 | 16-Jul            | BDL                                | 82.2                | 9.6                 | BDL                         | 1.7                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-04 | 16-Jul            | BDL                                | 82.1                | 6.9                 | BDL                         | 1.5                 | 0.1                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-05 | 16-Jul            | BDL                                | 82.7                | 16.1                | BDL                         | 1.5                 | 0.3                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-06 | 16-Jul            | BDL                                | 82.8                | 15.7                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-07 | 16-Jul            | BDL                                | 82.7                | 15.9                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-08 | 16-Jul            | BDL                                | 82.4                | 16.1                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-09 | 16-Jul            | BDL                                | 82.5                | 14.4                | BDL                         | 0.9                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-10 | 16-Jul            | BDL                                | 82.4                | 17.1                | BDL                         | 0.9                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-11 | 16-Jul            | BDL                                | 82.5                | 16.0                | BDL                         | 0.5                 | 0.1                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-12 | 16-Jul            | BDL                                | 82.1                | 15.0                | BDL                         | 0.8                 | 0.1                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-13 | 16-Jul            | BDL                                | 82.3                | 16.4                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-14 | 16-Jul            | BDL                                | 82.7                | 16.7                | BDL                         | 1.2                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-15 | 16-Jul            | BDL                                | 82.3                | 15.8                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-16 | 16-Jul            | BDL                                | 82.2                | 15.8                | BDL                         | 1.2                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-2-YP-17 | 16-Jul            | BDL                                | 82.8                | 17.3                | BDL                         | 1.2                 | 0.3                 | ND               | ND               |

RESULTS

|              |                     |              |                   |                                    | MDL (<br>Full \$    | LCMS<br>Scan)       | SIM for                     | MDL<br>Mo           | (SIM<br>de)         | lon<br>Trace     | lon<br>Trace     |
|--------------|---------------------|--------------|-------------------|------------------------------------|---------------------|---------------------|-----------------------------|---------------------|---------------------|------------------|------------------|
| Species      | Location            | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Yellow perch | Copco reservoir     | COP-2-YP-18  | 16-Jul            | BDL                                | 82.9                | 16.7                | BDL                         | 1.3                 | 0.3                 | ND               | ND               |
| Yellow perch | Copco reservoir     | COP-2-YP-19  | 16-Jul            | BDL                                | 82.4                | 15.0                | BDL                         | 1.5                 | 0.3                 | ND               | ND               |
| Yellow perch | Copco reservoir     | COP-2-YP-20  | 16-Jul            | BDL                                | 82.4                | 16.9                | BDL                         | 1.4                 | 0.3                 | ND               | ND               |
| Yellow perch | Copco reservoir     | COP-2-YP-20b | 16-Jul            | BDL                                | 82.1                | 12.9                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-01  | 15-Jul            | BDL                                | 84.9                | 13.4                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-02  | 15-Jul            | BDL                                | 84.8                | 14.9                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-03  | 15-Jul            | BDL                                | 84.8                | 13.4                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-04  | 15-Jul            | BDL                                | 84.7                | 13.8                | BDL                         | 0.9                 | 0.1                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-05  | 15-Jul            | BDL                                | 85.3                | 14.7                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-06  | 15-Jul            | BDL                                | 85.2                | 13.6                | BDL                         | 1.2                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-07  | 15-Jul            | BDL                                | 84.7                | 14.4                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-08  | 15-Jul            | BDL                                | 84.5                | 14.4                | BDL                         | 1.9                 | 0.3                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-09  | 15-Jul            | BDL                                | 84.5                | 15.9                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-10  | 15-Jul            | BDL                                | 84.5                | 15.8                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-11  | 15-Jul            | BDL                                | 85.1                | 16.4                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-12  | 15-Jul            | BDL                                | 82.5                | 14.2                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-13  | 15-Jul            | BDL                                | 82.8                | 14.4                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-2-YP-14  | 15-Jul            | BDL                                | 82.4                | 16.0                | BDL                         | 1.3                 | 0.3                 | ND               | ND               |

RESULTS

|               |                     |              |                   |                                    | MDL (<br>Full \$    | LCMS<br>Scan)       | SIM for                     | MDL<br>Mo           | (SIM<br>de)         | lon<br>Trace     | lon<br>Trace     |
|---------------|---------------------|--------------|-------------------|------------------------------------|---------------------|---------------------|-----------------------------|---------------------|---------------------|------------------|------------------|
| Species       | Location            | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Yellow perch  | Iron Gate reservoir | IGR-2-YP-15  | 15-Jul            | BDL                                | 82.7                | 14.7                | BDL                         | 1.8                 | 0.3                 | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-2-YP-16  | 15-Jul            | BDL                                | 82.2                | 12.9                | BDL                         | 1.8                 | 0.3                 | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-2-YP-17  | 15-Jul            | BDL                                | 82.7                | 15.0                | BDL                         | 1.7                 | 0.3                 | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-2-YP-18  | 15-Jul            | BDL                                | 82.7                | 15.4                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-2-YP-19  | 15-Jul            | BDL                                | 82.3                | 15.6                | BDL                         | 1.2                 | 0.2                 | ND               | ND               |
| Yellow perch  | Iron Gate reservoir | IGR-2-YP-19b | 15-Jul            | BDL                                | 82.8                | 13.0                | BDL                         | 1.7                 | 0.3                 | ND               | ND               |
| Crappie       | Copco reservoir     | COP-2-CR-01  | 16-Jul            | BDL                                | 82.6                | 15.2                | BDL                         | 1.7                 | 0.3                 | ND               | ND               |
| Crappie       | Copco reservoir     | COP-2-CR-02  | 16-Jul            | BDL                                | 82.1                | 14.5                | BDL                         | 1.5                 | 0.3                 | ND               | ND               |
| Crappie       | Copco reservoir     | COP-2-CR-03  | 16-Jul            | BDL                                | 82.4                | 13.3                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Crappie       | Iron Gate reservoir | IGR-2-CR-01  | 15-Jul            | BDL                                | 82.6                | 16.7                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-2-RT-01 | 16-Jul            | BDL                                | 82.4                | 20.5                | BDL                         | 1.7                 | 0.4                 | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-2-RT-02 | 16-Jul            | BDL                                | 82.5                | 21.6                | BDL                         | 1.6                 | 0.4                 | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-2-RT-03 | 16-Jul            | BDL                                | 82.1                | 23.2                | BDL                         | 1.6                 | 0.5                 | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-2-RT-04 | 16-Jul            | BDL                                | 82.2                | 27.0                | BDL                         | 1.6                 | 0.5                 | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-2-RT-05 | 16-Jul            | BDL                                | 82.4                | 19.9                | BDL                         | 1.8                 | 0.4                 | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-2-RT-06 | 16-Jul            | BDL                                | 82.8                | 21.6                | BDL                         | 1.4                 | 0.4                 | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-2-RT-07 | 16-Jul            | BDL                                | 82.3                | 20.7                | BDL                         | 1.4                 | 0.4                 | ND               | ND               |
| Rainbow trout | River above Copco   | UKRC-2-RT-08 | 16-Jul            | BDL                                | 82.4                | 18.8                | BDL                         | 1.2                 | 0.3                 | ND               | ND               |

| e Tissues of Rainbo<br>etection Limit; BDL: | e Tissues of Rainbow Trout, Yellow Perch, and Crappie Specimens Collected during July 2008 in the Vicinity of the Klamath<br>etection Limit; BDL: below the MDL; ND: not detected in LCMS traces) |                                    |                                           |                     |                                             |                     |                     |                  |                  |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|---------------------|---------------------------------------------|---------------------|---------------------|------------------|------------------|--|--|--|--|
|                                             |                                                                                                                                                                                                   |                                    | MDL (LCMS<br>Full Scan) SIM for<br>RR, LR |                     | L (LCMS<br>II Scan) SIM for<br>RR, LR Trace |                     | lon<br>Trace        | lon<br>Trace     |                  |  |  |  |  |
| Sample ID                                   | Date<br>Collected                                                                                                                                                                                 | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt.                       | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only                 | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |  |  |  |  |
| UKRC-2-RT-09                                | 16-Jul                                                                                                                                                                                            | BDL                                | 82.3                                      | 19.6                | BDL                                         | 1.5                 | 0.4                 | ND               | ND               |  |  |  |  |
| UKRC-2-RT-9b                                | 16-Jul                                                                                                                                                                                            | BDL                                | 82.1                                      | 21.4                | BDL                                         | 1.2                 | 0.3                 | ND               | ND               |  |  |  |  |
| LKR-2-RT-01                                 | 15-Jul                                                                                                                                                                                            | BDL                                | 85.2                                      | 21.1                | BDL                                         | 1.0                 | 0.2                 | ND               | ND               |  |  |  |  |
|                                             |                                                                                                                                                                                                   |                                    | 047                                       | 04 5                | וחח                                         | 4.0                 | 0.0                 |                  |                  |  |  |  |  |

Table 7. Analysis Results of Microcystin in Muscle Hydroelectric Project. (MDL: Method De

| Species       | Location              | Sample ID    | Collected | Level | wt.  | wt.  | Only | wt. | wt. | DM | DM |
|---------------|-----------------------|--------------|-----------|-------|------|------|------|-----|-----|----|----|
| Rainbow trout | River above Copco     | UKRC-2-RT-09 | 16-Jul    | BDL   | 82.3 | 19.6 | BDL  | 1.5 | 0.4 | ND | ND |
| Rainbow trout | River above Copco     | UKRC-2-RT-9b | 16-Jul    | BDL   | 82.1 | 21.4 | BDL  | 1.2 | 0.3 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-01  | 15-Jul    | BDL   | 85.2 | 21.1 | BDL  | 1.0 | 0.2 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-02  | 15-Jul    | BDL   | 84.7 | 21.5 | BDL  | 1.0 | 0.3 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-03  | 15-Jul    | BDL   | 85.1 | 22.9 | BDL  | 1.0 | 0.3 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-04  | 15-Jul    | BDL   | 85.2 | 20.9 | BDL  | 1.0 | 0.2 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-05  | 15-Jul    | BDL   | 85.1 | 21.3 | BDL  | 1.0 | 0.2 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-06  | 15-Jul    | BDL   | 84.7 | 21.0 | BDL  | 0.9 | 0.2 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-07  | 15-Jul    | BDL   | 84.8 | 18.1 | BDL  | 1.0 | 0.2 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-08  | 15-Jul    | BDL   | 82.7 | 18.9 | BDL  | 1.0 | 0.2 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-09  | 15-Jul    | BDL   | 82.1 | 19.1 | BDL  | 1.0 | 0.2 | ND | ND |
| Rainbow trout | River below Iron Gate | LKR-2-RT-10  | 15-Jul    | BDL   | 82.6 | 19.8 | BDL  | 1.0 | 0.2 | ND | ND |

|              |                 |             |                   |                                    | MDL (<br>Full \$    | (LCMS<br>Scan)      | SIM for                     | MDL<br>Mo           | (SIM<br>de)         | lon<br>Trace     | lon<br>Trace     |
|--------------|-----------------|-------------|-------------------|------------------------------------|---------------------|---------------------|-----------------------------|---------------------|---------------------|------------------|------------------|
| Species      | Location        | Sample ID   | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Yellow perch | Copco reservoir | COP-3-YP-01 | 9-Sep             | BDL                                | 124.7               | 26.2                | BDL                         | 1.3                 | 0.3                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-02 | 9-Sep             | BDL                                | 123.8               | 21.8                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-03 | 9-Sep             | BDL                                | 124.3               | 25.2                | BDL                         | 8.0                 | 1.6                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-04 | 9-Sep             | BDL                                | 123.7               | 18.7                | BDL                         | 1.2                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-05 | 9-Sep             | BDL                                | 124.7               | 23.9                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-06 | 9-Sep             | BDL                                | 124.3               | 22.8                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-07 | 9-Sep             | BDL                                | 124.2               | 22.8                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-08 | 9-Sep             | BDL                                | 124.4               | 46.5                | BDL                         | 1.0                 | 0.4                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-09 | 9-Sep             | BDL                                | 123.7               | 22.6                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-10 | 9-Sep             | BDL                                | 123.7               | 43.8                | BDL                         | 1.3                 | 0.5                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-11 | 9-Sep             | BDL                                | 123.7               | 21.5                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-12 | 9-Sep             | BDL                                | 124.2               | 23.8                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-13 | 9-Sep             | BDL                                | 124.9               | 19.0                | BDL                         | 1.2                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-14 | 9-Sep             | BDL                                | 123.8               | 23.1                | BDL                         | 1.2                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-15 | 9-Sep             | BDL                                | 124.4               | 22.6                | BDL                         | 0.6                 | 0.1                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-16 | 9-Sep             | BDL                                | 124.6               | 24.4                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir | COP-3-YP-17 | 9-Sep             | BDL                                | 124.1               | 24.1                | BDL                         | 1.3                 | 0.3                 | ND               | ND               |

|              |                     |              |                   |                                    | MDL (<br>Full s     | LCMS<br>Scan)       | SIM for                     | MDL<br>Mo           | (SIM<br>de)         | lon<br>Trace     | lon<br>Trace     |
|--------------|---------------------|--------------|-------------------|------------------------------------|---------------------|---------------------|-----------------------------|---------------------|---------------------|------------------|------------------|
| Species      | Location            | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Yellow perch | Copco reservoir     | COP-3-YP-18  | 9-Sep             | BDL                                | 124.7               | 22.6                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir     | COP-3-YP-19  | 9-Sep             | BDL                                | 123.8               | 21.5                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir     | COP-3-YP-20  | 9-Sep             | BDL                                | 123.7               | 21.9                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Yellow perch | Copco reservoir     | COP-3-YP-20a | 9-Sep             | BDL                                | 124.8               | 23.8                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-01  | 9-Sep             | BDL                                | 85.1                | 15.2                | BDL                         | 3.6                 | 0.6                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-02  | 9-Sep             | BDL                                | 85.3                | 15.4                | BDL                         | 4.6                 | 0.8                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-03  | 9-Sep             | BDL                                | 72.4                | 12.1                | BDL                         | 1.4                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-04  | 9-Sep             | BDL                                | 85.2                | 17.0                | BDL                         | 4.1                 | 0.8                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-05  | 9-Sep             | BDL                                | 85.1                | 15.2                | BDL                         | 5.8                 | 1.0                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-06  | 9-Sep             | BDL                                | 85.1                | 14.7                | BDL                         | 1.8                 | 0.3                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-07  | 9-Sep             | BDL                                | 85.7                | 16.7                | BDL                         | 4.4                 | 0.9                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-08  | 9-Sep             | BDL                                | 85.7                | 16.6                | BDL                         | 4.4                 | 0.9                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-09  | 9-Sep             | BDL                                | 85.6                | 15.0                | BDL                         | 3.0                 | 0.5                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-10  | 9-Sep             | BDL                                | 85.2                | 15.3                | BDL                         | 3.4                 | 0.6                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-11  | 9-Sep             | BDL                                | 85.3                | 14.2                | BDL                         | 3.2                 | 0.5                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-12  | 9-Sep             | BDL                                | 85.4                | 16.4                | BDL                         | 3.8                 | 0.7                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-13  | 9-Sep             | BDL                                | 85.8                | 16.7                | BDL                         | 2.8                 | 0.5                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-14  | 9-Sep             | BDL                                | 85.4                | 14.6                | BDL                         | 3.1                 | 0.5                 | ND               | ND               |

|              |                     |              |                   |                                    | MDL (<br>Full \$    | LCMS<br>Scan)       | SIM for                     | MDL<br>Mo           | (SIM<br>de)         | lon<br>Trace     | lon<br>Trace     |
|--------------|---------------------|--------------|-------------------|------------------------------------|---------------------|---------------------|-----------------------------|---------------------|---------------------|------------------|------------------|
| Species      | Location            | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-15  | 9-Sep             | BDL                                | 85.6                | 14.8                | BDL                         | 2.7                 | 0.5                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-16  | 9-Sep             | BDL                                | 85.2                | 16.8                | BDL                         | 3.6                 | 0.7                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-17  | 9-Sep             | BDL                                | 85.9                | 15.9                | BDL                         | 3.0                 | 0.6                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-18  | 9-Sep             | BDL                                | 85.2                | 14.9                | BDL                         | 3.9                 | 0.7                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-19  | 9-Sep             | BDL                                | 124.9               | 21.9                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-20  | 9-Sep             | BDL                                | 124.1               | 23.7                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Yellow perch | Iron Gate reservoir | IGR-3-YP-20a | 9-Sep             | BDL                                | 123.8               | 24.2                | BDL                         | 1.0                 | 0.2                 | ND               | ND               |
| Crappie      | Copco reservoir     | COP-3-CR-01  | 10-Sep            | BDL                                | 124.6               | 12.2                | BDL                         | 1.9                 | 0.2                 | ND               | ND               |
| Crappie      | Copco reservoir     | COP-3-CR-02  | 10-Sep            | BDL                                | 72.8                | 13.8                | BDL                         | 2.8                 | 0.5                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-01  | 9-Sep             | BDL                                | 124.3               | 20.6                | BDL                         | 1.1                 | 0.2                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-02  | 9-Sep             | BDL                                | 72.8                | 9.2                 | BDL                         | 2.6                 | 0.3                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-03  | 9-Sep             | BDL                                | 124.9               | 22.2                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-04  | 9-Sep             | BDL                                | 123.7               | 23.4                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-05  | 9-Sep             | BDL                                | 124.2               | 22.6                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-06  | 9-Sep             | BDL                                | 124.1               | 20.8                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-07  | 9-Sep             | BDL                                | 124.6               | 24.5                | BDL                         | 1.4                 | 0.3                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-08  | 9-Sep             | BDL                                | 124.4               | 23.8                | BDL                         | 1.4                 | 0.3                 | ND               | ND               |
| Crappie      | Iron Gate reservoir | IGR-3-CR-09  | 9-Sep             | BDL                                | 124.6               | 21.2                | BDL                         | 1.4                 | 0.2                 | ND               | ND               |

|               |                       |              |                   |                                    | MDL (<br>Full \$    | LCMS<br>Scan)       | SIM for                     | MDL<br>Mo           | (SIM<br>de)         | lon<br>Trace     | lon<br>Trace     |
|---------------|-----------------------|--------------|-------------------|------------------------------------|---------------------|---------------------|-----------------------------|---------------------|---------------------|------------------|------------------|
| Species       | Location              | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Crappie       | Iron Gate reservoir   | IGR-3-CR-10  | 9-Sep             | BDL                                | 124.2               | 21.6                | BDL                         | 1.3                 | 0.2                 | ND               | ND               |
| Crappie       | Iron Gate reservoir   | IGR-3-CR-10a | 9-Sep             | BDL                                | 124.9               | 20.2                | BDL                         | 1.5                 | 0.2                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-01 | 10-Sep            | BDL                                | 85.2                | 19.7                | BDL                         | 3.7                 | 0.9                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-02 | 10-Sep            | BDL                                | 85.4                | 18.5                | BDL                         | 4.1                 | 0.9                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-03 | 10-Sep            | BDL                                | 85.6                | 22.4                | BDL                         | 4.3                 | 1.1                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-04 | 10-Sep            | BDL                                | 85.8                | 18.6                | BDL                         | 3.9                 | 0.8                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-05 | 10-Sep            | BDL                                | 85.2                | 15.2                | BDL                         | 4.1                 | 0.7                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-06 | 10-Sep            | BDL                                | 85.6                | 18.5                | BDL                         | 4.2                 | 0.9                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-07 | 10-Sep            | BDL                                | 85.1                | 17.5                | BDL                         | 3.9                 | 0.8                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-08 | 10-Sep            | BDL                                | 85.3                | 19.3                | BDL                         | 4.0                 | 0.9                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-09 | 10-Sep            | BDL                                | 85.3                | 18.8                | BDL                         | 5.2                 | 1.1                 | ND               | ND               |
| Rainbow trout | River above Copco     | UKRC-3-RT-9a | 10-Sep            | BDL                                | 85.7                | 19.4                | BDL                         | 1.3                 | 0.3                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-01  | 9-Sep             | BDL                                | 85.4                | 24.7                | BDL                         | 4.6                 | 1.3                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-02  | 9-Sep             | BDL                                | 85.9                | 22.5                | BDL                         | 4.2                 | 1.1                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-03  | 9-Sep             | BDL                                | 85.5                | 21.5                | BDL                         | 4.7                 | 1.2                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-04  | 9-Sep             | BDL                                | 85.2                | 22.6                | BDL                         | 2.0                 | 0.5                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-05  | 9-Sep             | BDL                                | 85.2                | 23.3                | BDL                         | 3.8                 | 1.0                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-06  | 9-Sep             | BDL                                | 85.7                | 21.2                | BDL                         | 3.9                 | 1.0                 | ND               | ND               |

|               |                       |              |                   |                                    | MDL (LCMS<br>Full Scan) SIM for<br>RR, LR |                     | MDL<br>Mo                   | (SIM<br>de)         | lon<br>Trace        | lon<br>Trace     |                  |
|---------------|-----------------------|--------------|-------------------|------------------------------------|-------------------------------------------|---------------------|-----------------------------|---------------------|---------------------|------------------|------------------|
| Species       | Location              | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry<br>wt.                       | µg/kg<br>wet<br>wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry<br>wt. | µg/kg<br>wet<br>wt. | for<br>LR-<br>DM | for<br>RR-<br>DM |
| Rainbow trout | River below Iron Gate | LKR-3-RT-07  | 9-Sep             | BDL                                | 85.1                                      | 19.0                | BDL                         | 3.7                 | 0.8                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-08  | 9-Sep             | BDL                                | 85.4                                      | 11.3                | BDL                         | 4.3                 | 0.6                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-09  | 9-Sep             | BDL                                | 85.6                                      | 3.8                 | BDL                         | 3.8                 | 0.2                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-10  | 9-Sep             | BDL                                | 85.3                                      | 20.7                | BDL                         | 4.0                 | 1.0                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-11  | 9-Sep             | BDL                                | 85.2                                      | 12.5                | BDL                         | 3.7                 | 0.5                 | ND               | ND               |
| Rainbow trout | River below Iron Gate | LKR-3-RT-11a | 9-Sep             | BDL                                | 85.1                                      | 19.8                | BDL                         | 3.3                 | 0.8                 | ND               | ND               |

|              |                 | ,           |                   |                                    | MDL (LC<br>Sc    | CMS Full<br>an)  | SIM for<br>RR. LR           | MDL (SI          | M Mode)          |
|--------------|-----------------|-------------|-------------------|------------------------------------|------------------|------------------|-----------------------------|------------------|------------------|
| Species      | Location        | Sample ID   | Date<br>Collected | Total Free<br>Microcystin<br>Level | μg/kg<br>dry wt. | µg/kg<br>wet wt. | and LA<br>Congeners<br>Only | μg/kg<br>dry wt. | µg/kg<br>wet wt. |
| Yellow perch | Copco reservoir | COP-4-YP-01 | 13-Nov            | BDL                                | 122.0            | 24.4             | BDL                         | 14.2             | 2.8              |
| Yellow perch | Copco reservoir | COP-4-YP-02 | 13-Nov            | BDL                                | 175.0            | 35.0             | BDL                         | 11.4             | 2.3              |
| Yellow perch | Copco reservoir | COP-4-YP-03 | 13-Nov            | BDL                                | 172.0            | 34.4             | BDL                         | 11.3             | 2.3              |
| Yellow perch | Copco reservoir | COP-4-YP-04 | 13-Nov            | BDL                                | 174.0            | 34.8             | BDL                         | 10.6             | 2.1              |
| Yellow perch | Copco reservoir | COP-4-YP-05 | 13-Nov            | BDL                                | 193.0            | 38.6             | BDL                         | 10.3             | 2.1              |
| Yellow perch | Copco reservoir | COP-4-YP-06 | 13-Nov            | BDL                                | 225.0            | 45.0             | BDL                         | 12.5             | 2.5              |
| Yellow perch | Copco reservoir | COP-4-YP-07 | 13-Nov            | BDL                                | 190.0            | 38.0             | BDL                         | 11.0             | 2.2              |
| Yellow perch | Copco reservoir | COP-4-YP-08 | 13-Nov            | BDL                                | 177.0            | 35.4             | BDL                         | 10.1             | 2.0              |
| Yellow perch | Copco reservoir | COP-4-YP-09 | 13-Nov            | BDL                                | 172.0            | 34.4             | BDL                         | 11.4             | 2.3              |
| Yellow perch | Copco reservoir | COP-4-YP-10 | 13-Nov            | BDL                                | 167.0            | 33.4             | BDL                         | 10.4             | 2.1              |
| Yellow perch | Copco reservoir | COP-4-YP-11 | 13-Nov            | BDL                                | 182.0            | 36.4             | BDL                         | 11.0             | 2.2              |
| Yellow perch | Copco reservoir | COP-4-YP-12 | 13-Nov            | BDL                                | 112.0            | 22.4             | BDL                         | 9.1              | 1.8              |
| Yellow perch | Copco reservoir | COP-4-YP-13 | 13-Nov            | BDL                                | 199.0            | 39.8             | BDL                         | 12.2             | 2.4              |
| Yellow perch | Copco reservoir | COP-4-YP-14 | 13-Nov            | BDL                                | 188.0            | 37.6             | BDL                         | 11.1             | 2.2              |
| Yellow perch | Copco reservoir | COP-4-YP-15 | 13-Nov            | BDL                                | 187.0            | 37.4             | BDL                         | 12.1             | 2.4              |
| Yellow perch | Copco reservoir | COP-4-YP-16 | 13-Nov            | BDL                                | 192.0            | 38.4             | BDL                         | 13.1             | 2.6              |
| Yellow perch | Copco reservoir | COP-4-YP-17 | 13-Nov            | BDL                                | 178.0            | 35.6             | BDL                         | 9.4              | 1.9              |

|              |                     |              |                   |                                    | MDL (LCMS Full<br>Scan) |                  | SIM for<br>RR, LR               | MDL (SIM Mode)   |                  |
|--------------|---------------------|--------------|-------------------|------------------------------------|-------------------------|------------------|---------------------------------|------------------|------------------|
| Species      | Location            | Sample ID    | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry wt.        | µg/kg<br>wet wt. | and LA<br>Congeners µ<br>Only d | µg/kg<br>dry wt. | µg/kg<br>wet wt. |
| Yellow perch | Copco reservoir     | COP-4-YP-18  | 13-Nov            | BDL                                | 218.0                   | 43.6             | BDL                             | 11.6             | 2.3              |
| Yellow perch | Copco reservoir     | COP-4-YP-19  | 13-Nov            | BDL                                | 198.0                   | 39.6             | BDL                             | 9.4              | 1.9              |
| Yellow perch | Copco reservoir     | COP-4-YP-20  | 13-Nov            | BDL                                | 197.0                   | 39.4             | BDL                             | 10.8             | 2.2              |
| Yellow perch | Copco reservoir     | COP-4-YP-20a | 13-Nov            | BDL                                | 188.0                   | 37.6             | BDL                             | 9.5              | 1.9              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-01  | 13-Nov            | BDL                                | 207.0                   | 41.4             | BDL                             | 12.0             | 2.4              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-02  | 13-Nov            | BDL                                | 220.0                   | 44.0             | BDL                             | 12.4             | 2.5              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-03  | 13-Nov            | BDL                                | 177.0                   | 35.4             | BDL                             | 11.1             | 2.2              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-04  | 13-Nov            | BDL                                | 217.0                   | 43.4             | BDL                             | 12.2             | 2.4              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-05  | 13-Nov            | BDL                                | 211.0                   | 42.2             | BDL                             | 12.0             | 2.4              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-06  | 13-Nov            | BDL                                | 206.0                   | 41.2             | BDL                             | 11.7             | 2.3              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-07  | 13-Nov            | BDL                                | 199.0                   | 39.8             | BDL                             | 11.5             | 2.3              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-08  | 13-Nov            | BDL                                | 159.0                   | 31.8             | BDL                             | 10.2             | 2.0              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-09  | 13-Nov            | BDL                                | 192.0                   | 38.4             | BDL                             | 9.9              | 2.0              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-10  | 13-Nov            | BDL                                | 194.0                   | 38.8             | BDL                             | 9.7              | 1.9              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-11  | 13-Nov            | BDL                                | 217.0                   | 43.4             | BDL                             | 11.8             | 2.4              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-12  | 13-Nov            | BDL                                | 183.0                   | 36.6             | BDL                             | 10.1             | 2.0              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-13  | 13-Nov            | BDL                                | 174.0                   | 34.8             | BDL                             | 9.8              | 2.0              |
| Yellow perch | Iron Gate reservoir | IGR-4-YP-14  | 13-Nov            | BDL                                | 189.0                   | 37.8             | BDL                             | 11.6             | 2.3              |

| ¥             |                     | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , ,, , ,, , ,, , ,, , , , , , , , , , , , , , , , , , , , |                   |                                    | MDL (LCMS Full<br>Scan) |                  | SIM for<br>RR, LR           | MDL (SIM Mode)   |                  |
|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------|-------------------------|------------------|-----------------------------|------------------|------------------|
| Species       | Location            | Sample ID                                                                                                                                              | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry wt.        | µg/kg<br>wet wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry wt. | µg/kg<br>wet wt. |
| Yellow perch  | Iron Gate reservoir | IGR-4-YP-15                                                                                                                                            | 13-Nov            | BDL                                | 184.0                   | 36.8             | BDL                         | 10.6             | 2.1              |
| Yellow perch  | Iron Gate reservoir | IGR-4-YP-16                                                                                                                                            | 13-Nov            | BDL                                | 165.0                   | 33.0             | BDL                         | 10.4             | 2.1              |
| Yellow perch  | Iron Gate reservoir | IGR-4-YP-17                                                                                                                                            | 13-Nov            | BDL                                | 214.0                   | 42.8             | BDL                         | 12.0             | 2.4              |
| Yellow perch  | Iron Gate reservoir | IGR-4-YP-18                                                                                                                                            | 13-Nov            | BDL                                | 207.0                   | 41.4             | BDL                         | 11.5             | 2.3              |
| Yellow perch  | Iron Gate reservoir | IGR-4-YP-19                                                                                                                                            | 13-Nov            | BDL                                | 195.0                   | 39.0             | BDL                         | 10.7             | 2.1              |
| Yellow perch  | Iron Gate reservoir | IGR-4-YP-20                                                                                                                                            | 13-Nov            | BDL                                | 196.0                   | 39.2             | BDL                         | 13.3             | 2.7              |
| Yellow perch  | Iron Gate reservoir | IGR-4-YP-20a                                                                                                                                           | 13-Nov            | BDL                                | 192.0                   | 38.4             | BDL                         | 11.3             | 2.3              |
| Crappie       | Iron Gate reservoir | IGR-4-CR-01                                                                                                                                            | 13-Nov            | BDL                                | 211.0                   | 42.2             | BDL                         | 17.0             | 3.4              |
| Crappie       | Iron Gate reservoir | IGR-4-CR-02                                                                                                                                            | 13-Nov            | BDL                                | 165.0                   | 33.0             | BDL                         | 14.6             | 2.9              |
| Crappie       | Iron Gate reservoir | IGR-4-CR-03                                                                                                                                            | 13-Nov            | BDL                                | 689.0                   | 137.8            | BDL                         | 50.8             | 10.2             |
| Crappie       | Iron Gate reservoir | IGR-4-CR-04                                                                                                                                            | 13-Nov            | BDL                                | 205.0                   | 41.0             | BDL                         | 15.1             | 3.0              |
| Crappie       | Iron Gate reservoir | IGR-4-CR-05                                                                                                                                            | 13-Nov            | BDL                                | 178.0                   | 35.6             | BDL                         | 16.9             | 3.4              |
| Crappie       | Iron Gate reservoir | IGR-4-CR-06                                                                                                                                            | 13-Nov            | BDL                                | 211.0                   | 42.2             | BDL                         | 16.1             | 3.2              |
| Rainbow trout | River above Copco   | UKRC-4-RT-01                                                                                                                                           | 14-Nov            | BDL                                | 208.0                   | 41.6             | BDL                         | 14.5             | 2.9              |
| Rainbow trout | River above Copco   | UKRC-4-RT-02                                                                                                                                           | 14-Nov            | BDL                                | 221.0                   | 44.2             | BDL                         | 14.3             | 2.9              |
| Rainbow trout | River above Copco   | UKRC-4-RT-03                                                                                                                                           | 14-Nov            | BDL                                | 233.0                   | 46.6             | BDL                         | 14.3             | 2.9              |
| Rainbow trout | River above Copco   | UKRC-4-RT-04                                                                                                                                           | 14-Nov            | BDL                                | 214.0                   | 42.8             | BDL                         | 14.2             | 2.8              |
| Rainbow trout | River above Copco   | UKRC-4-RT-05                                                                                                                                           | 14-Nov            | BDL                                | 248.0                   | 49.6             | BDL                         | 98.5             | 19.7             |

| Ĩ              |                       |               |                   |                                    | MDL (LCMS Full<br>Scan) |                  | SIM for<br>RR, LR           | MDL (SIM Mode)   |                  |
|----------------|-----------------------|---------------|-------------------|------------------------------------|-------------------------|------------------|-----------------------------|------------------|------------------|
| Species        | Location              | Sample ID     | Date<br>Collected | Total Free<br>Microcystin<br>Level | μg/kg<br>dry wt.        | µg/kg<br>wet wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry wt. | µg/kg<br>wet wt. |
| Rainbow trout  | River above Copco     | UKRC-4-RT-06  | 14-Nov            | BDL                                | 210.0                   | 42.0             | BDL                         | 115.3            | 23.1             |
| Rainbow trout  | River above Copco     | UKRC-4-RT-07  | 14-Nov            | BDL                                | 214.0                   | 42.8             | BDL                         | 13.6             | 2.7              |
| Rainbow trout  | River above Copco     | UKRC-4-RT-08  | 14-Nov            | BDL                                | 248.0                   | 49.6             | BDL                         | 117.5            | 23.5             |
| Rainbow trout  | River above Copco     | UKRC-4-RT-09  | 14-Nov            | BDL                                | 341.0                   | 68.2             | BDL                         | 21.6             | 4.3              |
| Rainbow trout  | River above Copco     | UKRC-4-RT-10  | 14-Nov            | BDL                                | 218.0                   | 43.6             | BDL                         | 13.6             | 2.7              |
| Rainbow trout  | River above Copco     | UKRC-4-RT-10a | 14-Nov            | BDL                                | 231.0                   | 46.2             | BDL                         | 115.7            | 23.1             |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-01   | 12-Nov            | BDL                                | 208.0                   | 41.6             | BDL                         | 12.2             | 2.4              |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-02   | 12-Nov            | BDL                                | 181.0                   | 36.2             | BDL                         | 12.0             | 2.4              |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-03   | 12-Nov            | BDL                                | 213.0                   | 42.6             | BDL                         | 13.6             | 2.7              |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-04   | 12-Nov            | BDL                                | 192.0                   | 38.4             | BDL                         | 12.3             | 2.5              |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-05   | 12-Nov            | BDL                                | 227.0                   | 45.4             | BDL                         | 11.9             | 2.4              |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-06   | 12-Nov            | BDL                                | 223.0                   | 44.6             | BDL                         | 13.0             | 2.6              |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-07   | 12-Nov            | BDL                                | 224.0                   | 44.8             | BDL                         | 115.5            | 23.1             |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-08   | 12-Nov            | BDL                                | 230.0                   | 46.0             | BDL                         | 13.9             | 2.8              |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-09   | 12-Nov            | BDL                                | 229.0                   | 45.8             | BDL                         | 116.5            | 23.3             |
| Rainbow trout  | River below Iron Gate | LKR-4-RT-09a  | 12-Nov            | BDL                                | 246.0                   | 49.2             | BDL                         | 116.2            | 23.2             |
| Oregon floater | River below Iron Gate | FFR1-04-OF-01 | 11-Nov            | BDL                                | 203.0                   | 40.6             | BDL                         | 8.1              | 1.6              |
| Oregon floater | River below Iron Gate | FFR1-04-OF-02 | 11-Nov            | BDL                                | 210.0                   | 42.0             | BDL                         | 8.8              | 1.8              |
|                 |                       | <u>,</u>      |                   |                                    | MDL (LC<br>Sc    | CMS Full<br>an)  | SIM for<br>RR, LR           | MDL (SI          | M Mode)          |
|-----------------|-----------------------|---------------|-------------------|------------------------------------|------------------|------------------|-----------------------------|------------------|------------------|
| Species         | Location              | Sample ID     | Date<br>Collected | Total Free<br>Microcystin<br>Level | µg/kg<br>dry wt. | µg/kg<br>wet wt. | and LA<br>Congeners<br>Only | µg/kg<br>dry wt. | µg/kg<br>wet wt. |
| Oregon floater  | River below Iron Gate | FFR1-04-OF-03 | 11-Nov            | BDL                                | 165.0            | 33.0             | BDL                         | 7.2              | 1.4              |
| Oregon floater  | River below Iron Gate | FFR2-04-WR-01 | 11-Nov            | BDL                                | 184.0            | 36.8             | BDL                         | 7.7              | 1.5              |
| Oregon floater  | River below Iron Gate | FFR2-04-OF-01 | 11-Nov            | BDL                                | 196.0            | 39.2             | BDL                         | 5.8              | 1.2              |
| Oregon floater  | River below Iron Gate | FFR2-04-OF-02 | 11-Nov            | BDL                                | 197.0            | 39.4             | BDL                         | 5.9              | 1.2              |
| W. ridge mussel | River above Copco     | PR1-04-WR-01  | 11-Nov            | BDL                                | 173.0            | 34.6             | BDL                         | 7.6              | 1.5              |
| W. ridge mussel | River above Copco     | PR1-04-WR-02  | 11-Nov            | BDL                                | 163.0            | 32.6             | BDL                         | 7.3              | 1.5              |
| W. ridge mussel | River below Iron Gate | FFR3-04-WR-01 | 11-Nov            | BDL                                | 185.0            | 37.0             | BDL                         | 5.3              | 1.1              |
| W. ridge mussel | River below Iron Gate | FFR3-04-WR-02 | 11-Nov            | BDL                                | 185.0            | 37.0             | BDL                         | 5.4              | 1.1              |
| W. ridge mussel | River below Iron Gate | FFR3-04-WR-03 | 11-Nov            | BDL                                | 194.0            | 38.8             | BDL                         | 6.1              | 1.2              |
| W. ridge mussel | River below Iron Gate | FFR4-04-WR-01 | 11-Nov            | BDL                                | 184.0            | 36.8             | BDL                         | 5.6              | 1.1              |
| W. ridge mussel | River below Iron Gate | FFR4-04-WR-02 | 11-Nov            | BDL                                | 203.0            | 40.6             | BDL                         | 6.0              | 1.2              |
| W. ridge mussel | River below Iron Gate | FFR4-04-WR-03 | 11-Nov            | BDL                                | 206.0            | 41.2             | BDL                         | 6.1              | 1.2              |

Table 9. Analysis Results of Microcystin in Muscle Tissues of Rainbow Trout, Yellow Perch, and Crappie Specimens, and Oregon Floater and Western Ridge Mussel Specimens Collected during November 2008 in the Vicinity of the Klamath Hydroelectric Project. (MDL: Method Detection Limit; BDL: below the MDL) The MDL for the full-scan analysis of total free microcystins varied with sample and recovery from 2.1 to 137.8  $\mu$ g/kg on a wet weight<sup>14</sup> (ww) basis, with an average MDL of 22.2  $\mu$ g/kg ww. The MDL for the SIM mode analysis of the -LR, -LA, and -RR congeners varied with sample and recovery from 0.1 to 23.5  $\mu$ g/kg ww, with an average MDL of 1.4  $\mu$ g/kg ww. The average MDLs by species and sampling events for the full-scan analysis of total free microcystins and SIM mode analysis of the -LR, -LA, and -RR congeners are summarized in Table 10.

| Species         | Sampling Event | Number | Average MDL<br>LCMS Full Scan<br>(μg/kg wet wt.) | Average MDL<br>SIM Mode<br>(μg/kg wet wt.) |
|-----------------|----------------|--------|--------------------------------------------------|--------------------------------------------|
| Yellow perch    | May-June       | 41     | 6.2                                              | 0.2                                        |
|                 | July           | 41     | 14.8                                             | 0.2                                        |
|                 | September      | 42     | 20.7                                             | 0.4                                        |
|                 | November       | 42     | 37.6                                             | 2.2                                        |
| Crappie         | May-June       | 7      | 4.1                                              | 0.2                                        |
|                 | July           | 4      | 14.9                                             | 0.3                                        |
|                 | September      | 13     | 19.7                                             | 0.2                                        |
|                 | November       | 6      | 55.3                                             | 4.4                                        |
| Rainbow trout   | May-June       | 13     | 4.7                                              | 0.2                                        |
|                 | July           | 20     | 20.9                                             | 0.3                                        |
|                 | September      | 22     | 18.7                                             | 0.8                                        |
|                 | November       | 21     | 45.3                                             | 9.4                                        |
| Oregon floater  | November       | 6      | 38.5                                             | 1.4                                        |
| W. ridge mussel | November       | 8      | 37.3                                             | 1.2                                        |

| Table 10. Average Method Detection Limits (MDL) for LCMS Full-Scan Analysis of Total Free Microcystin and S | M |
|-------------------------------------------------------------------------------------------------------------|---|
| Mode Analysis of Microcystin Cogeners LA, LR, and RR by Species and Sampling Events.                        |   |

<sup>&</sup>lt;sup>14</sup> Wet weight is the weight of microcystin found in analysis divided by weight of the tissue before water is removed by drying.

# Discussion

# Potential Effects on Fish and Mussels in the Klamath River

## Relevant Findings from the Research Literature

Research has demonstrated that feeding ingestion is the primary exposure route of fish and other aquatic biota to potential cyanobacterial toxins, including microcystin (Martins and Vasconcelos 2009, Ibelings and Havens 2008, Malbrouck and Kestemont 2006, Smith and Haney 2006). Little, if any, direct uptake by aquatic biota of dissolved microcystins in water occurs because microcystins tend to be quite water soluble and polar, and do not readily pass the lipid bilayer of membranes (Best et al. 2001, Karjalainen et al. 2005, Lurling and van der Grinten 2003, Ibelings and Havens 2008). Also, direct acute exposure of fish to high concentrations of dissolved microcystins is unlikely in the natural ecosystem because processes like mixing, adsorption to clay particles, photolysis, and bacterial degradation contribute to substantial temporal and spatial variability and reductions in dissolved microcystins (Kotak et al. 1996, Vanderploeg et al. 2001, Ozawa et al. 2005, Ibelings and Havens 2008).

The ingestion exposure route is particularly germane for organisms that directly feed on seston that includes cyanobacteria, such as zooplankton and filter feeding bivalves. Kotak et al. (1996) determined that the microcystin-LR detected in the zooplankton in four studied lakes in Canada was from microcystin present in ingested MSAE cells. Vanderploeg et al. (2001) describe that the toxicity and large colonial size of MSAE and other nuisance cyanobacteria can lower ingestion and assimilation rates of zooplankton. Prepas et al. (1997) found that the freshwater clam *Anodonta grandis simpsoniana* accumulated microcystins by grazing on MSAE.

For biota that do not feed directly on cyanobacteria, microcystins must reach them via the food web (Ibelings and Havens 2008, Malbrouck and Kestemont 2006). In general, the risk of being exposed to toxins via the food web is much increased if biomagnification takes place. Biomagnification is the transfer and concentration of a chemical as it moves up the food chain, resulting in a higher concentration in the organism than in its diet. This is commonly found for persistent lipophilic toxicants like polychlorinated biphenyls (PCBs), but does not occur for hydrophilic compounds like microcystins (Ibelings and Havens 2008). In fact, Ibelings and Havens (2008) and Karjalainen et al. (2005) conclude that rather than biomagnification, microcystins may be subject to biodilution in the foodweb whereby microcystin concentrations are decreased through the food chain due to metabolization and excretion at each trophic level.

Of the amount of microcystin ingested with the food, a relatively small percentage is actually taken up into the body. Ibelings and Chorus (2007) cite laboratory studies using dosing with purified microcystin that showed that 2.7 percent of the applied dose was taken up in *Daphnia* zooplankton tissues and 1.5 percent in liver tissues of rainbow trout. Ibelings and Chorus (2007) indicate that even the relatively small percentage of ingested microcystin

taken up into the body is subject to detoxification and excretion that dilute microcystin concentrations.

The presence of microcystins in fish depends on food consumption habits, and microcystin presence is considerably less in carnivorous than herbivorous fish species (Ibelings and Havens 2008, Gkelis et al. 2006). Thus, the feeding guild of the fish is a primary determinant of microcystin exposure and accumulation. The three resident fish species assessed in this study – rainbow trout, yellow perch, and crappie – are not herbivores, and so do not feed directly on algae containing microcystins. Rainbow trout are carnivorous, feeding on a variety of prey including insects, crustaceans, mollusks, fish and fish eggs (Wydoski and Whitney 2003). Yellow perch and crappie as juveniles feed on zooplankton prey, turning to aquatic insects, then small fishes as they grow older (Wydoski and Whitney 2003)

When uptake into the body occurs, the major accumulation site of microcystins in invertebrates and vertebrates is the digestive gland or liver (Vasconcelos 1995, Lance et al. 2006). Concentrations of microcystin are routinely shown to be much higher in fish liver than in other tissues (Fischer et al. 2000, Ibelings et al. 2005, Malbrouck and Kestemont 2006, Smith and Haney 2006, Ibelings and Havens 2008, Ibelings and Chorus 2007, Martins and Vasconcelos 2009). In a 2006 study of microcystin in the tissues of yellow perch exposed to a large bloom of MSAE in the western basin of Lake Erie, Wilson et al. (2008) found a substantial difference between muscle and liver tissue concentrations. The muscle microcystin concentrations of yellow perch were low, and represented only 0.8 percent on average of the concentrations found in liver tissue. Papadimitriou et al. (2009) indicate that preferential accumulation in the liver may be explained by the process known as presystematic hepatic elimination, which prevents or minimizes the distribution of foreign chemicals to other parts of the body.

Microcystins that accumulate in the body are subject to depuration whereby microcystin is subsequently eliminated from the body by physiological detoxification and excretion processes. Lance et al. (2006) describe the process by which accumulated microcystins can be metabolized into less harmful compounds, resulting in microcystin excretion or physiological degradation. Lance et al. (2006) showed that 64 percent of accumulated microcystin-LR in tissues of the freshwater snail *Lymnaea stagnalis* were eliminated during the first week free of microcystin-LR exposure, and 92 percent was eliminated after three weeks. Similar detoxification efficiency was reported by Zurawell et al. (2006), who determined that the cumulative microcystin loss from *L. stagnalis* was 95 percent after six days following the removal from exposure, and 99.5 percent after 30 days. A study by Prepas et al. (1997) found that, when the freshwater clam *A. grandis simpsoniana* was removed from microcystin exposure, 69 percent of the total accumulated microcystin-LR was eliminated from muscle tissue in the first six days.

In a controlled laboratory study, Tencalla and Dietrich (1997) orally injected rainbow trout with microcystin-LR doses equivalent to  $5,700 \ \mu g/kg$  of body mass. They detected uptake of microcystin-LR into the liver that reached a peak concentration of  $524 \ \mu g/kg$  in liver tissue after several hours, followed by a 92 percent reduction to an average concentration of 44  $\ \mu g/kg$  after three days. In an accumulation and depuration experiment, Smith and Haney (2006) fed microcystin-rich zooplankton pellets to sunfish for nine days in the laboratory, and found that fish significantly decreased concentrations in their liver and muscle tissue

after six days of accumulation, indicating the induction of a detoxification and excretion pathway.

Ibelings and Havens (2008) suggest that, although depuration is commonly judged by researchers to be rapid, it appears that depuration may be incomplete even after a considerable period of time. For example, Prepas et al. (1997) determined that the elimination process by the freshwater clam *A. grandis simpsoniana* appeared to be biphasic – 69 percent of microcystin was lost from muscle tissues after six days, but increased only slightly to 81 percent at 21 days. Ibelings and Havens (2008) indicate that the rate of depuration is temperature dependent and slows down as temperatures cool, leaving the potential for remaining microcystin accumulation in late fall to be carried on to the following spring.

### **Discussion of 2008 Fish and Mussel Tissue Analyses**

As described in the Results section, free microcystin was not detected in any of the muscle samples for fish or mussel specimens obtained for this study in 2008. The non-detection of free microcystin in these samples is likely explained by four primary factors:

(1) the seasonally-confined temporal period of potential exposure to microcystins during the summer cyanobacteria "bloom" period;

(2) the highly variable spatial distribution of microcystins in waters of the reservoirs during the summer "bloom" period;

(3) potential biodilution through the foodweb (as described above) that may have resulted in low levels of microcystin ingestion by the specimens in this study; and

(4) possibility of rapid depuration of microcystin (if accumulated) in tissues of the specimens in this study.

The non-detection of free microcystin in the samples obtained for this study does not necessarily mean that microcystins were absent in the tissues of these specimens. As discussed later in this section, it is possible that relatively low levels of microcystins were present below the method detection limits (MDL) for the analytical methods used to analyze the tissue samples (i.e., MDLs as listed in Tables 6 through 9 above).

The first of the four primary factors listed above is important because it dictates the period and duration of exposure of the sampled specimens to microcystin. The presence of microcystin in the Klamath River upstream and downstream of the Project reservoirs (i.e., Copco and Iron Gate reservoirs) is confined predominantly to the months of July, August, September, and October when cyanobacteria blooms are occurring in the upstream lakes and reservoirs in the system. Concentrations of microcystins in waters of the Klamath River in 2008 reached a peak in July and August of about 3 to  $6 \mu g/L$ , and declined to non-detectable levels by early October (Figure 2). Therefore, the 2008 rainbow trout and mussel monitoring in the Klamath River spanned the period before, during, and after the time of detectable and highest waterborne concentrations in 2008 (Figure 2).



Figure 2. Microcystin data obtained in water samples at three Klamath River sites during May to November 2008. Note that the y-axis is logarithmic in scale.

The presence of microcystin in Copco and Iron Gate reservoirs also is confined predominantly to the months of July, August, September, and October when cyanobacteria blooms are occurring in the system. For example, concentrations of microcystins in surface waters at monitoring station in each reservoir (near the log boom) reached a peak of about 30 to 70  $\mu$ g/L in July and August 2008, and declined to non-detectable levels by early October (Figure 3). Therefore, the 2008 yellow perch and crappie monitoring in Copco and Iron Gate reservoirs also spanned the period before, during, and after the time of detectable and highest waterborne concentrations in 2008 (Figure 3).



Figure 3. Microcystin data obtained in water samples from the surface waters over the deepest part (near the log boom) in Copco and Iron Gate reservoirs, May to November 2008. Note that the y-axis is logarithmic in scale.

Because of the seasonal nature of cyanobacteria blooms and microcystin in the system, exposure of resident fish and other aquatic biota (such as sampled in 2008) to microcystin is confined predominantly to the months of July, August, and September. Therefore, the non-detection of free microcystin in the samples obtained in this study, especially for the May-June and November sampling events (i.e., before and after the time of detectable and highest waterborne concentrations in 2008), is expected given the likelihood that microcystin, if accumulated, probably depurates within several days to a few weeks (as discussed above).

The highly variable spatial distribution of microcystins, when present, in waters of the reservoirs during the summer "bloom" period also is an important factor in dictating the exposure of the yellow perch and crappie specimens (taken from the reservoirs) to microcystin. During the course of 2008 water quality studies in the Project vicinity, a number of samples were taken to assess in-water concentrations of microcystin at shoreline and open water locations throughout both Copco and Iron Gate reservoirs (Raymond 2009, Kann and Corum 2009). Scatter plots of this data indicate that in-water concentrations of microcystin in the reservoirs during the summer "bloom" period in 2008 had a high spatial variability (Figure 4). For example, concentrations of microcystins in Copco reservoir on August 19, 2008 varied by over six orders of magnitude from near zero (i.e., below detection) in a surface water sample taken near Copco dam to 18,000  $\mu$ g/L in a surface sample taken in algal scum at the shoreline in Copco Cove (both of these sample results were obtained on August 19 as reported by Kann and Corum 2009). As another example, on September 10, 2008, PacifiCorp took samples to assess in-water concentrations of

microcystin at various depths in Iron Gate reservoir in the forebay and near the log boom. The concentrations varied by two orders of magnitude from a high of 12.4  $\mu$ g/L at the surface to values of 0.2  $\mu$ g/L or less at all depths sampled below the surface (i.e., 10, 20, 30, and 40 meters) (Figure 5).

The high spatial variability of in-water concentrations of microcystin in the reservoirs, both laterally across the reservoir surface and vertically with depth, suggests that the exposure of sampled fish to microcystin was highly variable during the "bloom" season of 2008. While there is no evidence that fish can actively avoid high in-water concentrations of microcystin, it is apparent that the higher shoreline and surface water concentrations of microcystin (Figures 3 and 4) do not adequately represent concurrent exposure levels to yellow perch and crappie in the reservoirs. In a 2006 study of microcystin in the tissues of yellow perch exposed to a large bloom of MSAE in the western basin of Lake Erie, Wilson et al. (2008) did not rely on surface samples for estimating microcystin exposure, but rather used integrated samples through the water column "in part because yellow perch are rarely found near the lake surface". Highly variable concentrations in phytoplankton and microcystins were also identified as a key factor in microcystin occurrence and accumulation in studies by Kotak et al. (1996) and Ozawa et al. (2005).



Figure 4. Microcystin data obtained in water samples from shoreline and open water locations throughout both Copco and Iron Gate reservoirs. May to November 2008. Note that the y-axis is logarithmic in scale.



Figure 5. Data obtained on September 10, 2008 to assess in-water concentrations of microcystin at various depths in Iron Gate reservoir in the forebay and near the log boom. Note that the y-axis is logarithmic in scale.

Biodilution through the foodweb and physiological depuration processes could be other key factors that contributed to the non-detection of free microcystin in the 2008 tissue samples analyzed in this study. The research literature related to foodweb biodilution, and detoxification and depuration processes is described above. Ibelings et al. (2005) report that microcystin concentrations in fish tissues tend to be orders of magnitude lower than concentration in ambient water and its associated particulate matter (i.e., seston), due to ambient microbial degradation of microcystin, detoxification and depuration by the fish, and low biotic uptake via food-web transfer. Kotak et al. (1996) examined microcystin-LR concentrations in water, phytoplankton, invertebrates, and two fishes over three years in two hypereutrophic Canadian lakes with extensive summer cyanobacteria blooms (including MSAE and Anabaena flos-aquae). Within these two hypereutrophic lakes, Kotak et al. (1996) detected microcystin-LR in water, phytoplankton, and zooplankton. However, microcystin-LR was not detected among nine groups of macroinvertebrates (except in gastropods), and was not detected in the tissues of both sampled fish species - northern pike (*Esox lucius*) and white sucker (*Catostomus commersoni*). Kotak et al. (1996) suggested that a possible explanation for the absence of detectable microcystin-LR in macroinvertebrates and fish was that either microcystin-LR was not taken up from the water, or that given its high water solubility, the microcystin-LR was rapidly eliminated.

### Comparison to 2007 Sample Results

Kann (2008) presented results of the microcystin analysis of fish and freshwater mussel tissues collected in the Klamath River in 2007. Included in the sample types reported by

Kann (2008) are 38 yellow perch muscle ("fillet") samples collected from Iron Gate and Copco reservoirs (19 samples from each reservoir) on September 6-7, 2007. These 38 perch muscle samples are the most directly comparable to those collected in this study in 2008. In contrast to the results of this study, Kann (2008) reported detectable levels of two microcystin congeners (i.e., -dmLR and -YR) in many of the perch muscle samples collected in 2007. Kann (2008) reported that levels were non-detect in all perch muscle samples for the other six congeners assessed, including -LA, -LF, -LW, -LR, -RR, and -dmRR.

The specific reasons are unknown for the difference between the non-detect results of the 2008 perch muscle samples and the detectable levels of -dmLR and -YR congeners in many of the 2007 samples reported by Kann (2008). The data tables in Kann (2008) indicate that the dmLR congener was detected in 25 of the 38 samples (66 percent) at relatively high levels of 57 to 422  $\mu$ g/kg ww, and the -YR congener was detected in 16 of the 38 samples (42 percent) at relatively low levels of 2.5 to 4.2  $\mu$ g/kg ww. By contrast, as described above, microcystin, including -dmLR and -YR congeners, were not found at detectable levels in any of the 2008 fish tissue samples.

The difference between 2007 and 2008 samples may be a result of change in MSAE and microcystin between the two years. Raymond (2009) indicates that the median biovolume and range of variability of MSAE was substantially lower in 2008 than 2007 in both reservoirs. Monitoring data also suggests that microcystin concentrations in both reservoirs were at consistently lower levels in 2008 than 2007 (Figure 6). Research indicates that there can be considerable temporal and spatial variation and fluctuation – even within a given water body – in MSAE strains and the production of microcystin, including demethylated forms of microcystin (Mikalsen et al. 2003, Via-Ordorika et al. 2004). Therefore, a difference in results from samples collected in two separate years is plausible and perhaps to be expected.

A second possible explanation for the difference between 2007 and 2008 samples may be due to variation in analytical methods. Kann (2008) used a more selective LCMS-MS technique to achieve a lower detection limit for a limited number of microcystins. However, this possible explanation would apply only to the –YR congener and not the -dmLR congener. For the -dmLR congener, both the SIM and full scan method used in 2008 would have been able to detect -dmLR at the concentrations reported for 2007 by Kann (2008). For the –YR congener, the relatively low levels of 2.5 to 4.2  $\mu$ g/kg ww reported by Kann (2008) would have been below the detection limit for the full scan method utilized in 2008 (as previously discussed, the average MDL for the full scan method was 22.2  $\mu$ g/kg ww). The more sensitive SIM method was not used to look at the -YR congener at this time. Rather, SIM analysis in this study targeted the -LR, –LA, and -RR congeners for reasons as explained above.



Figure 6. Box plots showing the distribution of microcystin data obtained at open water and shoreline sites in Copco and Iron Gate reservoir in May to November 2007 and 2008. Box plots graphically depict groups of numerical data through their five-number summaries: the smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation (sample maximum). Note that the y-axis is logarithmic in scale.

## Analysis with Respect to Public Health Guideline Values

## Relevant Findings from the Research Literature

Microcystin-LR, -LA, -YR, and -RR are generally considered the most-commonly occurring microcystin congeners resulting from cyanobacterial blooms (Butler et al. 2009). Other minor congeners include microcystin-LL, -LF, -LV, and -LM, which are hydrophobic variants that occur in very small quantities relative to the hydrophilic ones, like microcystin-LR (Svrcek and Smith 2004). The toxicities of these microcystin congeners are shown to vary in research conducted to date, based mostly on bioassays using mice (Fisher et al. 2001, Svrcek and Smith 2004). Toxicity is highest for microcystin-LR and -LA (both have a reported LD50<sup>15</sup> of 50  $\mu$ g/kg as estimated from intra-peritoneal injections in mice). Microcystin-YR is slightly less toxic (LD50 of 70  $\mu$ g/kg), and microcystin-RR is about ten-fold less toxic (LD50 of 600  $\mu$ g/kg) (Kuiper-Goodman et al. 1999, Svrcek and Smith 2004).

The primary mode of toxicity of microcystins towards mammals is the inhibition of proteinphosphatase, especially in the liver, due to microcystin intoxication (Runnegar et al. 1993). The variation in toxicities of the microcystin variants depends mainly on differences in molecular structure that affect the affinity for binding with protein-phosphatase (e.g., including the degree of methylation of the amino acids, or isomerization<sup>16</sup> of the "Adda chain") (Fisher et al. 2001, Svrcek and Smith 2004). Alternately, certain structural modifications to the "Adda chain"<sup>17</sup> of the microcystin molecule, such as a change in isomerization, can render the microcystin non-toxic (Sivonen and Jones 1999, Fisher et al. 2001). For example, Kaya and Sano (1998) showed that, with sunlight exposure, non-toxic Adda isomerization occurs and microcystins are decomposed. Sivonen and Jones (1999) indicate that linear forms of microcystins that occur as a product of bacterial breakdown are more than 100 times less toxic than the equivalent cyclic forms of microcystins.

Ibelings and Chorus (2007) evaluated cyanotoxin doses that may occur through human consumption of freshwater fish, and proposed guideline values for tolerable microcystin concentrations in freshwater fish tissues subject to consumption. The guideline values proposed by Ibelings and Chorus (2007) for freshwater "seafood" included a "Lifetime TDI" derived based on the Tolerable Daily Intake (TDI) of microcystin-LR of 0.04  $\mu$ g/kg-day proposed by the World Health Organization (WHO). This TDI was defined by WHO as an estimate of the tolerable intake of microcystin-LR over a lifetime (WHO 2006), and is likewise referred by Ibelings and Chorus (2007) as the "Lifetime TDI".

The No Observed Adverse Effects Level (NOAEL)<sup>18</sup> assumed by WHO (2006) equals 40 mg/kg body weight (bw), based on slight effects in liver histopathology and serum enzyme level changes detected in a three-month study by Fawell et al. (1999) using chronic oral exposure of mice to pure microcystin-LR. The NOAEL of 40 mg/kg bw was then divided by

<sup>&</sup>lt;sup>15</sup> An LD50 is a standard measurement of acute toxicity represents the individual dose required to kill 50 percent of a population of test animals (e.g., mice). The lower the LD50 dose, the more toxic the substance.

<sup>&</sup>lt;sup>16</sup> The chemical process by which a compound is transformed into any of its isomeric forms, i.e., forms with the same chemical composition but with different structure or configuration and, hence, generally with different physical and chemical properties.

<sup>&</sup>lt;sup>17</sup> Addaglutamate region of the microcystin molecule.

<sup>&</sup>lt;sup>18</sup> NOAEL denotes the highest tested dose or concentration at which no adverse effect was found in exposed test organisms where higher doses or concentrations resulted in an adverse effect.

a total Uncertainty Factor of 1000 to derive the TDI of  $0.04 \,\mu g/kg$ -day. The Uncertainty Factor included multiplication factors of 10 applied twice – one for intra-species variability and one for inter-species variability, which Ibelings and Chorus (2007) note is a common practice in TDI derivation. The Uncertainty Factor assumed by WHO (2006) included a third factor of 10 to account for additional uncertainty assumed because of the extrapolation of the three-month study to lifetime exposure. Ibelings and Chorus (2007) indicate that the use a total Uncertainty Factor of 1000 implies protection in the worst case, but is justified given the limited amount of information available to assess chronic microcystin-LR toxicity.

Ibelings and Chorus (2007) also derived an "Acute TDI" to calculate what they considered a safe dose for a single exposure (consumption) event. The "Acute TDI" derived by Ibelings and Chorus (2007) was the maximum tolerable dose for a single exposure event of 2.5  $\mu$ g/kg bw determined by Fromme et al. (1999) based on extrapolations from acute toxicity studies of mice exposed to single abdominal injections of microcystin-LR.

Between the Lifetime TDI and Acute TDI, Ibelings and Chorus (2007) derived a "Seasonal TDI" to calculate a safe dose for the more-likely scenario for microcystin exposure from freshwater fish consumption; that is, assuming daily consumption for several weeks during the cyanobacteria "bloom" season. To derive the Seasonal TDI, Ibelings and Chorus (2007) used the NOAEL of 40 mg/kg bw derived by WHO (2006) using the Fawell et al. (1999) study results. However, in this case, Ibelings and Chorus (2007) left out the Uncertainty Factor of 10 that was used for extrapolating from a three-month study to lifetime exposure, leading to a Seasonal TDI of 0.4 mg per kg bw (leaving a residual Uncertainty Factor of 100).

For calculating final guideline values for freshwater "seafood" consumption, Ibelings and Chorus (2007) multiplied the Acute TDI, Seasonal TDI, and Lifetime TDI values by the body weight for an adult person (assumed at a nominal 75 kg) and a child (assumed at a nominal 10 kg), and then divided that product by a daily amount of fish meat ingested (assumed at a nominal 100 g fish per day). The respective guideline values are listed in Table 11. Because the values derived by Ibelings and Chorus (2007) are on a wet-weight (ww) basis, Table 11 also includes values converted to a dry-weight (dw) basis (assuming a fish tissue moisture content of 75 percent per Clark and Maret [1998]) so as to allow easier comparison to the tissue analysis results presented in the Results section of this report.

| TDI Category | TDI Value | Guidelir<br>(µg/kg we | ne Value<br>et weight) | Guideline Value<br>(μg/kg dry weight) |       |  |
|--------------|-----------|-----------------------|------------------------|---------------------------------------|-------|--|
|              | (µg/ng)   | Adult                 | Child                  | Adult                                 | Child |  |
| Acute        | 2.5       | 1900                  | 250                    | 7600                                  | 1000  |  |
| Seasonal     | 0.4       | 300                   | 40                     | 1200                                  | 160   |  |
| Lifetime     | 0.04      | 30                    | 4                      | 120                                   | 16    |  |

Table 11. Guideline values for freshwater fish consumption derived from Ibelings and Chorus (2007).

## **Discussion of 2008 Fish and Mussel Tissue Analyses**

As presented in the Results section of this report, free microcystin was not detected in any of the 2008 fish or mussel samples at the specified MDL. Although free microcystin was not detected in fish filet (muscle) samples or whole mussels at the specified MDL, it cannot be ruled out that microcystin was present at levels less than the MDL (i.e., below the ability of the analytical method to quantify it). This consideration is relevant if guidance values are less than (i.e., below) the MDL.

For this study, it is most appropriate to consider the TDI guideline levels (which are based on microcystin-LR) of Ibelings and Chorus (2007) relative to the MDLs of the SIM mode analysis. The SIM mode analysis specifically includes analysis of both microcystin-LR and – LA (in addition to –RR) – the two most common and potentially-toxic congeners. Also, as previously mentioned, analysis by the SUNY-CESF laboratory indicated that the -LA congener was the predominant congener in algal samples from the Project reservoirs collected in 2008. This suggests that the -LA congener was the predominant congener at the base of the foodweb from which fish and mussel tissue accumulation would derive.

The MDL of the SIM mode analysis (which incorporates analysis of microcystin-LR, along with microcystin–LA and –RR) in the fish filet and mussel samples varied with sample type and recovery from 0.1 to 23.5  $\mu$ g/kg ww, with an overall average MDL of 1.4  $\mu$ g/kg ww. The average MDLs of the SIM mode analysis by species are 0.8  $\mu$ g/kg ww for yellow perch, 1.1  $\mu$ g/kg ww for crappie, 3.0  $\mu$ g/kg ww for rainbow trout, 1.4  $\mu$ g/kg ww for Oregon floater, and 1.2  $\mu$ g/kg ww for western ridge mussel. The average MDLs of the SIM mode analysis by species by season are summarized in Table 10.

The MDLs of the SIM mode analysis for all five species are less than (i.e., below) the guidance value for Acute TDI of microcystin-LR for an adult or child. This indicates that single-event, single-meal consumption of such fish filet and mussel tissues would pose no unacceptable health risk. The seasonal (i.e., sampling event-based) average MDLs of the SIM mode analysis for all five species also are less than the guidance value for Seasonal TDI of microcystin-LR for an adult or child, indicating that daily consumption of such fish filet and mussel tissues over several weeks would pose no unacceptable health risk. The overall average MDLs of the SIM mode analysis for all five species (i.e., average across the four seasonal sampling events) also are less than the guidance value for Lifetime TDI of microcystin-LR for an adult or child, indicating that daily consumption over a lifetime of such fish filet and mussel tissues would pose no unacceptable health risk.

# References

- Best, J. H., F. B. Eddy, and G. A. Codd. 2003. Effects of Microcystis cells, cell extracts and lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus mykiss Walbaum. Aquatic Toxicology. Volume 64, Issue 4, 10 September 2003, Pages 419-426
- Boyer, G. L. 2007. The occurrence of Cyanobacterial toxins in New York lakes: Lessons for the MERHAB-Lower Great lakes program. Lake Reservoir Management. 23: 153-160.
- Butler, N., J.C. Carlisle, R. Linville, and B. Washburn. 2009. Microcystins: A brief overview of their toxicity and effects, with special reference to fish, wildlife, and livestock. Prepared by: Integrated Risk Assessment Branch Office of Environmental Health Hazard Assessment, California Environmental Protection Agency. Prepared for: Department of Water Resources Agency. January, 2009.
- CH2M HILL. 2009. Occurrence of Microcystin in Salmon and Steelhead Fish Tissues in the Klamath River in 2007. Prepared by CH2M HILL Inc. Prepared for PacifiCorp Energy. November 2009.
- Clark, G. M. and T. R. Maret. 1998. Organochlorine Compounds and Trace Elements in Fish Tissue and Bed Sediments in the Lower Snake River Basin, Idaho and Oregon. U.S. Geological Survey Water-Resources Investigations Report 98–4103.
- Fawell, J.K., Mitchell, R.E., Everett, D.J., Hill, R.E., 1999. The toxicity of cyanobacterial toxins in the mouse. I: Microcystin-LR. Human and Experimental Toxicology 18, 162-167.
- Fetcho, K. 2006. Klamath River Blue-Green Algae Bloom Report. Water Year 2005. Prepared for the Yurok Tribe Environmental Program. January 2006.
- Fischer, W.J., B.C. Hitzfeld, F. Tencalla, J.E. Eriksson, A. Mikhailov, and D. R. Dietrich. 2000. Microcystin-LR Toxicodynamics, Induced Pathology, and Immunohistochemical Localization in Livers of Blue-Green Algae Exposed Rainbow Trout (Oncorhynchus mykiss). Toxicological Sciences 54, 365–373 (2000).
- Fischer, W.J., I. Garthwaite, C.O. Miles, K.M. Ross, J.B. Aggen, N.R. Towers and D.R. Dietrich. 2001. Congener-Independent Immunoassay for Microcystins and Nodularins. Environ. Sci. Technol. 2001, 35, 4849-4856.
- Fromme, H., Kohler, A., Krause, R., Fuhrling, D., 1999. Occurrence of cyanobacterial toxins Microcystins and anatoxin-a in Berlin water bodies with implications to human health and regulations. Environmental Toxicology 15, 120-130.
- Gkelis, S., T. Lanaras, and K. Sivonen. 2006. The presence of microcystins and other cyanobacterial bioactive peptides in aquatic fauna collected from Greek freshwaters. Aquatic Toxicology. Volume 78, Issue 1, 10 June 2006, Pages 32-41.

- Havens, Karl E. 2008. Chapter 33: Cyanobacteria blooms: effects on aquatic ecosystems. In: Hudnell, H. Kenneth (Ed.). Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs Series: Advances in Experimental Medicine and Biology, Vol. 619 2008, XXIV, 950 p.
- Ibelings, B., and I. Chorus. 2007. Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health: A review. Environmental Pollution 150 (2007) 177-192.
- Ibelings, B.W., and Havens, K.H. 2008. Chapter 32. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. In: Hudnell, H. Kenneth (Ed.). Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs Series: Advances in Experimental Medicine and Biology, Vol. 619 2008, XXIV, 950 p.
- Ibelings, B.W., Bruning, K., de Jonge, J., Wolfstein, K., Pires, L.M.D., Postma, J., and Burger, T. 2005. Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Microb. Ecol. 49: 487–500.
- Kann, J. 2008. Technical Memorandum. Microcystin Accumulation in Klamath River Fish and Freshwater Mussel Tissue: Preliminary 2007 Results. Prepared for the Karuk Tribe of California. April 2008.
- Kann, J. and S. Corum. 2009. Toxigenic Microcystis aeruginosa bloom dynamics and cell density/chlorophyll a relationships with microcystin toxin in the Klamath River, 2005-2008. Technical Memorandum. Prepared For: Karuk Tribe Department of Natural Resources, Orleans, CA. May 2009.
- Karjalainen M, Reinikainen M, Spoof L, Meriluoto JAO, Sivonen K. 2005. Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: Consequences for pike larvae and mysid shrimps. Environ Toxicol 20(3): 354–362.
- Karjalainen. M. 2005. Fate and effects of Nodularia spumigena and its toxin, nodularin, in Baltic Sea planktonic food webs. Finnish Institute of Marine Research, Finland, Helsinki 2005.
- Kaya, K. and T. Sano. 1998. A Photodetoxification Mechanism of the Cyanobacterial Hepatotoxin Microcystin-LR by Ultraviolet Irradiation. Chem. Res. Toxicol., Vol. 11, No. 3, 1998
- Kotak, Brian G., Ron W. Zurawell, Ellie E. Prepas, and Charles F.B. Holmes. 1996. Microcystin-LR concentration in aquatic food web compartments from lakes of varying trophic status. Can. J. Fish. Aquat. Sci. 53: 1974–1985 (1996).
- Kuiper-Goodman, T., I. Falconer and J. Fitzgerald. 1999. Chapter 4. Human Health Aspects. In Chorus, I. and J. Bartram. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. 1999 WHO
- Lance, E., L. Brient, M. Bormans, C. Gerard. 2006. Interactions between cyanobacteria and Gastropods I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the

kinetics of microcystin bioaccumulation and detoxification. Aquatic Toxicology 79 (2006) 140–148

- Lurling M, van der Grinten E. 2003. Life-history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium Microcystis Chapter 32: Cyanobacterial Toxins aeruginosa with and without microcystins. Environ Toxicol Chem 22(6): 1281–1287.
- Malbrouck C, and P. Kestemont. 2006. Effects of microcystins on fish. Environ Toxicol Chem. 2006 Jan; 25(1):72-86.
- Martins JC, and VM Vasconcelos. 2009. Microcystin dynamics in aquatic organisms. J Toxicol Environ Health B Crit Rev. 2009 Jan;12(1):65-82.
- Meriluoto, J., and L. Spoof. 2008. Chapter 21: Cyanotoxins: sampling, sample processing and toxin uptake. In: Hudnell, H. Kenneth (Ed.). Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs Series: Advances in Experimental Medicine and Biology, Vol. 619 2008, XXIV, 950 p.
- Nicholson, B. C, and M. D. Burch. 2001. Evaluation of Analytical Methods for Detection and Quantification of Cyanotoxins in Relation to Australian Drinking Water Guidelines. Prepared for the National Health and Medical Research Council of Australia, the Water Services Association of Australia, and the Cooperative Research Centre for Water Quality and Treatment. October 2001.
- Ozawa, K. et al. 2005. Spatial Distribution and Temporal Variation of Microcystis Species Composition and Microcystin Concentration in Lake Biwa. Published online in Wiley InterScience (www.interscience.wiley.com). Wiley Periodicals, Inc.
- PacifiCorp. 2008a. Subject: Information Related to the Occurrence of Microcystin in the Tissues of Klamath River Biota. Letter from Randy Landolt (PacifiCorp) to George Alexeeff (Office of Environmental Health Hazard Assessment, California Environmental Protection Agency). May 13, 2008.
- PacifiCorp. 2008b. Subject: Office of Environmental Health Hazard Assessment and Information Related to the Occurrence of Microcystin in the Tissues of Klamath River Biota. Letter from Randy Landolt (PacifiCorp) to Terry Barber (Siskiyou County Department of Health) and Catherine Kuhlman (North Coast Regional Water Quality Control Board). August 14, 2008.
- Papadimitriou, T., I. Kagalou, V. Bacopoulos, I. Leonardos. 2009. Accumulation of Microcystins in Water and Fish Tissues: An Estimation of Risks Associated with Microcystins in Most of the Greek Lakes. Published online in Wiley InterScience (www.interscience.wiley.com). Wiley Periodicals, Inc.
- Prepas, E.E., B.G. Kotak, L.M. Campbell, J.C. Evans, S.E. Hrudey, and C.F.B. Holmes. 1997. Accumulation and elimination of cyanobacterial hepatotoxins by the freshwater clam Anodonta grandis simpsoniana. Can. J. Fish. Aquat. Sci. 54: 41-46 (1997).
- Raymond, R. 2009. Phytoplankton Species and Abundance Observed During 2008 in the Vicinity of the Klamath Hydroelectric Project. Prepared by E&S Environmental

Chemistry, Inc. Corvallis, Oregon. Prepared for: PacifiCorp Energy, Portland, Oregon. September 2009.

- Runnegar, M., S. Kong, and N. Berndt. 1993. Protein phosphatase inhibition and in vivo hepatotoxicity of microcystins. Gastrointestinal and Liver Physiology, Vol 265, Issue 2 224-G230, American Physiological Society.
- Sivonen, K. and G. Jones. 1999. Chapter 3. Cyanobacterial Toxins. In Chorus, I. and J. Bartram. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. 1999 WHO
- Smith, J. L., and G. L. Boyer. 2009. Standardization of microcystin extraction from fish tissues: A novel internal standard as a surrogate for polar and non-polar variants. Toxicon. 53(2) 238-245.
- Smith, J.L and J.F. Haney. 2006. Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon. Volume 48, Issue 5, October 2006, Pages 580-589
- Svrcek, C. and D.W. Smith. 2004. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. J. Environ. Eng. Sci. 3: 155–185 (2004).
- SWRCB. 2007. Cyanobacteria in California Recreational Water Bodies: Voluntary Guidance about Harmful Algal Blooms, Their Monitoring, and Public Notification. (Document by the Blue-green Algae Work Group of SWRCB and OEHHA).
- Tencalla, F. and Dietrich, D.R. 1997. Biochemical characterization of microcystin toxicity in trout (Oncorhynchus mykiss). Toxicon, 35(4):583-595.
- Trams, E.G. 1969. Hepatic insufficiency in spawning Pacific salmon. Marine Biology 4, t--3 (1969)
- Vanderploeg, Henry A., James R. Liebig, Wayne W. Carmichael, Megan A. Agy, Thomas H. Johengen, Gary L. Fahnenstiel, and Thomas F. Nalepa. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J. Fish. Aquat. Sci. 58: 1208–1221 (2001).
- Vasconcelos, V.M. 1995. Uptake and depuration of the heptapeptide toxin microcystin-LR in Mytilus golloprovinciales. Aquat. Toxicol. 32(2-3):227-237.
- WHO (World Health Organization), 2006. Guidelines for drinking-water quality, third edition, incorporating first addendum. World Health Organization 2006. <u>http://www.who.int/water\_sanitation\_health/dwq/gdwq3rev/en/index.html</u>
- Wilson, Alan E., Duane C. Gossiaux, Tomas O. Hook, John P. Berry, Peter F. Landrum, Julianne Dyble, and Stephanie J. Guildford. 2008. Evaluation of the human health threat associated with the hepatotoxin microcystin in the muscle and liver tissues of yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci. 65: 1487–1497 (2008).

- Wydoski, R.S. and R.R. Whitney. 2003. Inland Fishes of Washington. Second Edition. American Fisheries Society, Bethesda, MD in association with University of Washington Press, Seattle. 322 pp.
- Zurawell, R.W., C.F.B. Holmes, and E.E. Prepas. 2006. Elimination of the cyanobacterial hepatotoxin microcystin from the freshwater pulmonate snail Lymnaea stagnalis jugularis (Say). J. Toxicol. Environ. Health Part A 69:303-318.

<u>Appendix A</u>: SUNY-CESF Laboratory Reports <u>Appendix A</u>: SUNY-CESF Laboratory Reports



**September 27, 2008** 

Klamath Fish Muscle Tissues : free microcystins

| ESF<br>number | Sample ID     | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Method Detection<br>Limit (µg/kg dw) |
|---------------|---------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 08-720        | IGR-01-YP-01  | 5/29/2008         | 5-Sep                            | 0.356                   | 74%                      | Below detection                  | <60.3                                | Non-detect                         | <1.8                                 |
| 08-721        | IGR-01-YP-02  | 5/29/2008         | 5-Sep                            | 0.563                   | 78%                      | Below detection                  | <60.5                                | Non-detect                         | <1.6                                 |
| 08-722        | IGR-01-YP-03  | 5/29/2008         | 5-Sep                            | 0.567                   | 66%                      | Below detection                  | <62.2                                | Non-detect                         | <2.0                                 |
| 08-723        | IGR-01-YP-04  | 5/29/2008         | 5-Sep                            | 0.515                   | 77%                      | Below detection                  | <61.8                                | Non-detect                         | <1.6                                 |
| 08-724        | IGR-01-YP-05  | 5/29/2008         | 5-Sep                            | 0.748                   | 78%                      | Below detection                  | <60.6                                | Non-detect                         | <1.6                                 |
| 08-725        | IGR-01-YP-06  | 5/29/2008         | 5-Sep                            | 1.056                   | 51%                      | Below detection                  | <61.1                                | Non-detect                         | <2.4                                 |
| 08-726        | IGR-01-YP-07  | 5/29/2008         | 5-Sep                            | 1.099                   | 78%                      | Below detection                  | <61.4                                | Non-detect                         | <1.6                                 |
| 08-727        | IGR-01-YP-08  | 5/29/2008         | 5-Sep                            | 1.166                   | 72%                      | Below detection                  | <60.3                                | Non-detect                         | <1.5                                 |
| 08-728        | IGR-01-YP-09  | 5/29/2008         | 5-Sep                            | 1.131                   | 68%                      | Below detection                  | <61.0                                | Non-detect                         | <1.8                                 |
| 08-729        | IGR-01-YP-10  | 5/29/2008         | 5-Sep                            | 0.667                   | 78%                      | Below detection                  | <61.9                                | Non-detect                         | <1.7                                 |
| 08-730        | IGR-01-YP-11  | 5/29/2008         | 5-Sep                            | 0.569                   | 60%                      | Below detection                  | <57.1                                | Non-detect                         | <1.8                                 |
| 08-731        | IGR-01-YP-12  | 5/29/2008         | 5-Sep                            | 0.890                   | 64%                      | Below detection                  | <62.2                                | Non-detect                         | <1.8                                 |
| 08-732        | IGR-01-YP-13  | 5/29/2008         | 5-Sep                            | 0.952                   | 78%                      | Below detection                  | <62.1                                | Non-detect                         | <1.5                                 |
| 08-733        | IGR-01-YP-14  | 5/29/2008         | 5-Sep                            | 0.995                   | 70%                      | Below detection                  | <57.1                                | Non-detect                         | <1.6                                 |
| 08-734        | IGR-01-YP-15  | 5/29/2008         | 25-Sep                           | 0.870                   | 68%                      | Below detection                  | <19.1                                | Non-detect                         | <1.1                                 |
| 08-735        | IGR-01-YP-15  | 5/29/2008         | 25-Sep                           | 0.713                   | 42%                      | Below detection                  | <19.2                                | Non-detect                         | <2.4                                 |
| 08-736        | IGR-01-YP-17  | 5/29/2008         | 25-Sep                           | 0.897                   | 67%                      | Below detection                  | <19.1                                | Non-detect                         | <1.2                                 |
| 08-737        | IGR-01-YP-18  | 5/29/2008         | 25-Sep                           | 0.985                   | 68%                      | Below detection                  | <19.1                                | ambiguous                          | na                                   |
| 08-738        | IGR-01-YP-19  | 5/29/2008         | 25-Sep                           | 0.892                   | 104%                     | Below detection                  | <19.1                                | Non-detect                         | <0.5                                 |
| 08-739        | IGR-01-YP-20a | 5/29/2008         | 25-Sep                           | 1.501                   | 69%                      | Below detection                  | <19.1                                | Non-detect                         | <1.1                                 |
| 08-740        | IGR-01-YP-20b | 5/29/2008         | 25-Sep                           | 1.340                   | 71%                      | Below detection                  | <19.2                                | Non-detect                         | <0.9                                 |
| 08-741        | IGR-01-YP-21a | 5/29/2008         | 25-Sep                           | 0.719                   | 78%                      | Below detection                  | <19.1                                | Non-detect                         | <0.9                                 |
| 08-1094       | IGR-01-YP-21b |                   | 17-Sep                           | 1.045                   | 66%                      | Below detection                  | <21.9                                | broken                             | na                                   |
| 08-742        | IGR-01-CR-01  | 5/29/2008         | 17-Sep                           | 1.072                   | 62%                      | Below detection                  | <21.3                                | Non-detect                         | <1.0                                 |
| 08-743        | COP-1-YP-01   | 5/28/2008         | 17-Sep                           | 0.692                   | 83%                      | Below detection                  | <21.1                                | Non-detect                         | <0.8                                 |
| 08-744        | COP-1-YP-02   | 5/28/2008         | 25-Sep                           | 0.595                   | 67%                      | Below detection                  | <19.1                                | Non-detect                         | <1.0                                 |



| ESF<br>number | Sample ID    | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Method Detection<br>Limit (µg/kg dw) |
|---------------|--------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 08-745        | COP-1-YP-03  | 5/28/2008         | 17-Sep                           | 1.115                   | 56%                      | Below detection                  | <21.04                               | Non-detect                         | <1.5                                 |
| 08-746        | COP-1-YP-04  | 5/28/2008         | 17-Sep                           | 0.844                   | 91%                      | Below detection                  | <20.94                               | Non-detect                         | <0.7                                 |
| 08-747        | COP-1-YP-05  | 5/29/2008         | 17-Sep                           | 1.286                   | 95%                      | Below detection                  | <21.29                               | Non-detect                         | <0.7                                 |
| 08-748        | COP-1-YP-06  | 5/29/2008         | 17-Sep                           | 1.744                   | 92%                      | Below detection                  | <21.18                               | Non-detect                         | <0.8                                 |
| 08-749        | COP-1-YP-07  | 5/29/2008         | 25-Sep                           | 1.199                   | 65%                      | Below detection                  | <19.12                               | Non-detect                         | <1.1                                 |
| 08-750        | COP-1-YP-08  | 5/29/2008         | 17-Sep                           | 1.349                   | 94%                      | Below detection                  | <21.39                               | Non-detect                         | <0.8                                 |
| 08-751        | COP-1-YP-09  | 5/29/2008         | 17-Sep                           | 0.988                   | 85%                      | Below detection                  | <21.79                               | Non-detect                         | <1.0                                 |
| 08-752        | COP-1-YP-10  | 5/29/2008         | 17-Sep                           | 1.135                   | 86%                      | Below detection                  | <21.56                               | Non-detect                         | <0.8                                 |
| 08-753        | COP-1-YP-11  | 5/29/2008         | 17-Sep                           | 1.693                   | 79%                      | Below detection                  | <21.88                               | Non-detect                         | <1.0                                 |
| 08-754        | COP-1-YP-12  | 5/29/2008         | 17-Sep                           | 1.407                   | 88%                      | Below detection                  | <21.86                               | Non-detect                         | <0.8                                 |
| 08-755        | COP-1-YP-13  | 5/29/2008         | 17-Sep                           | 1.650                   | 97%                      | Below detection                  | <21.25                               | Non-detect                         | <0.7                                 |
| 08-756        | COP-1-YP-14  | 5/29/2008         | 17-Sep                           | 1.024                   | 107%                     | Below detection                  | <21.20                               | Non-detect                         | <0.6                                 |
| 08-757        | COP-1-YP-15  | 5/29/2008         | 17-Sep                           | 1.286                   | 80%                      | Below detection                  | <21.97                               | Non-detect                         | <1.0                                 |
| 08-758        | COP-1-YP-16  | 5/29/2008         | 17-Sep                           | 1.061                   | 82%                      | Below detection                  | <21.79                               | Non-detect                         | <1.1                                 |
| 08-759        | COP-1-YP-17  | 5/29/2008         | 17-Sep                           | 1.926                   | 106%                     | Below detection                  | <21.99                               | Non-detect                         | <0.5                                 |
| 08-760        | COP-1-YP-18  | 5/29/2008         | 17-Sep                           | 1.479                   | 103%                     | Below detection                  | <21.18                               | Non-detect                         | <0.6                                 |
| 08-761        | LKR-1-RT-01  | 5/28/2008         | 17-Sep                           | 3.877                   | 78%                      | Below detection                  | <21.93                               | Non-detect                         | <1.0                                 |
| 08-762        | LKR-1-RT-02  | 6/7/2008          | 17-Sep                           | 1.241                   | 77%                      | Below detection                  | <21.86                               | Non-detect                         | <1.1                                 |
| 08-763        | LKR-1-RT-03  | 6/7/2008          | 17-Sep                           | 1.415                   | 78%                      | Below detection                  | <21.84                               | Non-detect                         | <1.0                                 |
| 08-764        | LKR-1-RT-04  | 6/7/2008          | 17-Sep                           | 3.831                   | 66%                      | Below detection                  | <21.79                               | Non-detect                         | <1.2                                 |
| 08-765        | LKR-1-RT-05a | 6/13/2008         | 17-Sep                           | 2.112                   | 80%                      | Below detection                  | <21.79                               | Non-detect                         | <1.1                                 |
| 08-766        | LKR-1-RT-05b | 6/13/2008         | 17-Sep                           | 2.071                   | 89%                      | Below detection                  | <21.84                               | Non-detect                         | <1.0                                 |
| 08-767        | COP-1-CR-01  | 5/29/2008         | 17-Sep                           | 1.926                   | 61%                      | Below detection                  | <21.97                               | Non-detect                         | <1.4                                 |
| 08-768        | COP-1-CR-02  | 5/29/2008         | 17-Sep                           | 0.874                   | 54%                      | Below detection                  | <21.60                               | Non-detect                         | <1.4                                 |
| 08-769        | COP-1-CR-03  | 5/29/2008         | 17-Sep                           | 1.025                   | 81%                      | Below detection                  | <22.75                               | Non-detect                         | <0.9                                 |
| 08-770        | COP-1-CR-04  | 5/29/2008         | 17-Sep                           | 1.082                   | 77%                      | Below detection                  | <22.19                               | Non-detect                         | <1.0                                 |



| ESF<br>number | Sample ID    | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (μg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Method Detection<br>Limit (µg/kg dw) |
|---------------|--------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 08-771        | COP-1-CR-05a | 5/29/2008         | 17-Sep                           | 1.972                   | 68%                      | Below detection                  | <21.99                               | Non-detect                         | <1.3                                 |
| 08-772        | COP-1-CR-05b | 5/29/2008         | 17-Sep                           | 1.769                   | 66%                      | Below detection                  | <21.31                               | Non-detect                         | <1.1                                 |
| 08-773        | UKRC-1-RT-01 | 6/19/2008         | 17-Sep                           | 1.045                   | 96%                      | Below detection                  | <21.12                               | Non-detect                         | <0.8                                 |
| 08-774        | UKRC-1-RT-02 | 6/19/2008         | 17-Sep                           | 1.108                   | 62%                      | Below detection                  | <22.17                               | ambiguous                          | na                                   |
| 08-775        | UKRC-1-RT-03 | 6/19/2008         | 17-Sep                           | 1.443                   | 104%                     | Below detection                  | <21.18                               | Non-detect                         | <0.7                                 |
| 08-776        | UKRC-1-RT-04 | 6/19/2008         | 25-Sep                           | 0.582                   | 72%                      | Below detection                  | <19.12                               | Non-detect                         | <1.1                                 |
| 08-777        | UKRC-1-RT-05 | 6/19/2008         | 17-Sep                           | 0.830                   | 107%                     | Below detection                  | <21.79                               | Non-detect                         | <0.7                                 |
| 08-778        | UKRC-1-RT-06 | 6/19/2008         | 17-Sep                           | 1.459                   | 84%                      | Below detection                  | <21.79                               | Non-detect                         | <1.0                                 |
| 08-779        | UKRC-1-RT-07 | 6/19/2008         | 17-Sep                           | 0.887                   | 75%                      | Below detection                  | <21.99                               | Non-detect                         | <1.1                                 |



#### Klamath Fish Muscle Tissues : free microcystins

### October 21<sup>st</sup> 2008 (revised December 27<sup>th</sup>)

| ESF<br>number | Sample ID           | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Sample Detection<br>Limit (µg/kg dw) |
|---------------|---------------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 08-882        | IGR-2-YP-01, muscle | 7/15/2008         | 15-Oct                           | 0.792                   | 91%                      | Below detection                  | <84.9                                | Non-detect                         | <1.0                                 |
| 08-883        | IGR-2-YP-02, muscle | 7/15/2008         | 15-Oct                           | 1.304                   | 81%                      | Below detection                  | <84.8                                | Non-detect                         | <1.0                                 |
| 08-884        | IGR-2-YP-03, muscle | 7/15/2008         | 15-Oct                           | 0.759                   | 77%                      | Below detection                  | <84.8                                | Non-detect                         | <1.0                                 |
| 08-885        | IGR-2-YP-04, muscle | 7/15/2008         | 15-Oct                           | 1.009                   | 83%                      | Below detection                  | <84.7                                | Non-detect                         | <0.9                                 |
| 08-886        | IGR-2-YP-05, muscle | 7/15/2008         | 15-Oct                           | 1.292                   | 75%                      | Below detection                  | <85.3                                | Non-detect                         | <1.1                                 |
| 08-887        | IGR-2-YP-06, muscle | 7/15/2008         | 15-Oct                           | 0.875                   | 66%                      | Below detection                  | <85.2                                | Non-detect                         | <1.2                                 |
| 08-888        | IGR-2-YP-07, muscle | 7/15/2008         | 15-Oct                           | 1.143                   | 62%                      | Below detection                  | <84.7                                | Non-detect                         | <1.3                                 |
| 08-889        | IGR-2-YP-08, muscle | 7/15/2008         | 15-Oct                           | 1.158                   | 43%                      | Below detection                  | <84.5                                | Non-detect                         | <1.9                                 |
| 08-890        | IGR-2-YP-09, muscle | 7/15/2008         | 15-Oct                           | 1.016                   | 75%                      | Below detection                  | <84.5                                | Non-detect                         | <1.1                                 |
| 08-891        | IGR-2-YP-10, muscle | 7/15/2008         | 15-Oct                           | 1.350                   | 81%                      | Below detection                  | <84.5                                | Non-detect                         | <1.0                                 |
| 08-892        | IGR-2-YP-11, muscle | 7/15/2008         | 15-Oct                           | 1.330                   | 70%                      | Below detection                  | <85.1                                | Non-detect                         | <1.1                                 |
| 08-893        | LKR-2-RT-01, muscle | 7/15/2008         | 15-Oct                           | 1.688                   | 85%                      | Below detection                  | <85.2                                | Non-detect                         | <1.0                                 |
| 08-894        | LKR-2-RT-02, muscle | 7/15/2008         | 15-Oct                           | 1.191                   | 79%                      | Below detection                  | <84.7                                | Non-detect                         | <1.0                                 |
| 08-895        | LKR-2-RT-03, muscle | 7/15/2008         | 15-Oct                           | 1.639                   | 83%                      | Below detection                  | <85.1                                | Non-detect                         | <1.0                                 |
| 08-896        | LKR-2-RT-04, muscle | 7/15/2008         | 15-Oct                           | 3.011                   | 78%                      | Below detection                  | <85.2                                | Non-detect                         | <1.0                                 |
| 08-897        | LKR-2-RT-05, muscle | 7/15/2008         | 15-Oct                           | 1.773                   | 83%                      | Below detection                  | <85.1                                | Non-detect                         | <1.0                                 |
| 08-898        | LKR-2-RT-06, muscle | 7/15/2008         | 15-Oct                           | 2.576                   | 90%                      | Below detection                  | <84.7                                | Non-detect                         | <0.9                                 |
| 08-899        | LKR-2-RT-07, muscle | 7/15/2008         | 15-Oct                           | 1.027                   | 85%                      | Below detection                  | <84.8                                | Non-detect                         | <1.0                                 |
| 08-900        | LKR-2-RT-08, muscle | 7/15/2008         | 15-Oct                           | 1.072                   | 79%                      | Below detection                  | <82.7                                | Non-detect                         | <1.0                                 |
| 08-901        | LKR-2-RT-09, muscle | 7/15/2008         | 15-Oct                           | 1.812                   | 88%                      | Below detection                  | <82.1                                | Non-detect                         | <1.0                                 |
| 08-902        | LKR-2-RT-10, muscle | 7/15/2008         | 15-Oct                           | 2.587                   | 83%                      | Below detection                  | <82.6                                | Non-detect                         | <1.0                                 |
| 08-903        | IGR-2-YP-12, muscle | 7/15/2008         | 15-Oct                           | 1.133                   | 96%                      | Below detection                  | <82.5                                | Non-detect                         | <1.0                                 |
| 08-904        | IGR-2-YP-13, muscle | 7/15/2008         | 15-Oct                           | 1.256                   | 95%                      | Below detection                  | <82.8                                | Non-detect                         | <1.0                                 |
| 08-905        | IGR-2-YP-14, muscle | 7/15/2008         | 15-Oct                           | 1.318                   | 72%                      | Below detection                  | <82.4                                | Non-detect                         | <1.3                                 |
|               |                     |                   |                                  |                         |                          |                                  |                                      |                                    |                                      |



| ESF<br>number | Sample ID            | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (μg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Sample Detection<br>Limit (µg/kg dw) |
|---------------|----------------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 08-906        | IGR-2-YP-15, muscle  | 7/15/2008         | 15-Oct                           | 0.656                   | 64%                      | Below detection                  | <82.7                                | Non-detect                         | <1.8                                 |
| 08-907        | IGR-2-YP-16, muscle  | 7/15/2008         | 15-Oct                           | 0.722                   | 60%                      | Below detection                  | <82.2                                | Non-detect                         | <1.8                                 |
| 08-908        | IGR-2-YP-17, muscle  | 7/15/2008         | 15-Oct                           | 0.945                   | 60%                      | Below detection                  | <82.7                                | Non-detect                         | <1.7                                 |
| 08-909        | IGR-2-YP-18, muscle  | 7/15/2008         | 15-Oct                           | 0.984                   | 83%                      | Below detection                  | <82.7                                | Non-detect                         | <1.1                                 |
| 08-910        | IGR-2-YP-19, muscle  | 7/15/2008         | 15-Oct                           | 1.042                   | 80%                      | Below detection                  | <82.3                                | Non-detect                         | <1.2                                 |
| 08-911        | IGR-2-YP-19b, muscle | 7/15/2008         | 15-Oct                           | 0.611                   | 59%                      | Below detection                  | <82.8                                | Non-detect                         | <1.7                                 |
| 08-912        | IGR-2-CR-01, muscle  | 7/15/2008         | 15-Oct                           | 1.736                   | 83%                      | Below detection                  | <82.6                                | Non-detect                         | <1.0                                 |
| 08-913        | COP-2-YP-01, muscle  | 7/15/2008         | 15-Oct                           | 0.700                   | 62%                      | Below detection                  | <82.4                                | Non-detect                         | <1.6                                 |
| 08-914        | COP-2-YP-02, muscle  | 7/16/2008         | 15-Oct                           | 1.042                   | 47%                      | Below detection                  | <82.9                                | Non-detect                         | <2.2                                 |
| 08-915        | COP-2-YP-03, muscle  | 7/16/2008         | 15-Oct                           | 0.563                   | 57%                      | Below detection                  | <82.2                                | Non-detect                         | <1.7                                 |
| 08-916        | COP-2-YP-04, muscle  | 7/16/2008         | 15-Oct                           | 0.520                   | 68%                      | Below detection                  | <82.1                                | Non-detect                         | <1.5                                 |
| 08-917        | COP-2-YP-05, muscle  | 7/16/2008         | 15-Oct                           | 1.093                   | 67%                      | Below detection                  | <82.7                                | Non-detect                         | <1.5                                 |
| 08-918        | COP-2-YP-06, muscle  | 7/16/2008         | 15-Oct                           | 1.082                   | 95%                      | Below detection                  | <82.8                                | Non-detect                         | <1.0                                 |
| 08-919        | COP-2-YP-07, muscle  | 7/16/2008         | 15-Oct                           | 0.980                   | 93%                      | Below detection                  | <82.7                                | Non-detect                         | <1.0                                 |
| 08-920        | COP-2-YP-08, muscle  | 7/16/2008         | 15-Oct                           | 1.384                   | 81%                      | Below detection                  | <82.4                                | Non-detect                         | <1.1                                 |
| 08-921        | COP-2-YP-09, muscle  | 7/16/2008         | 15-Oct                           | 0.856                   | 88%                      | Below detection                  | <82.5                                | Non-detect                         | <0.9                                 |
| 08-922        | COP-2-YP-10, muscle  | 7/16/2008         | 15-Oct                           | 1.143                   | 83%                      | Below detection                  | <82.4                                | Non-detect                         | <0.9                                 |
| 08-923        | COP-2-YP-11, muscle  | 7/16/2008         | 15-Oct                           | 1.457                   | 148%                     | Below detection                  | <82.5                                | Non-detect                         | <0.5                                 |
| 08-924        | COP-2-YP-12, muscle  | 7/16/2008         | 15-Oct                           | 1.228                   | 96%                      | Below detection                  | <82.1                                | Non-detect                         | <0.8                                 |
| 08-925        | COP-2-YP-13, muscle  | 7/16/2008         | 15-Oct                           | 1.298                   | 77%                      | Below detection                  | <82.3                                | Non-detect                         | <1.0                                 |
| 08-926        | COP-2-YP-14, muscle  | 7/16/2008         | 15-Oct                           | 1.454                   | 68%                      | Below detection                  | <82.7                                | Non-detect                         | <1.2                                 |
| 08-927        | COP-2-YP-15, muscle  | 7/16/2008         | 15-Oct                           | 1.092                   | 73%                      | Below detection                  | <82.3                                | Non-detect                         | <1.1                                 |
| 08-928        | COP-2-YP-16, muscle  | 7/16/2008         | 15-Oct                           | 1.169                   | 67%                      | Below detection                  | <82.2                                | Non-detect                         | <1.2                                 |
| 08-929        | COP-2-YP-17, muscle  | 7/16/2008         | 15-Oct                           | 1.778                   | 64%                      | Below detection                  | <82.8                                | Non-detect                         | <1.2                                 |
| 08-930        | COP-2-YP-18, muscle  | 7/16/2008         | 15-Oct                           | 1.330                   | 60%                      | Below detection                  | <82.9                                | Non-detect                         | <1.3                                 |



| ESF<br>number | Sample ID            | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (μg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Sample Detection<br>Limit (µg/kg dw) |
|---------------|----------------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 08-931        | COP-2-YP-19, muscle  | 7/16/2008         | 15-Oct                           | 1.163                   | 73%                      | Below detection                  | <82.4                                | Non-detect                         | <1.5                                 |
| 08-932        | COP-2-YP-20, muscle  | 7/16/2008         | 15-Oct                           | 1.822                   | 74%                      | Below detection                  | <82.4                                | Non-detect                         | <1.4                                 |
| 08-933        | COP-2-YP-20b, muscle | 7/16/2008         | 15-Oct                           | 1.102                   | 80%                      | Below detection                  | <82.1                                | Non-detect                         | <1.3                                 |
| 08-934        | COP-2-CR-01, muscle  | 7/16/2008         | 15-Oct                           | 1.910                   | 57%                      | Below detection                  | <82.6                                | Non-detect                         | <1.7                                 |
| 08-935        | COP-2-CR-02, muscle  | 7/16/2008         | 15-Oct                           | 1.183                   | 67%                      | Below detection                  | <82.1                                | Non-detect                         | <1.5                                 |
| 08-936        | COP-2-CR-03, muscle  | 7/16/2008         | 15-Oct                           | 1.209                   | 74%                      | Below detection                  | <82.4                                | Non-detect                         | <1.3                                 |
| 08-937        | UKRC-2-RT-01, muscle | 7/16/2008         | 15-Oct                           | 2.408                   | 62%                      | Below detection                  | <82.4                                | Non-detect                         | <1.7                                 |
| 08-938        | UKRC-2-RT-02, muscle | 7/16/2008         | 15-Oct                           | 2.670                   | 67%                      | Below detection                  | <82.5                                | Non-detect                         | <1.6                                 |
| 08-939        | UKRC-2-RT-03, muscle | 7/16/2008         | 15-Oct                           | 1.101                   | 67%                      | Below detection                  | <82.1                                | Non-detect                         | <1.6                                 |
| 08-940        | UKRC-2-RT-04, muscle | 7/16/2008         | 15-Oct                           | 1.677                   | 62%                      | Below detection                  | <82.2                                | Non-detect                         | <1.6                                 |
| 08-941        | UKRC-2-RT-05, muscle | 7/16/2008         | 15-Oct                           | 1.645                   | 54%                      | Below detection                  | <82.4                                | Non-detect                         | <1.8                                 |
| 08-942        | UKRC-2-RT-06, muscle | 7/16/2008         | 20-Oct                           | 1.436                   | 68%                      | Below detection                  | <82.8                                | Non-detect                         | <1.4                                 |
| 08-943        | UKRC-2-RT-07, muscle | 7/16/2008         | 20-Oct                           | 1.585                   | 67%                      | Below detection                  | <82.3                                | Non-detect                         | <1.4                                 |
| 08-944        | UKRC-2-RT-08, muscle | 7/16/2008         | 20-Oct                           | 1.617                   | 79%                      | Below detection                  | <82.4                                | Non-detect                         | <1.2                                 |
| 08-945        | UKRC-2-RT-09, muscle | 7/16/2008         | 20-Oct                           | 1.426                   | 63%                      | Below detection                  | <82.3                                | Non-detect                         | <1.5                                 |
| 08-946        | UKRC-2-RT-9b, muscle | 7/16/2008         | 20-Oct                           | 1.302                   | 77%                      | Below detection                  | <82.1                                | Non-detect                         | <1.2                                 |
|               |                      |                   |                                  |                         |                          |                                  |                                      |                                    |                                      |



### Klamath Fish Muscle Tissues : free microcystins

### <u>December 28<sup>th</sup> 2008</u>

| ESF<br>number | Sample ID   | Date collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Sample Detection<br>Limit (µg/kg dw) |
|---------------|-------------|----------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 08-1141 Li    | KR-3-RT-01  | 9/9/2008       | 1-Dec                            | 1.647                   | 72%                      | Below detection                  | <85.4                                | Non-detect                         | <4.6                                 |
| 08-1142 Li    | KR-3-RT-02  | 9/9/2008       | 1-Dec                            | 1.360                   | 74%                      | Below detection                  | <85.9                                | Non-detect                         | <4.2                                 |
| 08-1143 Li    | KR-3-RT-03  | 9/9/2008       | 1-Dec                            | 0.781                   | 68%                      | Below detection                  | <85.5                                | Non-detect                         | <4.7                                 |
| 08-1144 Li    | KR-3-RT-04  | 9/9/2008       | 1-Dec                            | 0.662                   | 136%                     | Below detection                  | <85.2                                | Non-detect                         | <2.0                                 |
| 08-1145 Lł    | KR-3-RT-05  | 9/9/2008       | 1-Dec                            | 1.067                   | 73%                      | Below detection                  | <85.2                                | Non-detect                         | <3.8                                 |
| 08-1146 Li    | KR-3-RT-06  | 9/9/2008       | 1-Dec                            | 0.815                   | 70%                      | Below detection                  | <85.7                                | Non-detect                         | <3.9                                 |
| 08-1147 Lł    | KR-3-RT-07  | 9/9/2008       | 1-Dec                            | 1.476                   | 75%                      | Below detection                  | <85.1                                | Non-detect                         | <3.7                                 |
| 08-1148 LH    | KR-3-RT-08  | 9/9/2008       | 1-Dec                            | 0.515                   | 70%                      | Below detection                  | <85.4                                | Non-detect                         | <4.3                                 |
| 08-1149 Li    | KR-3-RT-09  | 9/9/2008       | 1-Dec                            | 0.208                   | 77%                      | Below detection                  | <85.6                                | Non-detect                         | <3.8                                 |
| 08-1150 Ll    | KR-3-RT-10  | 9/9/2008       | 1-Dec                            | 1.142                   | 71%                      | Below detection                  | <85.3                                | Non-detect                         | <4.0                                 |
| 08-1151 Li    | KR-3-RT-11  | 9/9/2008       | 1-Dec                            | 0.632                   | 74%                      | Below detection                  | <85.2                                | Non-detect                         | <3.7                                 |
| 08-1152 Li    | KR-3-RT-11a | 9/9/2008       | 1-Dec                            | 1.189                   | 83%                      | Below detection                  | <85.1                                | Non-detect                         | <3.3                                 |
| 08-1153 U     | KRC-3-RT-01 | 9/10/2008      | 1-Dec                            | 1.453                   | 76%                      | Below detection                  | <85.2                                | Non-detect                         | <3.7                                 |
| 08-1154 U     | KRC-3-RT-02 | 9/10/2008      | 1-Dec                            | 0.908                   | 76%                      | Below detection                  | <85.4                                | Non-detect                         | <4.1                                 |
| 08-1155 U     | KRC-3-RT-03 | 9/10/2008      | 1-Dec                            | 1.228                   | 74%                      | Below detection                  | <85.6                                | Non-detect                         | <4.3                                 |
| 08-1156 U     | KRC-3-RT-04 | 9/10/2008      | 1-Dec                            | 1.433                   | 76%                      | Below detection                  | <85.8                                | Non-detect                         | <3.9                                 |
| 08-1157 U     | KRC-3-RT-05 | 9/10/2008      | 1-Dec                            | 0.877                   | 77%                      | Below detection                  | <85.2                                | Non-detect                         | <4.1                                 |
| 08-1158 U     | KRC-3-RT-06 | 9/10/2008      | 1-Dec                            | 0.582                   | 74%                      | Below detection                  | <85.6                                | Non-detect                         | <4.2                                 |
| 08-1159 U     | KRC-3-RT-07 | 9/10/2008      | 1-Dec                            | 1.132                   | 74%                      | Below detection                  | <85.1                                | Non-detect                         | <3.9                                 |
| 08-1160 U     | KRC-3-RT-08 | 9/10/2008      | 1-Dec                            | 1.109                   | 77%                      | Below detection                  | <85.3                                | Non-detect                         | <4.0                                 |
| 08-1161 U     | KRC-3-RT-09 | 9/10/2008      | 1-Dec                            | 1.236                   | 60%                      | Below detection                  | <85.3                                | Non-detect                         | <5.2                                 |
| 08-1162 U     | KRC-3-RT-9a | 9/10/2008      | 1-Dec                            | 1.129                   | 100%                     | Below detection                  | <85.7                                | Non-detect                         | <1.3                                 |
| 08-1163 IG    | GR-3-YP-01  | 9/9/2008       | 1-Dec                            | 0.608                   | 75%                      | Below detection                  | <85.1                                | Non-detect                         | <3.6                                 |
| 08-1164 IG    | GR-3-YP-02  | 9/9/2008       | 1-Dec                            | 0.740                   | 72%                      | Below detection                  | <85.3                                | Non-detect                         | <4.6                                 |
| 08-1165 IG    | GR-3-YP-03  | 9/9/2008       | 19-Dec                           | 0.484                   | 49%                      | Below detection                  | <72.4                                | Non-detect                         | <1.4                                 |



| ESF<br>number | Sample ID     | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Sample Detection<br>Limit (µg/kg dw)) |
|---------------|---------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|---------------------------------------|
| 08-1166       | 6 IGR-3-YP-04 | 9/9/2008          | 1-Dec                            | 0.957                   | 70%                      | Below detection                  | <85.2                                | Non-detect                         | <4.1                                  |
| 08-1167       | ' IGR-3-YP-05 | 9/9/2008          | 1-Dec                            | 0.555                   | 55%                      | Below detection                  | <85.1                                | Non-detect                         | <5.8                                  |
| 08-1168       | 3 IGR-3-YP-06 | 9/9/2008          | 1-Dec                            | 0.587                   | 159%                     | Below detection                  | <85.1                                | Non-detect                         | <1.8                                  |
| 08-1169       | IGR-3-YP-07   | 9/9/2008          | 1-Dec                            | 0.917                   | 74%                      | Below detection                  | <85.7                                | Non-detect                         | <4.4                                  |
| 08-1170       | IGR-3-YP-08   | 9/9/2008          | 1-Dec                            | 1.335                   | 75%                      | Below detection                  | <85.7                                | Non-detect                         | <4.4                                  |
| 08-1171       | IGR-3-YP-09   | 9/9/2008          | 1-Dec                            | 0.786                   | 95%                      | Below detection                  | <85.6                                | Non-detect                         | <3.0                                  |
| 08-1172       | 2 IGR-3-YP-10 | 9/9/2008          | 1-Dec                            | 1.168                   | 95%                      | Below detection                  | <85.2                                | Non-detect                         | <3.4                                  |
| 08-1173       | 3 IGR-3-YP-11 | 9/9/2008          | 1-Dec                            | 1.048                   | 97%                      | Below detection                  | <85.3                                | Non-detect                         | <3.2                                  |
| 08-1174       | IGR-3-YP-12   | 9/9/2008          | 1-Dec                            | 1.134                   | 76%                      | Below detection                  | <85.4                                | Non-detect                         | <3.8                                  |
| 08-1175       | i IGR-3-YP-13 | 9/9/2008          | 1-Dec                            | 0.854                   | 109%                     | Below detection                  | <85.8                                | Non-detect                         | <2.8                                  |
| 08-1176       | 6 IGR-3-YP-14 | 9/9/2008          | 1-Dec                            | 0.802                   | 103%                     | Below detection                  | <85.4                                | Non-detect                         | <3.1                                  |
| 08-1177       | ' IGR-3-YP-15 | 9/9/2008          | 1-Dec                            | 1.070                   | 117%                     | Below detection                  | <85.6                                | Non-detect                         | <2.7                                  |
| 08-1178       | 3 IGR-3-YP-16 | 9/9/2008          | 1-Dec                            | 1.026                   | 86%                      | Below detection                  | <85.2                                | Non-detect                         | <3.6                                  |
| 08-1179       | IGR-3-YP-17   | 9/9/2008          | 1-Dec                            | 1.076                   | 101%                     | Below detection                  | <85.9                                | Non-detect                         | <3.0                                  |
| 08-1180       | IGR-3-YP-18   | 9/9/2008          | 1-Dec                            | 1.087                   | 81%                      | Below detection                  | <85.2                                | Non-detect                         | <3.9                                  |
| 08-1181       | IGR-3-YP-19   | 9/9/2008          | 5-Dec                            | 1.140                   | 82%                      | Below detection                  | <124.9                               | Non-detect                         | <1.0                                  |
| 08-1182       | 2 IGR-3-YP-20 | 9/9/2008          | 5-Dec                            | 1.051                   | 83%                      | Below detection                  | <124.1                               | Non-detect                         | <1.0                                  |
| 08-1183       | IGR-3-YP-20a  | 9/9/2008          | 5-Dec                            | 1.153                   | 86%                      | Below detection                  | <123.8                               | Non-detect                         | <1.0                                  |
| 08-1184       | IGR-3-CR-01   | 9/9/2008          | 5-Dec                            | 0.780                   | 83%                      | Below detection                  | <124.3                               | Non-detect                         | <1.1                                  |
| 08-1185       | i IGR-3-CR-02 | 9/9/2008          | 19-Dec                           | 0.883                   | 39%                      | Below detection                  | <72.8                                | Non-detect                         | <2.6                                  |
| 08-1186       | GR-3-CR-03    | 9/9/2008          | 5-Dec                            | 0.940                   | 76%                      | Below detection                  | <124.9                               | Non-detect                         | <1.3                                  |
| 08-1187       | ' IGR-3-CR-04 | 9/9/2008          | 5-Dec                            | 2.001                   | 79%                      | Below detection                  | <123.7                               | Non-detect                         | <1.3                                  |
| 08-1188       | IGR-3-CR-05   | 9/9/2008          | 5-Dec                            | 1.130                   | 79%                      | Below detection                  | <124.2                               | Non-detect                         | <1.3                                  |
| 08-1189       | IGR-3-CR-06   | 9/9/2008          | 5-Dec                            | 0.789                   | 73%                      | Below detection                  | <124.1                               | Non-detect                         | <1.3                                  |
| 08-1190       | ) IGR-3-CR-07 | 9/9/2008          | 5-Dec                            | 1.414                   | 68%                      | Below detection                  | <124.6                               | Non-detect                         | <1.4                                  |



| ESF<br>number | Sample ID    | Date collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | SIM for MCs- RR,<br>LR and LA only | Sample Detection<br>Limit (µg/kg dw) |
|---------------|--------------|----------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| 08-1191       | IGR-3-CR-08  | 9/9/2008       | 5-Dec                            | 1.127                   | 68%                      | Below detection                  | <124.4                               | Non-detect                         | <1.4                                 |
| 08-1192       | IGR-3-CR-09  | 9/9/2008       | 5-Dec                            | 0.988                   | 70%                      | Below detection                  | <124.6                               | Non-detect                         | <1.4                                 |
| 08-1193       | IGR-3-CR-10  | 9/9/2008       | 5-Dec                            | 0.764                   | 74%                      | Below detection                  | <124.2                               | Non-detect                         | <1.3                                 |
| 08-1194       | IGR-3-CR-10a | 9/9/2008       | 5-Dec                            | 0.599                   | 63%                      | Below detection                  | <124.9                               | Non-detect                         | <1.5                                 |
| 08-1195       | COP-3-YP-01  | 9/9/2008       | 5-Dec                            | 0.589                   | 80%                      | Below detection                  | <124.7                               | Non-detect                         | <1.3                                 |
| 08-1196       | COP-3-YP-02  | 9/9/2008       | 5-Dec                            | 1.075                   | 81%                      | Below detection                  | <123.8                               | Non-detect                         | <1.3                                 |
| 08-1197       | COP-3-YP-03  | 9/9/2008       | 5-Dec                            | 1.236                   | 12%                      | Below detection                  | <124.3                               | Non-detect                         | <8.0                                 |
| 08-1198       | COP-3-YP-04  | 9/9/2008       | 5-Dec                            | 0.606                   | 80%                      | Below detection                  | <123.7                               | Non-detect                         | <1.2                                 |
| 08-1199       | COP-3-YP-05  | 9/9/2008       | 5-Dec                            | 1.512                   | 72%                      | Below detection                  | <124.7                               | Non-detect                         | <1.0                                 |
| 08-1200       | COP-3-YP-06  | 9/9/2008       | 5-Dec                            | 1.066                   | 86%                      | Below detection                  | <124.3                               | Non-detect                         | <1.1                                 |
| 08-1201       | COP-3-YP-07  | 9/9/2008       | 5-Dec                            | 0.845                   | 81%                      | Below detection                  | <124.2                               | Non-detect                         | <1.1                                 |
| 08-1202       | COP-3-YP-08  | 9/9/2008       | 5-Dec                            | 1.979                   | 75%                      | Below detection                  | <124.4                               | Non-detect                         | <1.0                                 |
| 08-1203       | COP-3-YP-09  | 9/9/2008       | 5-Dec                            | 0.731                   | 81%                      | Below detection                  | <123.7                               | Non-detect                         | <1.0                                 |
| 08-1204       | COP-3-YP-10  | 9/9/2008       | 5-Dec                            | 1.910                   | 69%                      | Below detection                  | <123.7                               | Non-detect                         | <1.3                                 |
| 08-1205       | COP-3-YP-11  | 9/9/2008       | 5-Dec                            | 1.289                   | 71%                      | Below detection                  | <123.7                               | Non-detect                         | <1.3                                 |
| 08-1206       | COP-3-YP-12  | 9/9/2008       | 5-Dec                            | 1.861                   | 76%                      | Below detection                  | <124.2                               | Non-detect                         | <1.3                                 |
| 08-1207       | COP-3-YP-13  | 9/9/2008       | 5-Dec                            | 0.684                   | 77%                      | Below detection                  | <124.9                               | Non-detect                         | <1.2                                 |
| 08-1208       | COP-3-YP-14  | 9/9/2008       | 5-Dec                            | 1.178                   | 74%                      | Below detection                  | <123.8                               | Non-detect                         | <1.2                                 |
| 08-1209       | COP-3-YP-15  | 9/9/2008       | 5-Dec                            | 1.325                   | 137%                     | Below detection                  | <124.4                               | Non-detect                         | <0.6                                 |
| 08-1210       | COP-3-YP-16  | 9/9/2008       | 5-Dec                            | 1.096                   | 79%                      | Below detection                  | <124.6                               | Non-detect                         | <1.1                                 |
| 08-1211       | COP-3-YP-17  | 9/9/2008       | 5-Dec                            | 1.595                   | 71%                      | Below detection                  | <124.1                               | Non-detect                         | <1.3                                 |
| 08-1212       | COP-3-YP-18  | 9/9/2008       | 5-Dec                            | 1.017                   | 70%                      | Below detection                  | <124.7                               | Non-detect                         | <1.1                                 |
| 08-1213       | COP-3-YP-19  | 9/9/2008       | 5-Dec                            | 0.815                   |                          | Below detection                  | <123.8                               | Non-detect                         | <1.1                                 |
| 08-1214       | COP-3-YP-20  | 9/9/2008       | 5-Dec                            | 1.258                   | 80%                      | Below detection                  | <123.7                               | Non-detect                         | <1.1                                 |
| 08-1215       | COP-3-YP-20a | 9/9/2008       | 5-Dec                            | 1.299                   | 61%                      | Below detection                  | <124.8                               | Non-detect                         | <1.3                                 |
| 08-1216       | COP-3-CR-01  | 9/10/2008      | 5-Dec                            | 0.452                   | 47%                      | Below detection                  | <124.6                               | Non-detect                         | <1.9                                 |
| 08-1217       | COP-3-CR-02  | 9/10/2008      | 19-Dec                           | 1.197                   | 35%                      | Below detection                  | <72.8                                | Non-detect                         | <2.8                                 |



Klamath Fish Muscle Tissues : free microcystins

| Sei | ptember | 28. | 2009 |
|-----|---------|-----|------|
| ~ - |         |     |      |

| FSF     |              | Data       | Data 1 <sup>st</sup> | Extracted  | Decovery of  | TOTAL Erec         | Mothod Dotostion | SIM for MCa DD  | Sample Detection |
|---------|--------------|------------|----------------------|------------|--------------|--------------------|------------------|-----------------|------------------|
| number  | Sample ID    | collected  | Analyzed             | Weight (g) | internal std | Microcystin levels | Limit (µg/kg dw) | LR and LA only  | Limit (µg/kg dw) |
| 08-1496 | COP-4-YP-01  | 11/13/2008 | 6/15/09              | 0.101      | 120%         | Below detection    | 122              | Below detection | 14.19            |
| 08-1497 | COP-4-YP-02  | 11/13/2008 | 6/15/09              | 0.101      | 84%          | Below detection    | 175              | Below detection | 11.41            |
| 08-1498 | COP-4-YP-03  | 11/13/2008 | 6/15/09              | 0.101      | 85%          | Below detection    | 172              | Below detection | 11.32            |
| 08-1499 | COP-4-YP-04  | 11/13/2008 | 6/15/09              | 0.101      | 84%          | Below detection    | 174              | Below detection | 10.57            |
| 08-1500 | COP-4-YP-05  | 11/13/2008 | 6/15/09              | 0.101      | 76%          | Below detection    | 193              | Below detection | 10.32            |
| 08-1501 | COP-4-YP-06  | 11/13/2008 | 6/15/09              | 0.099      | 66%          | Below detection    | 225              | Below detection | 12.53            |
| 08-1502 | COP-4-YP-07  | 11/13/2008 | 6/15/09              | 0.100      | 78%          | Below detection    | 190              | Below detection | 11.04            |
| 08-1503 | COP-4-YP-08  | 11/13/2008 | 6/15/09              | 0.101      | 82%          | Below detection    | 177              | Below detection | 10.07            |
| 08-1504 | COP-4-YP-09  | 11/13/2008 | 6/15/09              | 0.100      | 87%          | Below detection    | 172              | Below detection | 11.37            |
| 08-1505 | COP-4-YP-10  | 11/13/2008 | 6/15/09              | 0.100      | 89%          | Below detection    | 167              | Below detection | 10.39            |
| 08-1506 | COP-4-YP-11  | 11/13/2008 | 6/15/09              | 0.099      | 82%          | Below detection    | 182              | Below detection | 11.00            |
| 08-1507 | COP-4-YP-12  | 11/13/2008 | 6/15/09              | 0.101      | 131%         | Below detection    | 112              | Below detection | 9.11             |
| 08-1508 | COP-4-YP-13  | 11/13/2008 | 6/15/09              | 0.098      | 75%          | Below detection    | 199              | Below detection | 12.20            |
| 08-1509 | COP-4-YP-14  | 11/13/2008 | 6/15/09              | 0.100      | 79%          | Below detection    | 188              | Below detection | 11.08            |
| 08-1510 | COP-4-YP-15  | 11/13/2008 | 6/15/09              | 0.101      | 78%          | Below detection    | 187              | Below detection | 12.14            |
| 08-1511 | COP-4-YP-16  | 11/13/2008 | 6/15/09              | 0.099      | 78%          | Below detection    | 192              | Below detection | 13.11            |
| 08-1512 | COP-4-YP-17  | 11/13/2008 | 6/15/09              | 0.101      | 82%          | Below detection    | 178              | Below detection | 9.42             |
| 08-1513 | COP-4-YP-18  | 11/13/2008 | 6/15/09              | 0.099      | 68%          | Below detection    | 218              | Below detection | 11.56            |
| 08-1514 | COP-4-YP-19  | 11/13/2008 | 6/15/09              | 0.101      | 74%          | Below detection    | 198              | Below detection | 9.36             |
| 08-1515 | COP-4-YP-20  | 11/13/2008 | 6/15/09              | 0.098      | 77%          | Below detection    | 197              | Below detection | 10.77            |
| 08-1516 | COP-4-YP-20a | 11/13/2008 | 6/15/09              | 0.100      | 79%          | Below detection    | 188              | Below detection | 9.49             |
| 08-1517 | IGR-4-YP-01  | 11/13/2008 | 6/15/09              | 0.099      | 72%          | Below detection    | 207              | Below detection | 11.95            |
| 08-1518 | IGR-4-YP-02  | 11/13/2008 | 6/15/09              | 0.100      | 67%          | Below detection    | 220              | Below detection | 12.40            |
| 08-1519 | IGR-4-YP-03  | 11/13/2008 | 6/15/09              | 0.102      | 83%          | Below detection    | 177              | Below detection | 11.09            |
| 08-1520 | IGR-4-YP-04  | 11/13/2008 | 6/15/09              | 0.100      | 68%          | Below detection    | 217              | Below detection | 12.24            |
|         |              |            |                      |            |              |                    |                  |                 |                  |



|               |              |                   |                                  | Extracted         |                             |                                  |                                      |                                    |                  |
|---------------|--------------|-------------------|----------------------------------|-------------------|-----------------------------|----------------------------------|--------------------------------------|------------------------------------|------------------|
| ESF<br>number | Sample ID    | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Dry<br>Weight (g) | Recovery of<br>internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (ug/kg dw) | SIM for MCs- RR,<br>LR and LA only | Sample Detection |
| 08-1521       | IGR-4-YP-05  | 11/13/2008        | 6/15/09                          | 0.099             | 71%                         | Below detection                  | 211                                  | Below detection                    | 12.04            |
| 08-1522       | IGR-4-YP-06  | 11/13/2008        | 6/15/09                          | 0.102             | 71%                         | Below detection                  | 206                                  | Below detection                    | 11.66            |
| 08-1523       | IGR-4-YP-07  | 11/13/2008        | 6/15/09                          | 0.100             | 74%                         | Below detection                  | 199                                  | Below detection                    | 11.47            |
| 08-1524       | IGR-4-YP-08  | 11/13/2008        | 6/15/09                          | 0.101             | 92%                         | Below detection                  | 159                                  | Below detection                    | 10.20            |
| 08-1525       | IGR-4-YP-09  | 11/13/2008        | 6/15/09                          | 0.100             | 77%                         | Below detection                  | 192                                  | Below detection                    | 9.93             |
| 08-1526       | IGR-4-YP-10  | 11/13/2008        | 6/15/09                          | 0.100             | 77%                         | Below detection                  | 194                                  | Below detection                    | 9.72             |
| 08-1527       | IGR-4-YP-11  | 11/13/2008        | 6/15/09                          | 0.101             | 68%                         | Below detection                  | 217                                  | Below detection                    | 11.80            |
| 08-1528       | IGR-4-YP-12  | 11/13/2008        | 6/15/09                          | 0.101             | 80%                         | Below detection                  | 183                                  | Below detection                    | 10.12            |
| 08-1529       | IGR-4-YP-13  | 11/13/2008        | 6/15/09                          | 0.100             | 85%                         | Below detection                  | 174                                  | Below detection                    | 9.83             |
| 08-1530       | IGR-4-YP-14  | 11/13/2008        | 6/15/09                          | 0.101             | 78%                         | Below detection                  | 189                                  | Below detection                    | 11.60            |
| 08-1531       | IGR-4-YP-15  | 11/13/2008        | 6/15/09                          | 0.102             | 79%                         | Below detection                  | 184                                  | Below detection                    | 10.57            |
| 08-1532       | IGR-4-YP-16  | 11/13/2008        | 6/15/09                          | 0.101             | 89%                         | Below detection                  | 165                                  | Below detection                    | 10.40            |
| 08-1533       | IGR-4-YP-17  | 11/13/2008        | 6/15/09                          | 0.101             | 69%                         | Below detection                  | 214                                  | Below detection                    | 12.03            |
| 08-1534       | IGR-4-YP-18  | 11/13/2008        | 6/15/09                          | 0.102             | 70%                         | Below detection                  | 207                                  | Below detection                    | 11.45            |
| 08-1535       | IGR-4-YP-19  | 11/13/2008        | 6/15/09                          | 0.100             | 76%                         | Below detection                  | 195                                  | Below detection                    | 10.70            |
| 08-1536       | IGR-4-YP-20  | 11/13/2008        | 6/15/09                          | 0.099             | 76%                         | Below detection                  | 196                                  | Below detection                    | 13.29            |
| 08-1537       | IGR-4-YP-20a | 11/13/2008        | 6/15/09                          | 0.100             | 77%                         | Below detection                  | 192                                  | Below detection                    | 11.33            |
| 08-1538       | IGR-4-CR-01  | 11/13/2008        | 6/15/09                          | 0.099             | 71%                         | Below detection                  | 211                                  | Below detection                    | 17.01            |
| 08-1539       | IGR-4-CR-02  | 11/13/2008        | 6/15/09                          | 0.100             | 90%                         | Below detection                  | 165                                  | Below detection                    | 14.61            |
| 08-1540       | IGR-4-CR-03  | 11/13/2008        | 6/15/09                          | 0.100             | 22%                         | Below detection                  | 689                                  | Below detection                    | 50.79            |
| 08-1541       | IGR-4-CR-04  | 11/13/2008        | 6/15/09                          | 0.100             | 72%                         | Below detection                  | 205                                  | Below detection                    | 15.09            |
| 08-1542       | IGR-4-CR-05  | 11/13/2008        | 6/15/09                          | 0.101             | 83%                         | Below detection                  | 178                                  | Below detection                    | 16.89            |
| 08-1543       | IGR-4-CR-06  | 11/13/2008        | 6/15/09                          | 0.102             | 69%                         | Below detection                  | 211                                  | Below detection                    | 16.14            |
| 08-1544       | LKR-4-RT-01  | 11/12/2008        | 6/15/09                          | 0.100             | 72%                         | Below detection                  | 208                                  | Below detection                    | 12.20            |
| 08-1545       | LKR-4-RT-02  | 11/12/2008        | 6/15/09                          | 0.100             | 82%                         | Below detection                  | 181                                  | Below detection                    | 12.00            |



|               |               |                   |                                  | Extracted         |                             |                                  |                                      |                                    |                  |
|---------------|---------------|-------------------|----------------------------------|-------------------|-----------------------------|----------------------------------|--------------------------------------|------------------------------------|------------------|
| ESF<br>number | Sample ID     | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Dry<br>Weight (g) | Recovery of<br>internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (ug/kg dw) | SIM for MCs- RR,<br>LR and LA only | Sample Detection |
| 08-1546       | LKR-4-RT-03   | 11/12/2008        | 6/15/09                          | 0.100             | 69%                         | Below detection                  | 213                                  | Below detection                    | 13.64            |
| 08-1547       | LKR-4-RT-04   | 11/12/2008        | 6/15/09                          | 0.100             | 77%                         | Below detection                  | 192                                  | Below detection                    | 12.33            |
| 08-1548       | LKR-4-RT-05   | 11/12/2008        | 6/15/09                          | 0.101             | 65%                         | Below detection                  | 227                                  | Below detection                    | 11.89            |
| 08-1549       | LKR-4-RT-06   | 11/12/2008        | 6/15/09                          | 0.100             | 66%                         | Below detection                  | 223                                  | Below detection                    | 12.99            |
| 08-1550       | LKR-4-RT-07   | 11/12/2008        | 6/15/09                          | 0.100             | 66%                         | Below detection                  | 224                                  | Below detection                    | 115.49           |
| 08-1551       | LKR-4-RT-08   | 11/12/2008        | 6/15/09                          | 0.100             | 65%                         | Below detection                  | 230                                  | Below detection                    | 13.93            |
| 08-1552       | LKR-4-RT-09   | 11/12/2008        | 6/15/09                          | 0.099             | 65%                         | Below detection                  | 229                                  | Below detection                    | 116.45           |
| 08-1553       | LKR-4-RT-09a  | 11/12/2008        | 6/15/09                          | 0.100             | 60%                         | Below detection                  | 246                                  | Below detection                    | 116.16           |
| 08-1554       | UKRC-4-RT-01  | 11/14/2008        | 6/15/09                          | 0.099             | 72%                         | Below detection                  | 208                                  | Below detection                    | 14.48            |
| 08-1555       | UKRC-4-RT-02  | 11/14/2008        | 6/15/09                          | 0.100             | 67%                         | Below detection                  | 221                                  | Below detection                    | 14.29            |
| 08-1556       | UKRC-4-RT-03  | 11/14/2008        | 6/15/09                          | 0.100             | 64%                         | Below detection                  | 233                                  | Below detection                    | 14.32            |
| 08-1557       | UKRC-4-RT-04  | 11/14/2008        | 6/15/09                          | 0.102             | 68%                         | Below detection                  | 214                                  | Below detection                    | 14.24            |
| 08-1558       | UKRC-4-RT-05  | 11/14/2008        | 6/15/09                          | 0.100             | 60%                         | Below detection                  | 248                                  | Below detection                    | 98.47            |
| 08-1559       | UKRC-4-RT-06  | 11/14/2008        | 6/15/09                          | 0.099             | 71%                         | Below detection                  | 210                                  | Below detection                    | 115.29           |
| 08-1560       | UKRC-4-RT-07  | 11/14/2008        | 6/15/09                          | 0.100             | 69%                         | Below detection                  | 214                                  | Below detection                    | 13.59            |
| 08-1561       | UKRC-4-RT-08  | 11/14/2008        | 6/15/09                          | 0.099             | 60%                         | Below detection                  | 248                                  | Below detection                    | 117.46           |
| 08-1562       | UKRC-4-RT-09  | 11/14/2008        | 6/15/09                          | 0.099             | 44%                         | Below detection                  | 341                                  | Below detection                    | 21.58            |
| 08-1563       | UKRC-4-RT-10  | 11/14/2008        | 6/15/09                          | 0.100             | 68%                         | Below detection                  | 218                                  | Below detection                    | 13.57            |
| 08-1564       | UKRC-4-RT-10a | 11/14/2008        | 6/15/09                          | 0.099             | 65%                         | Below detection                  | 231                                  | Below detection                    | 115.70           |
| 08-1565       | PR1-04-WR-01  | 11/11/2008        | 8/13/09                          | 0.101             | 88%                         | Below detection                  | 173                                  | Below detection                    | 7.58             |
| 08-1566       | PR1-04-WR-02  | 11/11/2008        | 8/13/09                          | 0.099             | 95%                         | Below detection                  | 163                                  | Below detection                    | 7.26             |
| 08-1567       | FFR1-04-OF-01 | 11/11/2008        | 8/13/09                          | 0.101             | 75%                         | Below detection                  | 203                                  | Below detection                    | 8.08             |
| 08-1568       | FFR1-04-OF-02 | 11/11/2008        | 8/13/09                          | 0.099             | 74%                         | Below detection                  | 210                                  | Below detection                    | 8.81             |
| 08-1569       | FFR1-04-OF-03 | 11/11/2008        | 8/13/09                          | 0.099             | 94%                         | Below detection                  | 165                                  | Below detection                    | 7.22             |
| 08-1570       | FFR2-04-WR-01 | 11/11/2008        | 8/13/09                          | 0.100             | 83%                         | Below detection                  | 184                                  | Below detection                    | 7.74             |



|             |            |            |                      | Extracted  |              |                    |                  |                  |                  |
|-------------|------------|------------|----------------------|------------|--------------|--------------------|------------------|------------------|------------------|
| ESF         |            | Date       | Date 1 <sup>st</sup> | Dry        | Recovery of  | <b>TOTAL Free</b>  | Method Detection | SIM for MCs- RR, | Sample Detection |
| number      | Sample ID  | collected  | Analyzed             | Weight (g) | internal std | Microcystin levels | Limit (µg/kg dw) | LR and LA only   | Limit (µg/kg dw) |
| 08-1571 FFR | 2-04-OF-01 | 11/11/2008 | 8/13/09              | 0.101      | 78%          | Below detection    | 196              | Below detection  | 5.75             |
| 08-1572 FFR | 2-04-OF-02 | 11/11/2008 | 8/13/09              | 0.100      | 78%          | Below detection    | 197              | Below detection  | 5.88             |
| 08-1573 FFR | 3-04-WR-01 | 11/11/2008 | 8/13/09              | 0.100      | 83%          | Below detection    | 185              | Below detection  | 5.26             |
| 08-1574 FFR | 3-04-WR-02 | 11/11/2008 | 8/13/09              | 0.101      | 82%          | Below detection    | 185              | Below detection  | 5.39             |
| 08-1575 FFR | 3-04-WR-03 | 11/11/2008 | 8/13/09              | 0.100      | 79%          | Below detection    | 194              | Below detection  | 6.14             |
| 08-1576 FFR | 4-04-WR-01 | 11/11/2008 | 8/13/09              | 0.101      | 83%          | Below detection    | 184              | Below detection  | 5.60             |
| 08-1577 FFR | 4-04-WR-02 | 11/11/2008 | 8/13/09              | 0.100      | 75%          | Below detection    | 203              | Below detection  | 5.98             |
| 08-1578 FFR | 4-04-WR-03 | 11/11/2008 | 8/13/09              | 0.100      | 75%          | Below detection    | 206              | Below detection  | 6.07             |
|             |            |            |                      |            |              |                    |                  |                  |                  |



#### Klamath Fish Muscle Tissues : DeMethyl LR Group 1

| Klamath Fish Muscle Tissues : DeMethyl LR Group 1 |               |                   |                                  |                         |                          |                                  |                                      | Marcl                    | <u>h 17, 2009</u>        |
|---------------------------------------------------|---------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| ESF<br>number                                     | Sample ID     | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
| 08-720                                            | IGR-01-YP-01  | 5/29/2008         | 5-Sep                            | 0.356                   | 74%                      | Below detection                  | <60.3                                | Non-detect               | Non-detect               |
| 08-721                                            | IGR-01-YP-02  | 5/29/2008         | 5-Sep                            | 0.563                   | 78%                      | Below detection                  | <60.5                                | Non-detect               | Non-detect               |
| 08-722                                            | IGR-01-YP-03  | 5/29/2008         | 5-Sep                            | 0.567                   | 66%                      | Below detection                  | <62.2                                | Non-detect               | Non-detect               |
| 08-723                                            | IGR-01-YP-04  | 5/29/2008         | 5-Sep                            | 0.515                   | 77%                      | Below detection                  | <61.8                                | Non-detect               | Non-detect               |
| 08-724                                            | IGR-01-YP-05  | 5/29/2008         | 5-Sep                            | 0.748                   | 78%                      | Below detection                  | <60.6                                | Non-detect               | Non-detect               |
| 08-725                                            | IGR-01-YP-06  | 5/29/2008         | 5-Sep                            | 1.056                   | 51%                      | Below detection                  | <61.1                                | Non-detect               | Non-detect               |
| 08-726                                            | IGR-01-YP-07  | 5/29/2008         | 5-Sep                            | 1.099                   | 78%                      | Below detection                  | <61.4                                | Non-detect               | Non-detect               |
| 08-727                                            | IGR-01-YP-08  | 5/29/2008         | 5-Sep                            | 1.166                   | 72%                      | Below detection                  | <60.3                                | Non-detect               | Non-detect               |
| 08-728                                            | IGR-01-YP-09  | 5/29/2008         | 5-Sep                            | 1.131                   | 68%                      | Below detection                  | <61.0                                | Non-detect               | Non-detect               |
| 08-729                                            | IGR-01-YP-10  | 5/29/2008         | 5-Sep                            | 0.667                   | 78%                      | Below detection                  | <61.9                                | Non-detect               | Non-detect               |
| 08-730                                            | IGR-01-YP-11  | 5/29/2008         | 5-Sep                            | 0.569                   | 60%                      | Below detection                  | <57.1                                | Non-detect               | Non-detect               |
| 08-731                                            | IGR-01-YP-12  | 5/29/2008         | 5-Sep                            | 0.890                   | 64%                      | Below detection                  | <62.2                                | Non-detect               | Non-detect               |
| 08-732                                            | IGR-01-YP-13  | 5/29/2008         | 5-Sep                            | 0.952                   | 78%                      | Below detection                  | <62.1                                | Non-detect               | Non-detect               |
| 08-733                                            | IGR-01-YP-14  | 5/29/2008         | 5-Sep                            | 0.995                   | 70%                      | Below detection                  | <57.1                                | Non-detect               | Non-detect               |
| 08-734                                            | IGR-01-YP-15  | 5/29/2008         | 25-Sep                           | 0.870                   | 68%                      | Below detection                  | <19.1                                | Non-detect               | Non-detect               |
| 08-735                                            | IGR-01-YP-15  | 5/29/2008         | 25-Sep                           | 0.713                   | 42%                      | Below detection                  | <19.2                                | Non-detect               | Non-detect               |
| 08-736                                            | IGR-01-YP-17  | 5/29/2008         | 25-Sep                           | 0.897                   | 67%                      | Below detection                  | <19.1                                | Non-detect               | Non-detect               |
| 08-737                                            | IGR-01-YP-18  | 5/29/2008         | 25-Sep                           | 0.985                   | 68%                      | Below detection                  | <19.1                                | Non-detect               | Non-detect               |
| 08-738                                            | IGR-01-YP-19  | 5/29/2008         | 25-Sep                           | 0.892                   | 104%                     | Below detection                  | <19.1                                | Non-detect               | Non-detect               |
| 08-739                                            | IGR-01-YP-20a | 5/29/2008         | 25-Sep                           | 1.501                   | 69%                      | Below detection                  | <19.1                                | Non-detect               | Non-detect               |
| 08-740                                            | IGR-01-YP-20b | 5/29/2008         | 25-Sep                           | 1.340                   | 71%                      | Below detection                  | <19.2                                | Non-detect               | Non-detect               |
| 08-741                                            | IGR-01-YP-21a | 5/29/2008         | 25-Sep                           | 0.719                   | 78%                      | Below detection                  | <19.1                                | Non-detect               | Non-detect               |
| 08-1094                                           | IGR-01-YP-21b |                   | 17-Sep                           | 1.045                   | 66%                      | Below detection                  | <21.9                                | Non-detect               | Non-detect               |
| 08-742                                            | IGR-01-CR-01  | 5/29/2008         | 17-Sep                           | 1.072                   | 62%                      | Below detection                  | <21.3                                | Non-detect               | Non-detect               |
| 08-743                                            | COP-1-YP-01   | 5/28/2008         | 17-Sep                           | 0.692                   | 83%                      | Below detection                  | <21.1                                | Non-detect               | Non-detect               |
| 08-744                                            | COP-1-YP-02   | 5/28/2008         | 25-Sep                           | 0.595                   | 67%                      | Below detection                  | <19.1                                | Non-detect               | Non-detect               |


| ESF<br>number | Sample ID    | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
|---------------|--------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| 08-745        | COP-1-YP-03  | 5/28/2008         | 17-Sep                           | 1.115                   | 56%                      | Below detection                  | <21.04                               | Non-detect               | Non-detect               |
| 08-746        | COP-1-YP-04  | 5/28/2008         | 17-Sep                           | 0.844                   | 91%                      | Below detection                  | <20.94                               | Non-detect               | Non-detect               |
| 08-747        | COP-1-YP-05  | 5/29/2008         | 17-Sep                           | 1.286                   | 95%                      | Below detection                  | <21.29                               | Non-detect               | Non-detect               |
| 08-748        | COP-1-YP-06  | 5/29/2008         | 17-Sep                           | 1.744                   | 92%                      | Below detection                  | <21.18                               | Non-detect               | Non-detect               |
| 08-749        | COP-1-YP-07  | 5/29/2008         | 25-Sep                           | 1.199                   | 65%                      | Below detection                  | <19.12                               | Non-detect               | Non-detect               |
| 08-750        | COP-1-YP-08  | 5/29/2008         | 17-Sep                           | 1.349                   | 94%                      | Below detection                  | <21.39                               | Non-detect               | Non-detect               |
| 08-751        | COP-1-YP-09  | 5/29/2008         | 17-Sep                           | 0.988                   | 85%                      | Below detection                  | <21.79                               | Non-detect               | Non-detect               |
| 08-752        | COP-1-YP-10  | 5/29/2008         | 17-Sep                           | 1.135                   | 86%                      | Below detection                  | <21.56                               | Non-detect               | Non-detect               |
| 08-753        | COP-1-YP-11  | 5/29/2008         | 17-Sep                           | 1.693                   | 79%                      | Below detection                  | <21.88                               | Non-detect               | Non-detect               |
| 08-754        | COP-1-YP-12  | 5/29/2008         | 17-Sep                           | 1.407                   | 88%                      | Below detection                  | <21.86                               | Non-detect               | Non-detect               |
| 08-755        | COP-1-YP-13  | 5/29/2008         | 17-Sep                           | 1.650                   | 97%                      | Below detection                  | <21.25                               | Non-detect               | Non-detect               |
| 08-756        | COP-1-YP-14  | 5/29/2008         | 17-Sep                           | 1.024                   | 107%                     | Below detection                  | <21.20                               | Non-detect               | Non-detect               |
| 08-757        | COP-1-YP-15  | 5/29/2008         | 17-Sep                           | 1.286                   | 80%                      | Below detection                  | <21.97                               | Non-detect               | Non-detect               |
| 08-758        | COP-1-YP-16  | 5/29/2008         | 17-Sep                           | 1.061                   | 82%                      | Below detection                  | <21.79                               | Non-detect               | Non-detect               |
| 08-759        | COP-1-YP-17  | 5/29/2008         | 17-Sep                           | 1.926                   | 106%                     | Below detection                  | <21.99                               | Non-detect               | Non-detect               |
| 08-760        | COP-1-YP-18  | 5/29/2008         | 17-Sep                           | 1.479                   | 103%                     | Below detection                  | <21.18                               | Non-detect               | Non-detect               |
| 08-761        | LKR-1-RT-01  | 5/28/2008         | 17-Sep                           | 3.877                   | 78%                      | Below detection                  | <21.93                               | Non-detect               | Non-detect               |
| 08-762        | LKR-1-RT-02  | 6/7/2008          | 17-Sep                           | 1.241                   | 77%                      | Below detection                  | <21.86                               | Non-detect               | Non-detect               |
| 08-763        | LKR-1-RT-03  | 6/7/2008          | 17-Sep                           | 1.415                   | 78%                      | Below detection                  | <21.84                               | Non-detect               | Non-detect               |
| 08-764        | LKR-1-RT-04  | 6/7/2008          | 17-Sep                           | 3.831                   | 66%                      | Below detection                  | <21.79                               | Non-detect               | Non-detect               |
| 08-765        | LKR-1-RT-05a | 6/13/2008         | 17-Sep                           | 2.112                   | 80%                      | Below detection                  | <21.79                               | Non-detect               | Non-detect               |
| 08-766        | LKR-1-RT-05b | 6/13/2008         | 17-Sep                           | 2.071                   | 89%                      | Below detection                  | <21.84                               | Non-detect               | Non-detect               |
| 08-767        | COP-1-CR-01  | 5/29/2008         | 17-Sep                           | 1.926                   | 61%                      | Below detection                  | <21.97                               | Non-detect               | Non-detect               |
| 08-768        | COP-1-CR-02  | 5/29/2008         | 17-Sep                           | 0.874                   | 54%                      | Below detection                  | <21.60                               | Non-detect               | Non-detect               |
| 08-769        | COP-1-CR-03  | 5/29/2008         | 17-Sep                           | 1.025                   | 81%                      | Below detection                  | <22.75                               | Non-detect               | Non-detect               |
| 08-770        | COP-1-CR-04  | 5/29/2008         | 17-Sep                           | 1.082                   | 77%                      | Below detection                  | <22.19                               | Non-detect               | Non-detect               |



| ESF<br>number | Sample ID    | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
|---------------|--------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| 08-771        | COP-1-CR-05a | 5/29/2008         | 17-Sep                           | 1.972                   | 68%                      | Below detection                  | <21.99                               | Non-detect               | Non-detect               |
| 08-772        | COP-1-CR-05b | 5/29/2008         | 17-Sep                           | 1.769                   | 66%                      | Below detection                  | <21.31                               | Non-detect               | Non-detect               |
| 08-773        | UKRC-1-RT-01 | 6/19/2008         | 17-Sep                           | 1.045                   | 96%                      | Below detection                  | <21.12                               | Non-detect               | Non-detect               |
| 08-774        | UKRC-1-RT-02 | 6/19/2008         | 17-Sep                           | 1.108                   | 62%                      | Below detection                  | <22.17                               | Non-detect               | Non-detect               |
| 08-775        | UKRC-1-RT-03 | 6/19/2008         | 17-Sep                           | 1.443                   | 104%                     | Below detection                  | <21.18                               | Non-detect               | Non-detect               |
| 08-776        | UKRC-1-RT-04 | 6/19/2008         | 25-Sep                           | 0.582                   | 72%                      | Below detection                  | <19.12                               | Non-detect               | Non-detect               |
| 08-777        | UKRC-1-RT-05 | 6/19/2008         | 17-Sep                           | 0.830                   | 107%                     | Below detection                  | <21.79                               | Non-detect               | Non-detect               |
| 08-778        | UKRC-1-RT-06 | 6/19/2008         | 17-Sep                           | 1.459                   | 84%                      | Below detection                  | <21.79                               | Non-detect               | Non-detect               |
| 08-779        | UKRC-1-RT-07 | 6/19/2008         | 17-Sep                           | 0.887                   | 75%                      | Below detection                  | <21.99                               | Non-detect               | Non-detect               |

### Klamath Fish Muscle Tissues : DLR Group 2

| ESF<br>number | Sample ID           | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
|---------------|---------------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| 08-882        | IGR-2-YP-01, muscle | 7/15/2008         | 15-Oct                           | 0.792                   | 91%                      | Below detection                  | <84.9                                | Non-detect               | Non-detect               |
| 08-883        | IGR-2-YP-02, muscle | 7/15/2008         | 15-Oct                           | 1.304                   | 81%                      | Below detection                  | <84.8                                | Non-detect               | Non-detect               |
| 08-884        | IGR-2-YP-03, muscle | 7/15/2008         | 15-Oct                           | 0.759                   | 77%                      | Below detection                  | <84.8                                | Non-detect               | Non-detect               |
| 08-885        | IGR-2-YP-04, muscle | 7/15/2008         | 15-Oct                           | 1.009                   | 83%                      | Below detection                  | <84.7                                | Non-detect               | Non-detect               |
| 08-886        | IGR-2-YP-05, muscle | 7/15/2008         | 15-Oct                           | 1.292                   | 75%                      | Below detection                  | <85.3                                | Non-detect               | Non-detect               |
| 08-887        | IGR-2-YP-06, muscle | 7/15/2008         | 15-Oct                           | 0.875                   | 66%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-888        | IGR-2-YP-07, muscle | 7/15/2008         | 15-Oct                           | 1.143                   | 62%                      | Below detection                  | <84.7                                | Non-detect               | Non-detect               |
| 08-889        | IGR-2-YP-08, muscle | 7/15/2008         | 15-Oct                           | 1.158                   | 43%                      | Below detection                  | <84.5                                | Non-detect               | Non-detect               |
| 08-890        | IGR-2-YP-09, muscle | 7/15/2008         | 15-Oct                           | 1.016                   | 75%                      | Below detection                  | <84.5                                | Non-detect               | Non-detect               |
| 08-891        | IGR-2-YP-10, muscle | 7/15/2008         | 15-Oct                           | 1.350                   | 81%                      | Below detection                  | <84.5                                | Non-detect               | Non-detect               |
| 08-892        | IGR-2-YP-11, muscle | 7/15/2008         | 15-Oct                           | 1.330                   | 70%                      | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-893        | LKR-2-RT-01, muscle | 7/15/2008         | 15-Oct                           | 1.688                   | 85%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-894        | LKR-2-RT-02, muscle | 7/15/2008         | 15-Oct                           | 1.191                   | 79%                      | Below detection                  | <84.7                                | Non-detect               | Non-detect               |



| ESF<br>number | Sample ID            | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
|---------------|----------------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| 08-895        | LKR-2-RT-03, muscle  | 7/15/2008         | 15-Oct                           | 1.639                   | 83%                      | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-896        | LKR-2-RT-04, muscle  | 7/15/2008         | 15-Oct                           | 3.011                   | 78%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-897        | LKR-2-RT-05, muscle  | 7/15/2008         | 15-Oct                           | 1.773                   | 83%                      | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-898        | LKR-2-RT-06, muscle  | 7/15/2008         | 15-Oct                           | 2.576                   | 90%                      | Below detection                  | <84.7                                | Non-detect               | Non-detect               |
| 08-899        | LKR-2-RT-07, muscle  | 7/15/2008         | 15-Oct                           | 1.027                   | 85%                      | Below detection                  | <84.8                                | Non-detect               | Non-detect               |
| 08-900        | LKR-2-RT-08, muscle  | 7/15/2008         | 15-Oct                           | 1.072                   | 79%                      | Below detection                  | <82.7                                | Non-detect               | Non-detect               |
| 08-901        | LKR-2-RT-09, muscle  | 7/15/2008         | 15-Oct                           | 1.812                   | 88%                      | Below detection                  | <82.1                                | Non-detect               | Non-detect               |
| 08-902        | LKR-2-RT-10, muscle  | 7/15/2008         | 15-Oct                           | 2.587                   | 83%                      | Below detection                  | <82.6                                | Non-detect               | Non-detect               |
| 08-903        | IGR-2-YP-12, muscle  | 7/15/2008         | 15-Oct                           | 1.133                   | 96%                      | Below detection                  | <82.5                                | Non-detect               | Non-detect               |
| 08-904        | IGR-2-YP-13, muscle  | 7/15/2008         | 15-Oct                           | 1.256                   | 95%                      | Below detection                  | <82.8                                | Non-detect               | Non-detect               |
| 08-905        | IGR-2-YP-14, muscle  | 7/15/2008         | 15-Oct                           | 1.318                   | 72%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
|               |                      |                   |                                  |                         |                          |                                  |                                      |                          |                          |
| 08-906        | IGR-2-YP-15, muscle  | 7/15/2008         | 15-Oct                           | 0.656                   | 64%                      | Below detection                  | <82.7                                | Non-detect               | Non-detect               |
| 08-907        | IGR-2-YP-16, muscle  | 7/15/2008         | 15-Oct                           | 0.722                   | 60%                      | Below detection                  | <82.2                                | Non-detect               | Non-detect               |
| 08-908        | IGR-2-YP-17, muscle  | 7/15/2008         | 15-Oct                           | 0.945                   | 60%                      | Below detection                  | <82.7                                | Non-detect               | Non-detect               |
| 08-909        | IGR-2-YP-18, muscle  | 7/15/2008         | 15-Oct                           | 0.984                   | 83%                      | Below detection                  | <82.7                                | Non-detect               | Non-detect               |
| 08-910        | IGR-2-YP-19, muscle  | 7/15/2008         | 15-Oct                           | 1.042                   | 80%                      | Below detection                  | <82.3                                | Non-detect               | Non-detect               |
| 08-911        | IGR-2-YP-19b, muscle | 7/15/2008         | 15-Oct                           | 0.611                   | 59%                      | Below detection                  | <82.8                                | Non-detect               | Non-detect               |
| 08-912        | IGR-2-CR-01, muscle  | 7/15/2008         | 15-Oct                           | 1.736                   | 83%                      | Below detection                  | <82.6                                | Non-detect               | Non-detect               |
| 08-913        | COP-2-YP-01, muscle  | 7/15/2008         | 15-Oct                           | 0.700                   | 62%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
| 08-914        | COP-2-YP-02, muscle  | 7/16/2008         | 15-Oct                           | 1.042                   | 47%                      | Below detection                  | <82.9                                | Non-detect               | Non-detect               |
| 08-915        | COP-2-YP-03, muscle  | 7/16/2008         | 15-Oct                           | 0.563                   | 57%                      | Below detection                  | <82.2                                | Non-detect               | Non-detect               |
| 08-916        | COP-2-YP-04, muscle  | 7/16/2008         | 15-Oct                           | 0.520                   | 68%                      | Below detection                  | <82.1                                | Non-detect               | Non-detect               |
| 08-917        | COP-2-YP-05, muscle  | 7/16/2008         | 15-Oct                           | 1.093                   | 67%                      | Below detection                  | <82.7                                | Non-detect               | Non-detect               |
| 08-918        | COP-2-YP-06, muscle  | 7/16/2008         | 15-Oct                           | 1.082                   | 95%                      | Below detection                  | <82.8                                | Non-detect               | Non-detect               |
| 08-919        | COP-2-YP-07, muscle  | 7/16/2008         | 15-Oct                           | 0.980                   | 93%                      | Below detection                  | <82.7                                | Non-detect               | Non-detect               |
| 08-920        | COP-2-YP-08, muscle  | 7/16/2008         | 15-Oct                           | 1.384                   | 81%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |



| ESF<br>number | Sample ID            | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
|---------------|----------------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| 08-921        | COP-2-YP-09, muscle  | 7/16/2008         | 15-Oct                           | 0.856                   | 88%                      | Below detection                  | <82.5                                | Non-detect               | Non-detect               |
| 08-922        | COP-2-YP-10, muscle  | 7/16/2008         | 15-Oct                           | 1.143                   | 83%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
| 08-923        | COP-2-YP-11, muscle  | 7/16/2008         | 15-Oct                           | 1.457                   | 148%                     | Below detection                  | <82.5                                | Non-detect               | Non-detect               |
| 08-924        | COP-2-YP-12, muscle  | 7/16/2008         | 15-Oct                           | 1.228                   | 96%                      | Below detection                  | <82.1                                | Non-detect               | Non-detect               |
| 08-925        | COP-2-YP-13, muscle  | 7/16/2008         | 15-Oct                           | 1.298                   | 77%                      | Below detection                  | <82.3                                | Non-detect               | Non-detect               |
| 08-926        | COP-2-YP-14, muscle  | 7/16/2008         | 15-Oct                           | 1.454                   | 68%                      | Below detection                  | <82.7                                | Non-detect               | Non-detect               |
| 08-927        | COP-2-YP-15, muscle  | 7/16/2008         | 15-Oct                           | 1.092                   | 73%                      | Below detection                  | <82.3                                | Non-detect               | Non-detect               |
| 08-928        | COP-2-YP-16, muscle  | 7/16/2008         | 15-Oct                           | 1.169                   | 67%                      | Below detection                  | <82.2                                | Non-detect               | Non-detect               |
| 08-929        | COP-2-YP-17, muscle  | 7/16/2008         | 15-Oct                           | 1.778                   | 64%                      | Below detection                  | <82.8                                | Non-detect               | Non-detect               |
| 08-930        | COP-2-YP-18, muscle  | 7/16/2008         | 15-Oct                           | 1.330                   | 60%                      | Below detection                  | <82.9                                | Non-detect               | Non-detect               |
| 08-931        | COP-2-YP-19, muscle  | 7/16/2008         | 15-Oct                           | 1.163                   | 73%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
| 08-932        | COP-2-YP-20, muscle  | 7/16/2008         | 15-Oct                           | 1.822                   | 74%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
| 08-933        | COP-2-YP-20b, muscle | 7/16/2008         | 15-Oct                           | 1.102                   | 80%                      | Below detection                  | <82.1                                | Non-detect               | Non-detect               |
| 08-934        | COP-2-CR-01, muscle  | 7/16/2008         | 15-Oct                           | 1.910                   | 57%                      | Below detection                  | <82.6                                | Non-detect               | Non-detect               |
| 08-935        | COP-2-CR-02, muscle  | 7/16/2008         | 15-Oct                           | 1.183                   | 67%                      | Below detection                  | <82.1                                | Non-detect               | Non-detect               |
| 08-936        | COP-2-CR-03, muscle  | 7/16/2008         | 15-Oct                           | 1.209                   | 74%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
| 08-937        | UKRC-2-RT-01, muscle | 7/16/2008         | 15-Oct                           | 2.408                   | 62%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
| 08-938        | UKRC-2-RT-02, muscle | 7/16/2008         | 15-Oct                           | 2.670                   | 67%                      | Below detection                  | <82.5                                | Non-detect               | Non-detect               |
| 08-939        | UKRC-2-RT-03, muscle | 7/16/2008         | 15-Oct                           | 1.101                   | 67%                      | Below detection                  | <82.1                                | Non-detect               | Non-detect               |
| 08-940        | UKRC-2-RT-04, muscle | 7/16/2008         | 15-Oct                           | 1.677                   | 62%                      | Below detection                  | <82.2                                | Non-detect               | Non-detect               |
| 08-941        | UKRC-2-RT-05, muscle | 7/16/2008         | 15-Oct                           | 1.645                   | 54%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
| 08-942        | UKRC-2-RT-06, muscle | 7/16/2008         | 20-Oct                           | 1.436                   | 68%                      | Below detection                  | <82.8                                | Non-detect               | Non-detect               |
| 08-943        | UKRC-2-RT-07, muscle | 7/16/2008         | 20-Oct                           | 1.585                   | 67%                      | Below detection                  | <82.3                                | Non-detect               | Non-detect               |
| 08-944        | UKRC-2-RT-08, muscle | 7/16/2008         | 20-Oct                           | 1.617                   | 79%                      | Below detection                  | <82.4                                | Non-detect               | Non-detect               |
| 08-945        | UKRC-2-RT-09, muscle | 7/16/2008         | 20-Oct                           | 1.426                   | 63%                      | Below detection                  | <82.3                                | Non-detect               | Non-detect               |
| 08-946        | UKRC-2-RT-9b, muscle | 7/16/2008         | 20-Oct                           | 1.302                   | 77%                      | Below detection                  | <82.1                                | Non-detect               | Non-detect               |



## Klamath Fish Muscle Tissues : Demethyl LR revisited

| Riamath Fish Muscle Tissues. |           | Demethyl Ll       | X I EVISILE                      | u                       |                          |                                  | Wiai cii 170, 2009                   |                          |                          |
|------------------------------|-----------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| ESF<br>number                | Sample ID | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
| 08-1141 LKR-                 | 3-RT-01   | 9/9/2008          | 1-Dec                            | 1.647                   | 72%                      | Below detection                  | <85.4                                | Non-detect               | Non-detect               |
| 08-1142 LKR-                 | 3-RT-02   | 9/9/2008          | 1-Dec                            | 1.360                   | 74%                      | Below detection                  | <85.9                                | Non-detect               | Non-detect               |
| 08-1143 LKR-                 | 3-RT-03   | 9/9/2008          | 1-Dec                            | 0.781                   | 68%                      | Below detection                  | <85.5                                | Non-detect               | Non-detect               |
| 08-1144 LKR-                 | 3-RT-04   | 9/9/2008          | 1-Dec                            | 0.662                   | 136%                     | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1145 LKR-                 | 3-RT-05   | 9/9/2008          | 1-Dec                            | 1.067                   | 73%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1146 LKR-                 | 3-RT-06   | 9/9/2008          | 1-Dec                            | 0.815                   | 70%                      | Below detection                  | <85.7                                | Non-detect               | Non-detect               |
| 08-1147 LKR-                 | 3-RT-07   | 9/9/2008          | 1-Dec                            | 1.476                   | 75%                      | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-1148 LKR-                 | 3-RT-08   | 9/9/2008          | 1-Dec                            | 0.515                   | 70%                      | Below detection                  | <85.4                                | Non-detect               | Non-detect               |
| 08-1149 LKR-                 | 3-RT-09   | 9/9/2008          | 1-Dec                            | 0.208                   | 77%                      | Below detection                  | <85.6                                | Non-detect               | Non-detect               |
| 08-1150 LKR-                 | 3-RT-10   | 9/9/2008          | 1-Dec                            | 1.142                   | 71%                      | Below detection                  | <85.3                                | Non-detect               | Non-detect               |
| 08-1151 LKR-                 | 3-RT-11   | 9/9/2008          | 1-Dec                            | 0.632                   | 74%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1152 LKR-                 | 3-RT-11a  | 9/9/2008          | 1-Dec                            | 1.189                   | 83%                      | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-1153 UKR                  | C-3-RT-01 | 9/10/2008         | 1-Dec                            | 1.453                   | 76%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1154 UKR                  | C-3-RT-02 | 9/10/2008         | 1-Dec                            | 0.908                   | 76%                      | Below detection                  | <85.4                                | Non-detect               | Non-detect               |
| 08-1155 UKR                  | C-3-RT-03 | 9/10/2008         | 1-Dec                            | 1.228                   | 74%                      | Below detection                  | <85.6                                | Non-detect               | Non-detect               |
| 08-1156 UKR                  | C-3-RT-04 | 9/10/2008         | 1-Dec                            | 1.433                   | 76%                      | Below detection                  | <85.8                                | Non-detect               | Non-detect               |
| 08-1157 UKR                  | C-3-RT-05 | 9/10/2008         | 1-Dec                            | 0.877                   | 77%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1158 UKR                  | C-3-RT-06 | 9/10/2008         | 1-Dec                            | 0.582                   | 74%                      | Below detection                  | <85.6                                | Non-detect               | Non-detect               |
| 08-1159 UKR                  | C-3-RT-07 | 9/10/2008         | 1-Dec                            | 1.132                   | 74%                      | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-1160 UKR                  | C-3-RT-08 | 9/10/2008         | 1-Dec                            | 1.109                   | 77%                      | Below detection                  | <85.3                                | Non-detect               | Non-detect               |
| 08-1161 UKR                  | C-3-RT-09 | 9/10/2008         | 1-Dec                            | 1.236                   | 60%                      | Below detection                  | <85.3                                | Non-detect               | Non-detect               |
| 08-1162 UKR                  | C-3-RT-9a | 9/10/2008         | 1-Dec                            | 1.129                   | 100%                     | Below detection                  | <85.7                                | Non-detect               | Non-detect               |
| 08-1163 IGR-                 | 3-YP-01   | 9/9/2008          | 1-Dec                            | 0.608                   | 75%                      | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-1164 IGR-                 | 3-YP-02   | 9/9/2008          | 1-Dec                            | 0.740                   | 72%                      | Below detection                  | <85.3                                | Non-detect               | Non-detect               |
| 08-1165 IGR-                 | 3-YP-03   | 9/9/2008          | 19-Dec                           | 0.484                   | 49%                      | Below detection                  | <72.4                                | Non-detect               | Non-detect               |
|                              |           |                   |                                  |                         |                          |                                  |                                      |                          |                          |

#### Marah 178 2000



| ESF<br>number | Sample ID   | Date<br>collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
|---------------|-------------|-------------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| 08-1166 IC    | GR-3-YP-04  | 9/9/2008          | 1-Dec                            | 0.957                   | 70%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1167 IC    | GR-3-YP-05  | 9/9/2008          | 1-Dec                            | 0.555                   | 55%                      | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-1168 IC    | GR-3-YP-06  | 9/9/2008          | 1-Dec                            | 0.587                   | 159%                     | Below detection                  | <85.1                                | Non-detect               | Non-detect               |
| 08-1169 IC    | GR-3-YP-07  | 9/9/2008          | 1-Dec                            | 0.917                   | 74%                      | Below detection                  | <85.7                                | Non-detect               | Non-detect               |
| 08-1170 IC    | GR-3-YP-08  | 9/9/2008          | 1-Dec                            | 1.335                   | 75%                      | Below detection                  | <85.7                                | Non-detect               | Non-detect               |
| 08-1171 IC    | GR-3-YP-09  | 9/9/2008          | 1-Dec                            | 0.786                   | 95%                      | Below detection                  | <85.6                                | Non-detect               | Non-detect               |
| 08-1172 IC    | GR-3-YP-10  | 9/9/2008          | 1-Dec                            | 1.168                   | 95%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1173 IC    | GR-3-YP-11  | 9/9/2008          | 1-Dec                            | 1.048                   | 97%                      | Below detection                  | <85.3                                | Non-detect               | Non-detect               |
| 08-1174 IC    | GR-3-YP-12  | 9/9/2008          | 1-Dec                            | 1.134                   | 76%                      | Below detection                  | <85.4                                | Non-detect               | Non-detect               |
| 08-1175 IC    | GR-3-YP-13  | 9/9/2008          | 1-Dec                            | 0.854                   | 109%                     | Below detection                  | <85.8                                | Non-detect               | Non-detect               |
| 08-1176 IC    | GR-3-YP-14  | 9/9/2008          | 1-Dec                            | 0.802                   | 103%                     | Below detection                  | <85.4                                | Non-detect               | Non-detect               |
| 08-1177 IC    | GR-3-YP-15  | 9/9/2008          | 1-Dec                            | 1.070                   | 117%                     | Below detection                  | <85.6                                | Non-detect               | Non-detect               |
| 08-1178 IC    | GR-3-YP-16  | 9/9/2008          | 1-Dec                            | 1.026                   | 86%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1179 IC    | GR-3-YP-17  | 9/9/2008          | 1-Dec                            | 1.076                   | 101%                     | Below detection                  | <85.9                                | Non-detect               | Non-detect               |
| 08-1180 IC    | GR-3-YP-18  | 9/9/2008          | 1-Dec                            | 1.087                   | 81%                      | Below detection                  | <85.2                                | Non-detect               | Non-detect               |
| 08-1181 IC    | GR-3-YP-19  | 9/9/2008          | 5-Dec                            | 1.140                   | 82%                      | Below detection                  | <124.9                               | Non-detect               | Non-detect               |
| 08-1182 IC    | GR-3-YP-20  | 9/9/2008          | 5-Dec                            | 1.051                   | 83%                      | Below detection                  | <124.1                               | Non-detect               | Non-detect               |
| 08-1183 IC    | GR-3-YP-20a | 9/9/2008          | 5-Dec                            | 1.153                   | 86%                      | Below detection                  | <123.8                               | Non-detect               | Non-detect               |
| 08-1184 IC    | GR-3-CR-01  | 9/9/2008          | 5-Dec                            | 0.780                   | 83%                      | Below detection                  | <124.3                               | Non-detect               | Non-detect               |
| 08-1185 IC    | GR-3-CR-02  | 9/9/2008          | 19-Dec                           | 0.883                   | 39%                      | Below detection                  | <72.8                                | Non-detect               | Non-detect               |
| 08-1186 IC    | GR-3-CR-03  | 9/9/2008          | 5-Dec                            | 0.940                   | 76%                      | Below detection                  | <124.9                               | Non-detect               | Non-detect               |
| 08-1187 IC    | GR-3-CR-04  | 9/9/2008          | 5-Dec                            | 2.001                   | 79%                      | Below detection                  | <123.7                               | Non-detect               | Non-detect               |
| 08-1188 IC    | GR-3-CR-05  | 9/9/2008          | 5-Dec                            | 1.130                   | 79%                      | Below detection                  | <124.2                               | Non-detect               | Non-detect               |
| 08-1189 IC    | GR-3-CR-06  | 9/9/2008          | 5-Dec                            | 0.789                   | 73%                      | Below detection                  | <124.1                               | Non-detect               | Non-detect               |
| 08-1190 IC    | GR-3-CR-07  | 9/9/2008          | 5-Dec                            | 1.414                   | 68%                      | Below detection                  | <124.6                               | Non-detect               | Non-detect               |



| ESF<br>number | Sample ID    | Date collected | Date 1 <sup>st</sup><br>Analyzed | Total Dry<br>Weight (g) | Recovery of internal std | TOTAL Free<br>Microcystin levels | Method Detection<br>Limit (µg/kg dw) | Extracted<br>Demethyl LR | Extracted<br>Demethyl RR |
|---------------|--------------|----------------|----------------------------------|-------------------------|--------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------|
| 08-1191       | IGR-3-CR-08  | 9/9/2008       | 5-Dec                            | 1.127                   | 68%                      | Below detection                  | <124.4                               | Non-detect               | Non-detect               |
| 08-1192       | IGR-3-CR-09  | 9/9/2008       | 5-Dec                            | 0.988                   | 70%                      | Below detection                  | <124.6                               | Non-detect               | Non-detect               |
| 08-1193       | IGR-3-CR-10  | 9/9/2008       | 5-Dec                            | 0.764                   | 74%                      | Below detection                  | <124.2                               | Non-detect               | Non-detect               |
| 08-1194       | IGR-3-CR-10a | 9/9/2008       | 5-Dec                            | 0.599                   | 63%                      | Below detection                  | <124.9                               | Non-detect               | Non-detect               |
| 08-1195       | COP-3-YP-01  | 9/9/2008       | 5-Dec                            | 0.589                   | 80%                      | Below detection                  | <124.7                               | Non-detect               | Non-detect               |
| 08-1196       | COP-3-YP-02  | 9/9/2008       | 5-Dec                            | 1.075                   | 81%                      | Below detection                  | <123.8                               | Non-detect               | Non-detect               |
| 08-1197       | COP-3-YP-03  | 9/9/2008       | 5-Dec                            | 1.236                   | 12%                      | Below detection                  | <124.3                               | Non-detect               | Non-detect               |
| 08-1198       | COP-3-YP-04  | 9/9/2008       | 5-Dec                            | 0.606                   | 80%                      | Below detection                  | <123.7                               | Non-detect               | Non-detect               |
| 08-1199       | COP-3-YP-05  | 9/9/2008       | 5-Dec                            | 1.512                   | 72%                      | Below detection                  | <124.7                               | Non-detect               | Non-detect               |
| 08-1200       | COP-3-YP-06  | 9/9/2008       | 5-Dec                            | 1.066                   | 86%                      | Below detection                  | <124.3                               | Non-detect               | Non-detect               |
| 08-1201       | COP-3-YP-07  | 9/9/2008       | 5-Dec                            | 0.845                   | 81%                      | Below detection                  | <124.2                               | Non-detect               | Non-detect               |
| 08-1202       | COP-3-YP-08  | 9/9/2008       | 5-Dec                            | 1.979                   | 75%                      | Below detection                  | <124.4                               | Non-detect               | Non-detect               |
| 08-1203       | COP-3-YP-09  | 9/9/2008       | 5-Dec                            | 0.731                   | 81%                      | Below detection                  | <123.7                               | Non-detect               | Non-detect               |
| 08-1204       | COP-3-YP-10  | 9/9/2008       | 5-Dec                            | 1.910                   | 69%                      | Below detection                  | <123.7                               | Non-detect               | Non-detect               |
| 08-1205       | COP-3-YP-11  | 9/9/2008       | 5-Dec                            | 1.289                   | 71%                      | Below detection                  | <123.7                               | Non-detect               | Non-detect               |
| 08-1206       | COP-3-YP-12  | 9/9/2008       | 5-Dec                            | 1.861                   | 76%                      | Below detection                  | <124.2                               | Non-detect               | Non-detect               |
| 08-1207       | COP-3-YP-13  | 9/9/2008       | 5-Dec                            | 0.684                   | 77%                      | Below detection                  | <124.9                               | Non-detect               | Non-detect               |
| 08-1208       | COP-3-YP-14  | 9/9/2008       | 5-Dec                            | 1.178                   | 74%                      | Below detection                  | <123.8                               | Non-detect               | Non-detect               |
| 08-1209       | COP-3-YP-15  | 9/9/2008       | 5-Dec                            | 1.325                   | 137%                     | Below detection                  | <124.4                               | Non-detect               | Non-detect               |
| 08-1210       | COP-3-YP-16  | 9/9/2008       | 5-Dec                            | 1.096                   | 79%                      | Below detection                  | <124.6                               | Non-detect               | Non-detect               |
| 08-1211       | COP-3-YP-17  | 9/9/2008       | 5-Dec                            | 1.595                   | 71%                      | Below detection                  | <124.1                               | Non-detect               | Non-detect               |
| 08-1212       | COP-3-YP-18  | 9/9/2008       | 5-Dec                            | 1.017                   | 70%                      | Below detection                  | <124.7                               | Non-detect               | Non-detect               |
| 08-1213       | COP-3-YP-19  | 9/9/2008       | 5-Dec                            | 0.815                   |                          | Below detection                  | <123.8                               | Non-detect               | Non-detect               |
| 08-1214       | COP-3-YP-20  | 9/9/2008       | 5-Dec                            | 1.258                   | 80%                      | Below detection                  | <123.7                               | Non-detect               | Non-detect               |
| 08-1215       | COP-3-YP-20a | 9/9/2008       | 5-Dec                            | 1.299                   | 61%                      | Below detection                  | <124.8                               | Non-detect               | Non-detect               |
| 08-1216       | COP-3-CR-01  | 9/10/2008      | 5-Dec                            | 0.452                   | 47%                      | Below detection                  | <124.6                               | Non-detect               | Non-detect               |
| 08-1217       | COP-3-CR-02  | 9/10/2008      | 19-Dec                           | 1.197                   | 35%                      | Below detection                  | <72.8                                | Non-detect               | Non-detect               |

