A life cycle model for assessing Lewis River fish reintroduction scenarios Pete McHugh, Eco Logical Research Robert Al-Chokhachy, US Geol. Surv. ACC Meeting, 14 Apr 2016

The Party of the Party of the Party of the

Presentation outline

- Overview of life cycle model (LCM) framework:
 - Model structure
 - Base parameterization & simplifying assumptions
 - Simulation procedures
- Assessing management scenarios:
 - Juvenile and adult passage
 - Supplementation strategies
 - Criteria for evaluating performance
- Example application (very rough)
 - Juvenile Chinook collection efficiency & adult release
- Where to from here?

Optimal Stock Size and Harvest Rate in Multistage Life History Models

Elie Moussalli and Ray Hilborn¹

Institute of Animal Resource Ecology, University of British Columbia, Vancouver, B.C. V6T 1W5

The Shiraz model: a tool for incorporating anthropogenic effects and fish-habitat relationships in conservation planning

Mark D. Scheuerell, Ray Hilborn, Mary H. Ruckelshaus, Krista K. Bartz, Kerry M. Lagueux, Andrew D. Haas, and Kit Rawson

A quantitative framework for the analysis of habitat and hatchery practices on Pacific salmon

Rishi Sharma^{a,*}, Andrew B. Cooper^{b,1}, Ray Hilborn^c

Optimal Stock Size and Harvest Rate in Multistage Life History Models

Elie Moussalli and Ray Hilborn¹

Institute of Animal Resource Ecology, University of British Columbia, Vancouver, B.C. V6T 1W5

м

The Shiraz model: a tool for incorporating anthropogenic effects and fish-habitat relationships in conservation planning

Mark D. Scheuerell, Ray Hilborn, Mary H. Ruckelshaus, Krista K. Bartz, Kerry M. Lagueux, Andrew D. Haas, and Kit Rawson

A quantitative framework for the analysis of habitat and hatchery

S.P. Cramer & Associates, Inc. Salmon PopCyc

Salmon PopCycle Model Structure

APPENDIX B: SALMON POPCYCLE MODEL STRUCTURE

Juvenile O. mykiss

Adult steelhead

Spatial structure for NF Lewis

Other LCM features

- Separately tracks hatchery- and natural-origin fish
 - Model H/N fitness differential (survival, fecundity,...)
 - Model range of supplementation strategies
- Allows for anadromous and resident forms
 - Steelhead & resident O. mykiss; landlocked salmon
- Can model gender-specific life history expression
 - Earlier maturation by males, male-biased residency
- Biological realism has a cost -> plausible estimates needed for additional life history parameters
- Parameters vary stochastically & can have time trends

Base model parameterization (draft)

Freshwater survival

- Egg incubation: EDT
- Fry colonization: EDT
- Parr-to-smolt S: EDT
- Outmigration survival**

 (Reservoir Surv + CE):
 performance standards,
 or hypothetical values

Freshwater capacity

- Spawner/egg: EDT
- Fry: infinite (?)
- Parr: EDT, other reservoir approaches
- Smolt: infinite (?)

Base model parameterization (draft)

Adult prod. & capacity

- SARs: hatchery with N/H adjustment
- Adult CE: performance standards
- Pre- and post-spawn mortality: EDT or lit
- Ocean capacity: taken as infinitely large (?)

Other model parameters

- Emig. & mat. probabilities
- Fecundity
- Fishery impacts
- Prob. of residency
- Inter-pop'n movement
- Supplementation rules
- Fitness differentials
- Level of stochastic noise

Simulation/implementation specs

- Coded in R and takes inputs that can be prepped in Excel (.csv) templates; produces .csv outputs files:
 - Pros: freely available platform; stats/graphics options
 - Cons: it can be slow for complex runs
- Stochasticity can be added for select parameters:
 - Mostly beta-dist'd random variables
 - Random run-to-run variation (i.e., replicates)
 - Random temporal within-run variation
- User specified N of Monte Carlo reps
- Metrics for summarizing outputs the sky's the limit

Example application: spring Chinook

- Key question: how do different passage (juvenile) & adult release (destination) strategies affect reintroduction success?
- Modeled scenarios:
 - 100,000 smolts released for 10 years above Swift (67/33)
 - Smolt collection efficiency:
 - Very low (10%), low (50%), moderate (75%) and high (95%)
 - Adult transport strategies (returns from juvenile releases):
 - Release all adults above Swift
 - Release adults into each reservoir in proportion to capacity
- Monitor population performance for 50 years
- Deterministic & stochastic runs (N = 25 replicates)

Spatial structure for NF Lewis

Important parameter assumptions

- Caveat: these runs are mostly for demonstration, placeholders were used for several parameters
- Freshwater survivals (incl. CE) are spatially uniform & generally optimistic (*this will change*)
- Adult and juvenile capacities are pop'n specific
- Juveniles & adults have 100% fidelity to release sites across life stages (*this will change*)
- Hatchery fitness = natural fitness (this can change)
- Contribution of through-dam fish = negligible
- Marine survival is very influential & lower than what's been assumed in past modelling (*this may be real*)

NOS at Merwin

Initial insights & next steps

- Caveat: these runs are mostly for demonstration, placeholders were used for several parameters
- Optimistic survivals + low CE = no establishment (there's little chance this result will change)
- Multi-reservoir adult releases yields a higher return (to Merwin) and spreads risk...realistic assumptions?

• Next steps:

- Finalize inputs & modelling decisions
- Set models up for coho and steelhead
- Construct final list of scenarios of interest to ACC
- Run all and prepare report