Lewis River Hydroelectric Projects Settlement Agreement Aquatic Coordination Committee (ACC) Meeting Agenda

Date & Time:	Thursday, April 10, 2014 9:00 a.m. – 11:45 a.m.					
Place:	Merwin Hydro Control Center 105 Merwin Village Court Ariel, WA 98603					

Contacts: Frank Shrier: (503) 320-7423

Time	Discussion Item						
9:00 a.m.	Welcome						
	Review Agenda & 3/13/14 Meeting Notes						
	Comment & accept Agenda & 3/13/14 Meeting Notes						
9:15 a.m.	Woodland Release Ponds; explore other options/alternatives for						
	release pond or direct release strategy						
10:00 a.m.	Review Ocean Recruit Calculation and Results						
10:45 a.m.	Break						
11:00 a.m.	2012/2013 Aquatic Fund Project - BT Habitat Restoration Project ID						
	Assessment						
	Request for contract extension and add'l insurance expense						
11:15 a.m.	Study/Work Product Updates						
	 Eulachon Consultation - Status 						
	 Woodland Release Ponds - Status 						
	• Hatchery Upgrades - Status						
	• Hatchery and Supplementation Plan – Status						
	 Crab Creek Acclimation Pond Screen - Status 						
	 Merwin Upstream Construction - Status 						
	 Swift Downstream Collector – Status 						
	 Future Fish Passage Facilities New Information – Status 						
11:30 a.m.	Next Meeting's Agenda						
	Public Comment Opportunity						
	Note: all meeting notes and the meeting schedule can be located at:						
	http://www.pacificorp.com/es/hydro/hl/lr.html#						
11:45 a.m.	Adjourn						

Join by Phone

+1 (503) 813-5252 [Portland, Ore.]

+1 (855) 499-5252 [Toll Free]

Conference ID: 5709805

FINAL Meeting Notes Lewis River License Implementation Aquatic Coordination Committee (ACC) Meeting April 10, 2014 Ariel, WA

ACC Participants Present (13)

Kimberly McCune, PacifiCorp Energy Frank Shrier, PacifiCorp Energy Erik Lesko, PacifiCorp Energy (via conference) Peggy Miller, WDFW (via conference) Aaron Roberts, WDFW Eric Kinne, WDFW (via conference) Jim Malinowski, Fish First (via conference) Pat Frazier, LCFRB Adam Haspiel, USDA Forest Service Shannon Wills, Cowlitz Indian Tribe Diana Gritten-MacDonald, Cowlitz PUD (via conference)

Mara Zimmerman, WDFW (via conference) Pete McHugh, WDFW (via conference)

Calendar:

May 8, 2014	ACC Meeting	Merwin Hydro
June 12, 2014	ACC Meeting	Merwin Hydro

Assignments from April 10, 2014 meeting	
Eric Kinne (WDFW): Look at old conceptual hand drawings of Pond 15 alteration to act as a release pond and provide a copy to the ACC for its review.	N/A – pursued another option than Pond 15.

Assignments from March 13, 2014 meeting	
Shrier: Send copy of email sent to Bryan Nordlund (NMFS) regarding the Crab Creek 60% design drawings to McCune and Michelle Day (NMFS).	Complete – 3/13/14
Haspiel: Email Michelle Day (NMFS) when he receives the draft BA for Crab Creek.	Complete
ACC: Explore other options/alternatives for Woodland release pond or direct release strategy. Bring ideas to the April ACC meeting.	Complete – 4/9/14

Assignments from February 13, 2014 meeting	
Wills: Contact Cowlitz Indian Tribe Council and Yakama Nation	Pending
Council to encourage them contacting NMFS regarding concern over	
lack of response regarding the Eulachon consultation.	
Eric Kinne: Work on securing the 2012/2013 lower river coho abundance	Pending – as of
survey data and provide this information to Erik Lesko (PacifiCorp) for	5/8/14 data has

the 2013 H&S Annual Report. Lesko requires this data by February 28,	not been
2014.	received and
	will not be
	provided in the
	2014 report

Opening, Review of Agenda and Meeting Notes

Frank Shrier (PacifiCorp) called the meeting to order at 9:07 a.m. The ACC reviewed the agenda and agreed to review the Ocean Recruit results first for the benefit of certain attendees. The March 13, 2014 meeting notes were reviewed and approved without change at 9:15 a.m. Kimberly McCune (PacifiCorp) will finalize the March 13, 2014 meeting notes for posting to the Lewis River website.

Review Ocean Recruit Calculation and Results

Shrier informed the ACC attendees that preliminary results were provided via email, which has been attached to these meeting notes, **Attachment A**.

Shrier expressed that he had hoped more would have been completed at this point but PacifiCorp has taken the necessary steps to extend the contract with Fish Metrics and provide the funds needed to finish the model and populate it so it can be used as an effective tool. The contract was extended to May 31, 2014 to finish the calculation project.

Shrier explained Ocean Recruit to be escapement plus harvest which is defined the Lewis River Settlement Agreement. The calculations in the M&E Plan included incidental mortalities. The ACC, Mara Zimmerman (WDFW) and Pete McHugh (WDFW) discussed the example cohort model as detailed in Fish Metric's report, computing incidental mortalities, cohort reconstruction, comparing Lewis River numbers to other stocks/watersheds, sensitivity analysis and spatial complexity. McHugh offered his availability to speak with Brian Pyper (Fish Metrics) to lend his knowledge and expertise. Shrier will provide McHugh's contact information to Pyper.

Jim Malinowski (Fish First) expressed concern that targets are already low in his opinion; he expressed caution to not let the model over estimate what is available for harvest by including incidental mortalities.

In response to Malinowski's questions Shrier informed the ACC that he is counting on peer review and other expert entity(s) to review the model annually. The ACC will have a 30-day review and comment period.

Woodland Release Ponds: explore other options/alternatives for release pond or direct release strategy

In order to address the delayed construction schedule to Spring 2015 the ACC discussed options as alternatives to direct release to evaluate mortality. Options included using Pond 15 at Lewis River hatchery, using a circular pond and potentially using the Echo Bay net pens. There was also discussion of using a small net pen in Pond 15 to more easily assess mortality and move fish. Erik Lesko expressed potential concerns with disease transmission from adults in the center channel; however, WDFW did not view this potential as significant. Pond 15 has been used in the past, but there is concern that release from the pond may cause injury. There was discussion about creating a plunge pool during the release periods so mitigate this concern; Pond 15 also

lends itself to keep the fish and they can leave overnight; monetary investment will be needed for any option selected. Eric Kinne (WDFW) will look at previous hand drawings that WDFW developed in the past looking at various release configurations for the pond and, if available, provide a copy to the ACC for its review.

Aaron Roberts (WDFW) suggested arranging a meeting as quickly as possible with interested parties to discuss the options in more detail and view the Pond 15 alternatives.

A meeting was scheduled at Lewis River Hatchery on April 17, 2014 at 11:30am. Attendees include, Erik Lesko, Aaron Roberts, Shannon Wills and Erik Kinne.

<Break 10:05am> <Reconvene 10:15am>

2012/2013 Aquatic fund Project – BT Restoration Project ID Assessment: Request for contract extension and add'l insurance expense

McCune informed the ACC attendees that Mt. Saint Helens Institute (MSHI) requested a contract extension to 12/31/2016 and payment of the 2015/2016 insurance expense from ACC funds for an amount not-to-exceed (NTE) \$3,400 for the Bull Trout Restoration ID Assessment project.

MSHI reported via email on March 21, 2014 that all project partners of the above-referenced project decided that the project needs to be extended for an additional year. The extension request is due to incomplete surveying as a result of the government shutdown in October 2013 and to high stream flows in late September. MSHI also reported on April 8, 2014 that the following work has been completed thus far:

1. Bull trout bibliography and collection of existing data (in-kind, MSHI)

2. Temperature hobo's deployed (in-kind, MSHI and USFS)

- Pine Creek, P-8, and below their confluence (3 units)
- Little Creek (2)
- Crab Creek (2)
- Drift Creek (2)
- Bean Creek (2)
- Rush Creek (3)
- Spencer Creek (1)
- Upper Muddy River (1)
- Clearwater Creek (1)
- Swift Creek (1)
- Clear Creek (1)
- Elk Creek (1)

3. USFS Level III Stream Surveys (in-kind, USFS)

• 20 miles of stream surveyed

4. Snorkel survey design (WDFW)

5. Snorkel surveys started (MSHI)

- 12 days of surveying
- Just over 1 rotation of approximately 25 miles
- Weather conditions and government shutdown. Too much time elapsed to continue surveying.
- No redds found, adults found including in Big Creek

6. Habitat and snorkel survey design planning (WDFW) (to be completed and implemented in 2014)

The ACC decision is outlined in the table below. ACC representatives not in attendance have seven (7) days to provide a response/decision.

After the 7-day comment period the ACC decisions will be considered final and McCune will proceed with notifying MSHI.

ACC Representative	Decision to use Aquatic Fund for 2015/2016 MSHI additional insurance expense for the above-referenced 2013 Aquatic Fund Projects and to extend the agreement to 12/31/2016 (NTE \$3,400): Yes or No
Frank Shrier, PacifiCorp Energy	Yes
Adam Haspiel, USFS	Yes
Aaron Roberts, WDFW	Yes
Pat Frazier, LCFRB	Yes
Diana Gritten-MacDonald, Cowlitz PUD	No – but will not block the decision to move forward
Jim Malinowski, Fish First	No – but will not block the decision to move forward
Shannon Wills, Cowlitz Indian Tribe	Yes

Study/Work Product Updates

Eulachon Consultation

Michelle Day (NMFS) has committed to providing the biological assessment to her supervisor for internal review by April 30, 2014.

Hatchery and Supplementation (H&S) Program

- Wild winter steelhead collection is ongoing at both the Merwin trap and through in-river netting. We have increased our in-river netting effort the past two weeks in an effort to capture and meet targets for females. Currently we have 7 females and 7 males assigned to the Lewis River. 5 males and 4 females are also being held pending assignment. PacifiCorp is again netting the river today.
- As in 2013, PacifiCorp PIT tagged a portion of the late winter steelhead production and put those fish in circular tanks as opposed to raceways. This year we tagged 800 smolts (last year was 1,000). We expect our first returns from the 2013 group in spring of 2015. This

program is intended to generally document return rates between raceway and circular pond reared late winter steelhead smolts.

- Erik Lesko will be working on a new draft of the HS plan this year. Consultants will also provide expertise during the rewrite. Target date for a draft plan is July 1. Meetings will be scheduled to review the plan and finalize by December 2014. In addition, the HS subgroup will be working on the 2015 Annual Plan concurrently.
- Screw traps are both in place and fishing. Catch results are not yet available. PacifiCorp is still waiting on permit approval for a tandem trap in the lower Lewis River (currently there is only a single trap).
- Aerial surveys for released steelhead started last week and will continue every other week through May. In addition, fixed stations have been placed at the Swift collector, Swift boat ramp and at Eagle Cliff.

Hatchery Upgrades

Two projects remain as part of Schedule 8.7 of the Settlement Agreement.

Speelyai Hatchery Intake Modifications: On Schedule for completion in 2014.

Merwin Hatchery PLC Ozone Upgrades: This project is ongoing and scheduled for completion by the end of November

Acclimation Pond/Crab Creek Screen

Adam Haspiel (USFS) informed the ACC attendees that the Forest Service (FS) does not need to go back out for comment with the Instream/Crab Creek environmental assessment. The FS will submit its decision approximately mid to the end of April to begin the initial 45-day objection period. If objection is received then there is another 45-day review period.

Muddy and Clear Creek Acclimation Ponds

PacifiCorp tagged 10% (3,800) fish per pond; completed last week. Placing fish on April 16, 2014. Experienced some vandalism already; The ponds were flushed and made ready to receive fish by next week. The Muddy River intake was back-flushed and there was virtually no sediment in the instream intake.

Merwin Upstream and Swift Downstream Collector Status

PacifiCorp provided the Lewis River Fish Passage Report to the ACC via email on April 7, 2014 (Attachment B).

Development of New Information to Inform Fish Passage

Bringing annual report to PacifiCorp in May that summarizes the 2013 efforts and identifies the 2014 work; thanks to WDFW we provided additional 5,000 coho smolts for release into Yale Lake for hydroacoustic tracking; leading to where we might position the Yale surface collector; the crew is working day and night to gather the necessary information.

<11:00 a.m. meeting adjourned >

- ➢ Review April 10, 2014 Meeting Notes
- Study/Work Product Updates

Public Comment

None

Next Scheduled Meetings

May 8, 2014	June 12, 2014
Merwin Hydro Control Center	Merwin Hydro Control Center
Ariel, WA	Ariel, WA
9:00 a.m11:00am	9:00 a.m. – 3:00pm

Meeting Handouts & Attachments

- > Notes from 3/13/14
- > Agenda from 4/10/14
- Attachment A Preliminary assessment of methods and steps required to compute ocean recruits of salmon for the Lewis River, as provide by Fish Metrics - March 31, 2014
- Attachment B Lewis River Fish Passage Report, March 2014

Preliminary assessment of methods and steps required to compute ocean recruits of salmon for the Lewis River

Brian Pyper, Fish Metrics

March 31, 2014

Summary

For this contract, I was tasked to provide assistance with the interpretation and implementation of methods for computing ocean recruits for components of Lewis River salmon production. It is my opinion that considerable effort is required to produce a (reasonably) defensible framework for computing the desired metrics. While considerable progress was made, there is still much work to do to (1) complete the general statistical framework; (2) integrate ocean-wide CWT recovery data (RMIS) with specific sampling programs for fisheries and escapements within the Lewis River basin; and (3) develop robust procedures for annually computing ocean recruits. In this report, I provide a rough outline of the various methods, data, and tools required to compute ocean recruits, and conclude with recommendations for steps needed to complete these tasks.

Background

The Lewis River Hatchery and Supplementation Plan (H&S Plan) identified three indices that could be used to measure ocean recruits (PacifiCorp Energy and Cowlitz PUD 2006). These were reiterated in the Aquatic Monitoring and Evaluation Plan ("AM&E Plan") for the Lewis River (PacifiCorp Energy and Cowlitz PUD 2010). In both reports, it is noted that "ocean recruits" is defined in the Settlement Agreement as "... *the total escapement (fish that naturally spawned above Merwin and hatchery fish) plus harvest (including ocean, Columbia River, and Lewis River Harvest*)." Furthermore, in both reports it is noted that jacks are <u>not</u> to be included or counted as part of the ocean recruits analysis (May 11, 2006 ACC Meeting).

The three measures discussed are:

- 1. Age 2 Recruits (Age 2): Number of fish alive at the time of first recruitment into a fishery (typically at age 2). Represents the maximum number of fish available to be managed.
- 2. Adult Equivalent Run (AER): The total number of fish that would have returned to the spawning grounds at all ages in the absence of fisheries. In other words, AER is the best estimate of adult run-size absent human harvest.
- 3. Catch Plus Escapement (C+E): Total catch of all ages plus total escapement of all ages. This method is in reality the outcome of harvest management activities affecting the species.

Further details in the H&S Plan indicate that: (1) all three methodologies will be used to calculate spring Chinook and coho ocean recruit numbers, while only the third method (catch

plus escapement) will be used for the steelhead calculation (due to limited harvest); and (2) program success for Chinook and coho should likely be based on the AER method because it defines total production absent fisheries.

Formulas for computing the above recruitment metrics were provided in the H&S plan and duplicated in Appendix D of the AM&E Plan. However, the computations for AER are <u>not</u> correct. The flow chart presented in Figure D-1 (PacifiCorp Energy and Cowlitz PUD 2010) depicts a simple cohort model, while the "AER equations" are actually cohort-reconstruction equations (with additional errors) used to estimate age-specific ocean recruits. I recommend that these formulas be disregarded.

In the following sections, I outline methods required to compute the three measures of ocean recruits. Computations of catch plus escapement (C+E) are relatively trivial, although considerable effort may be required to tabulate catch and escapement data. Estimates of age-2 recruits and AER require cohort modeling (or some suitable proxy thereof). Thus, I begin with a simple cohort model and then discuss addition complexities in later sections.

Example cohort model

The following model provides a very simple depiction of age-specific processes and fisheries for a typical brood-year cohort of Chinook salmon. For initial consistency, the model structure is very similar to that presented in Appendix D of the AM&E Plan, which included possible straying and pre-spawn mortality. A model schematic is provided in Figure 1; variables and parameters are defined in Table 1.

In this example, it is assumed that ocean recruitment starts at age a = 2 and ends at age a = 5. Catch (*C*) and incidental fishing mortalities (*I*) are defined for three sequential fisheries: ocean (subscript "1"); Columbia River (subscript "2"); and terminal (subscript "3"). Abundances (*N*) are depicted at four stages: N_0 , the starting ocean abundance of a given age before applying the natural survival rate (*s*); N_1 , the abundance just prior to ocean fishing; N_2 , the abundance of mature recruits entering the Columbia River; and N_3 , the abundance of mature recruits entering the Lewis River and terminal fishery.

For illustrative purposes, the sequential equations for propagating a cohort forward through time are as follows (e.g., starting with an assumed age-2 abundance, $N_{0,a=2}$):

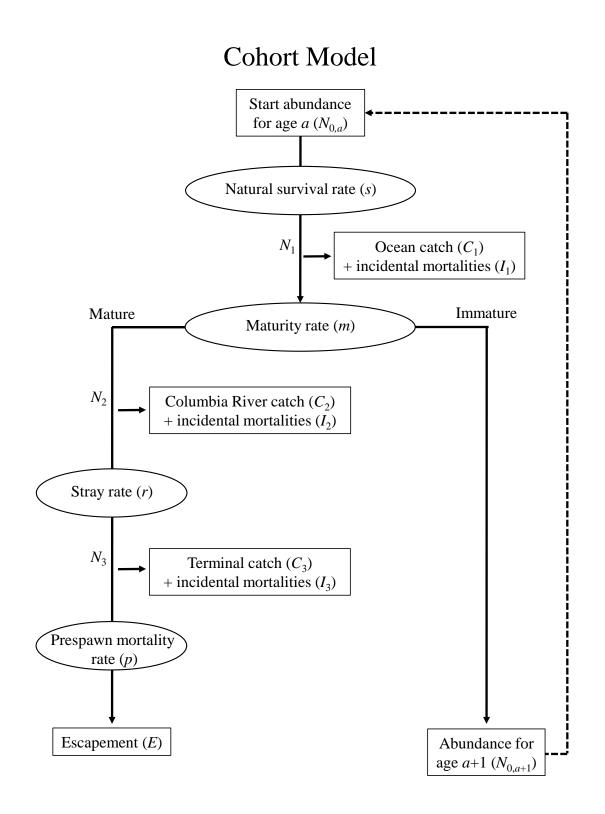
	$N_{1,a} = s_a N_{0,a}$	Abundance before ocean fisheries
	$N_{2,a} = m_a (N_{1,a} - C_{1,a} - I_{1,a})$	Abundance to Columbia River
(1)	$N_{3,a} = (1 - r_a)(N_{2,a} - C_{2,a} - I_{2,a})$	Abundance to terminal fisheries
	$E_a = (1 - p_a)(N_{3,a} - C_{3,a} - I_{3,a})$	Escapement
	$N_{0,a+1} = (1 - m_a)(N_{1,a} - C_{1,a} - I_{1,a})$	Abundance next year

The computations end with the final age group for which the maturity rate, m_a , is 1.0 (100%).

Our interest lies in cohort reconstruction. For a given brood-year cohort, it is assumed that agespecific values of catch (C) and escapement (E) are known, and estimates of incidental mortalities (I) are available. The reconstruction equations run backwards starting with age-5 data, providing the following age-specific estimates of abundance and maturity rate:

$$\hat{N}_{3,a} = E_a /(1 - p_a) + C_{3,a} + \hat{I}_{3,a}$$
Abundance to terminal fisheries

$$\hat{N}_{2,a} = \hat{N}_{3,a} /(1 - r_a) + C_{2,a} + \hat{I}_{2,a}$$
Abundance to Columbia River
(2)
$$\hat{N}_{1,a} = \hat{N}_{0,a+1} + \hat{N}_{2,a} + C_{1,a} + \hat{I}_{1,a}$$
Abundance before ocean fisheries


$$\hat{N}_{0,a} = \hat{N}_{1,a} / s_a$$
Starting abundance

$$\hat{m}_a = \hat{N}_{2,a} / (\hat{N}_{2,a} + \hat{N}_{0,a+1})$$
Estimate of maturity rate

where $\hat{N}_{0,a=6} = 0$. Incidental mortalities and parameter assumptions are discussed further below.

Symbol	Description
t	Subscript denoting brood year
a	Subscript denoting age
Ν	Abundance (number of fish)
С	Catch (number of fish)
Ι	Incidental fishing mortality (number of
	fish)
Ε	Escapement (number of fish)
S	Natural survival rate
т	Maturity rate
r	Stray rate
р	Pre-spawn mortality rate

Table 1. Variables and parameters in the cohort model.

Figure 1. Cohort model depicting processes and fisheries for a given age (subscript "*a*" omitted for clarity). See text for details.

Measures of ocean recruits

The following provides simple formulas for computing measures of ocean recruits, predicated on the above cohort model and symbol definitions. Additional details are provided in later sections.

Catch plus escapement

Catch plus escapement, $(C+E)_t$, for brood year *t* is computed as the sum of age-specific escapement (*E*) and catch (based on expanded CWT recoveries) in ocean fisheries (*C*₁), Columbia River mainstem fisheries (*C*₂), and terminal fisheries (*C*₃):

(3)
$$(C+E)_t = \sum_{a=2}^{5} (E_{a,t} + C_{1,a,t} + C_{2,a,t} + C_{3,a,t}).$$

Age-2 recruits

A cohort reconstruction is required to estimate age-2 recruitment (e.g., see equation 2). To reiterate, the definition provided in the AM&E Plan for age-2 recruits is the "[n]umber of fish alive at the time of first recruitment into a fishery." This value is given by $\hat{N}_{1,a=2}$ in equation (2). Additional data requirements and computational details are discussed below.

Adult equivalent run (AER)

As noted above, the AER measure was defined as:

"The total number of fish that would have returned to the spawning grounds at all ages in the absence of fisheries. In other words, AER is the best estimate of adult run-size absent human harvest."

This is somewhat ambiguous in terms of the final destination; on one hand it's the "spawning grounds" whereas "adult run-size" could be interpreted as, for example, "entering the Columbia River" or "entering the Lewis River." However, as outlined below, this distinction only matters if straying rates (r) and/or pre-spawn mortality rates (p) are greater than zero.

A general formula for adult equivalent returns (AER) is given by:

(4)
$$AER_{t} = \sum_{a=2}^{5} \left(f_{E,a}E_{a,t} + f_{1,a}[C_{1,a,t} + \hat{I}_{1,a,t}] + f_{2,a}[C_{2,a,t} + \hat{I}_{2,a,t}] + f_{3,a}[C_{3,a,t} + \hat{I}_{3,a,t}] \right)$$

where *f* denotes an adult equivalent factor (AEF). Two sets of AEFs are considered: (1) AEFs that <u>exclude</u> strays and pre-spawn mortalities as adult equivalents (i.e., only recruits that would have reached the spawning grounds); and (2) AEFs that <u>include</u> strays and pre-spawn mortalities as adult equivalents (i.e., all recruits that would have entered the Columbia River). Note that when all stray rates (r_a) and pre-spawn mortality rates (p_a) are equal to zero, both sets of AEFs will be the same.

For AER estimates that <u>exclude</u> strays and pre-spawn mortalities, the AEF factors are defined as (for ages 2 through 5):

$$f_{E,a} = 1$$

$$f_{E,a} = (1 - p_5)(1 - r_5)$$

$$AEF \text{ for age-5 ocean impacts}$$

$$f_{E,a} = m_4(1 - p_4)(1 - r_4) + (1 - m_4)s_5f_{1,a=5}$$

$$AEF \text{ for age-4 ocean impacts}$$

$$f_{E,a} = m_3(1 - p_3)(1 - r_3) + (1 - m_3)s_4f_{1,a=4}$$

$$AEF \text{ for age-3 ocean impacts}$$

$$f_{E,a} = m_2(1 - p_2)(1 - r_2) + (1 - m_2)s_3f_{1,a=3}$$

$$AEF \text{ for age-2 ocean impacts}$$

$$f_{E,a} = (1 - p_a)(1 - r_a)$$

$$AEF \text{ for columbia River impacts}$$

$$AEF \text{ for terminal impacts}$$

Here, ocean impacts and Columbia River impacts are reduced by straying rates and pre-spawn mortality rates, while terminal impacts are reduced by pre-spawn mortality rates.

For AER estimates that include strays and pre-spawn mortalities, the AEF factors are defined as:

$$f_{E,a} = 1/[(1 - p_a)(1 - r_a)]$$
AEF for escapement

$$f_{1,a=5} = 1$$
AEF for age-5 ocean impacts

$$f_{1,a=4} = m_4 + (1 - m_4)s_5f_{1,a=5}$$
AEF for age-4 ocean impacts

$$f_{1,a=3} = m_3 + (1 - m_3)s_4f_{1,a=4}$$
AEF for age-3 ocean impacts

$$f_{1,a=2} = m_2 + (1 - m_2)s_3f_{1,a=3}$$
AEF for age-2 ocean impacts

$$f_{2,a} = 1$$
AEF for Columbia R. impacts

$$f_{3,a} = 1/(1 - r_a)$$
AEF for terminal impacts

Here, escapements are expanded by straying rates and pre-spawn mortality rates, while terminal impacts are expanded by straying rates.

For either set of AEFs, the ocean-fishery AEFs $(f_{1,a})$ are computed recursively beginning with $f_{1,a=5}$, and require values for age-specific maturity rates (m_a) , which can be estimated from reconstructed abundances (e.g., see \hat{m}_a in equation 2). Additional data requirements and computational details are discussed below. It is worth noting that a cohort model can provide an equivalent but simpler approach to estimating AER. Specifically, if a cohort reconstruction is conducted (equation 2), then a parallel forward cohort model (equation 1) can be implemented using the reconstructed estimates for age-2 recruits ($N_{1,a=2}$) and maturity rates (m_a). After setting

all fishery impacts (*C* and *I*) to zero, the model values of E_a and $N_{2,a}$ represent adult equivalents excluding (E_a) and including ($N_{2,a}$) strays and pre-spawn mortalities.

Comments

As noted in the Background, it was indicated in the H&S Plan that jacks (i.e., age-2 fish) would <u>not</u> be included in measures of ocean recruits. As such, a more appropriate measure may be "age-3 recruits" rather than age-2 recruits. Note that if all coho salmon are assumed to recruit and mature at age 3, estimates of age-3 recruits and AER will only differ if either (1) stray rates and/or pre-spawn mortality rates are greater than zero and the AER measure of interest excludes these adult equivalents (equation 5); or (2) natural survival rates are applied at time steps after recruitment to ocean fisheries. For Chinook salmon, the age-2 (or age-3) recruits measure will be much greater than C+E and AER, depending on maturity schedules and natural survival rates (i.e., these early measures of recruits contain a high proportion of fish that would be expected to perish naturally, in contrast to AER, which accounts for natural survival rates). In short, the AER measures for Chinook or coho salmon will be of primary interest, as suggested in the H&S Plan.

Cohort model details

As described above, a cohort-model framework (e.g., Prager and Mohr 2001; Palmer-Zwahlen et al. 2006) will be required to estimate the age-2 and AER measures of ocean recruitment. However, it is currently unclear what level of spatial and temporal complexity is appropriate. The example cohort model (Figure 1) defines only three fisheries (ocean, Columbia River, and terminal) and an annual time step. While this might be sufficient for the Columbia River and terminal fisheries, greater complexity will be required to model incidental mortalities in ocean fisheries. Before addressing options for spatial complexity of fisheries, it is useful to review sources of incidental mortality.

Computing incidental mortalities

A key challenge of a cohort reconstruction is estimating incidental fishing mortalities (*I*). In general, three types of fisheries are applicable here (e.g., MEW 2008): (1) retention fisheries (in which all retrieved fish of legal size are retained); (2) non-retention fisheries (all retrieved fish are released); and (3) mark-selective fisheries (only landed ad-clip fish of legal size are retained). In conventional assessments, two types of incidental mortalities are computed, referred to here as "release mortalities" (fish that are retrieved and released but later die of injury) and "drop-off mortalities" (in hook and line fisheries, these are fish assumed to have been hooked but that were lost before retrieval and died due to gear-inflicted injury or predation).

All sources of fishing mortality depend on the number of fish "encountered" (or "contacted") by the ocean fishery, that is, the number of fish caught and successfully retrieved. For the *j*th fishery (at a given time step), example calculations of the various age-specific mortalities are as follows (e.g., Prager and Mohr, 2001; Pyper et al. 2012):

$$V_{j,a} = N_a v_{j,a}$$
Encounters (contacts) $C_{j,a} = V_{j,a}q_{j,a}$ Catch $R_{j,a} = V_{j,a}(1-q_{j,a})r_{j,a}$ Release mortalities $D_{j,a} = V_{j,a}d_{j,a}$ Drop-off mortalities

Incidental mortalities

$$I_{j,a} = R_{j,a} + D_{j,a} = V_{j,a}[r_{j,a}(1 - q_{j,a}) + d_{j,a}]$$

where

(7)

V = number of encounters

v = proportion of age-specific abundance (N) encountered (contact rate)

q = proportion of encounters retained

R = number of release mortalities

r = catch-and-release mortality rate

D = number of drop-off mortalities

d = additional fraction of the total encounters assumed as drop-off mortalities

As observed in equation (7), incidental mortalities are the sum of release mortalities (*R*) and drop-off mortalities (*D*). In a retention fishery, catch by age (C_a) can be estimated via CWT expansions, and q_a represents the proportion of fish that are of legal size (assuming size limits). In this case, the number of total encounters is given by $V_a = C_a / q_a$, and hence, incidental mortalities can be computed as

(8)
$$I_{j,a} = \frac{C_{j,a}}{q_{j,a}} [r_{j,a}(1-q_{j,a}) + d_{j,a}].$$

If virtually all fish (e.g., at age 2) are below the size limit, q_a is effectively zero, and an alternative estimate of encounters is required (as for non-retention fisheries below). Size limits may only be applicable for Chinook, in which case, incidental mortalities for coho would be simply $I_{j,a} = C_{j,a}[1+d_{j,a}]$, where *j* represents all retention fisheries.

A non-retention fishery is more problematic. There are no CWT recoveries to estimate encounter rates, so an estimate of v_a (the proportion of age-specific abundance N_a encountered) is required. In non-retention fisheries, $q_a = 0$ (all retrieved fish are released), and hence, incidental mortalities are given by

(9)
$$I_{j,a} = N_a v_{j,a} [r_{j,a} + d_{j,a}].$$

A mark-selective fishery is essentially the same as a retention fishery for marked fish (e.g., adclipped hatchery fish), or the same as a non-retention fishery for unmarked fish (e.g., natural production).

Spatial complexity for ocean fisheries

The most broadly applied (conventional) uses of cohort modelling for Chinook and coho salmon are contained within the assessment models used by technical committees of the Pacific Marine Fisheries Council (PFMC) and Pacific Salmon Commission (PSC). These include the coho and Chinook versions of FRAM (MEW 2008) and the PSC Chinook Model (CTC 2014a). I also searched relevant agency literature and contacted several WDFW staff to see if other cohort reconstructions had been specifically developed for Lewis River (or similar) salmon stocks. The only examples I found with specific relevance were by Cramer (1996, 1997), in which reconstructions were completed for several Cowlitz River and Lewis River runs.

My thoughts on model complexity have evolved. Initially, I pursued an approach in which cohort models for Lewis River runs would mimic (to the extent possible) the fishery structures and methods used in the coho/Chinook FRAMs and/or PSC Chinook Model. My reasoning was that:

- (a) These model frameworks provide the most defensible methods and structures available;
- (b) The present complexity of ocean fisheries and regulations is extensive (e.g., Figure 2);
- (c) The PFMC and PSC assessments are updated annually, documenting changes in fishery regulations and relevant parameter values; and
- (d) I thought it would be relatively easy to obtain the essential "data tables" (e.g., within FRAM) that translate RMIS recovery locations (for CWTs) to modelled fisheries, as well as those tables that link fisheries with their specific annual regulations (e.g., size limits, periods of non-retention, mark-selective status, etc.).

However, I had recent discussions with Gary Morishima and Larry Lavoy (who collectively have decades of experience with these assessment models), which discouraged this idea. My impression is that it would be a challenge to obtain the essential "data tables" in (d) above, and that the entire approach would be overly complex. As noted by Larry Lavoy, the accuracy of cohort reconstructions usually depends, to a much greater extent, on having solid estimates of age-specific escapement and terminal fishing harvests, rather than having precise estimates of incidental mortalities.

I therefore recommend use of a relatively simple structure for ocean fisheries in Lewis River cohort reconstructions (focused on marked fish). I have not flushed out all of the details yet, but it will likely involve omitting incidental mortalities for certain fisheries (e.g., non-retention fisheries for Chinook, low impact net and seine fisheries, etc.). For validation, reconstructed estimates of incidental mortalities could be compared with (or supplemented by) those estimated for specific indicator stocks that are modelled in PFMC and PSC annual analyses (e.g., Willamette River spring Chinook). Total fishing mortalities for unmarked fish (i.e., accounting for mark-selective fisheries) will be derived using escapement recoveries of DIT releases.

As discussed below, I developed a preliminary model and conducted reconstructions for Lewis River spring Chinook for numerous brood years. These analyses provide an initial indication of maturity rates, incidental mortalities, and relative differences among the three measures of ocean recruits.

Fishery	Location	Period	2003	2004	2005	2006	2007	2008	2009	2010	2011
Sport	B.C. Strait of Juan de Fuca, selected subareas	Mar–Apr						٧	٧	٧	٧
Sport	WA/OR Ocean Area 1-4	June								٧	٧
Sport	WA PS Area 5	Summer	٧	٧	٧	٧	٧	٧	٧	٧	٧
Sport	WA PS Area 6	Summer	٧	V	٧	٧	٧	٧	٧	٧	٧
Sport	WA PS Area 7	Winter			1			٧	٧	٧	٧
Sport	WA PS Area 8.1	Winter			٧	٧	٧	٧	٧	٧	٧
Sport	WA PS Area 8.2	Winter			٧	٧	٧	٧	٧	٧	٧
Sport	WA PS Area 9	Summer					٧	٧	٧	٧	٧
Sport	WA PS Area 9	Winter						V	V	V	V
Sport	WA PS Area 10	Summer					٧	٧	٧	٧	٧
Sport	WA PS Area 10	Winter						٧	V	V	٧
Sport	WA PS Area 11	Summer					V	٧	٧	٧	٧
Sport	WA PS Area 11	Winter							٧	V	٧
Sport	WA PS Area 12	Winter								V	V
Sport	WA PS Area 13	Summer	<u> </u>				٧	V	V	V	V
Sport	Nooksack	Sep-Dec		V	V	٧	V	V	V	V	V
Sport	Skykomish	Jun-July	V	V	V	V	V	V	V	V	V
Sport	Carbon and Puyallup	Aug-Dec	V	V	V	V	V	V	V	V	V
Sport	Upper Skagit	Jun-July			V	V	V	V	V	V	٧
Sport	Nisqually	Jul–Jan				٧	V	V	V	V	٧
Sport	Skokomish	Aug-Dec				-	-	-	-	V	V
Sport	Quillayute	Feb-Dec	V	V	V	V	V	V	V	V	٧
Sport	Hoh	May-Aug						V	٧	٧	٧
Sport	Willapa Bay and tributaries	Jul–Jan								V	٧
Commercial	Willapa Bay	Aug-Nov								V	V
Sport	Columbia	Summer	V	V		V		V		V	٧
Sport	Lower Columbia	Spring	V	V	V	٧	٧	V	V	V	٧
Sport	Lower Columbia tributaries	Fall									٧
Commercial (tangle net)	Lower Columbia	Spring	٧	٧	٧	۷	٧	٧	٧	٧	٧
Commercial, (large net)	Lower Columbia	Spring	٧	٧	٧	٧	٧	٧	٧	٧	٧
Sport	Willamette	Spring	٧	٧	٧	٧	٧	٧	٧	٧	٧
Sport	Yakima	Spring		V				٧		٧	٧
Sport	Lower Snake	Fall						٧	V	٧	٧
Sport	Lower Snake	Spring								٧	٧
Sport	Oregon terminal	Spring						V	V	V	V

Table 4.1 Mark-selective fisheries occurring 2003–2011 (v).

Note: See SFEC (2013) for more detailed information on MSF proposals and fisheries.

Figure 2. Summary of a	mark-selective fisheries for Chinook salmon (Table 4.1 in CTC 2014a).
------------------------	---	--------------------------

Parameter values

Some of the required parameter values used in the cohort reconstructions can be obtained from FRAM (or PSC Chinook model) documentation (e.g., MEW 2008; CTC 2014a, 2014b). These include age-specific survival rates (s; equation 2) and incidental mortality rates (r and d; equation 7). For spring Chinook, we will need to derive age-specific estimates for q (proportions of legal-sized fish), and perhaps v (contact rate), or obtain surrogate estimates for a suitable stock (e.g., Cowlitz or Willamette spring Chinook, both of which appear to have been modelled within FRAM over the years). These latter parameters will most influential for age-3 fish (assuming age-2 fish or "jacks" can be omitted); age-4 fish and older are predominantly of legal size.

Example parameter values, as well as straying rates, are discussed below in the context of the preliminary model and reconstructions.

Preliminary analyses

To get an initial understanding of the data, I used the RMIS database to obtain all CWT releases and corresponding recovery data for Lewis River hatcheries (Lewis River, Merwin, and Speelyai). Initially, I found the "report" formats for RMIS output to be either cumbersome or limiting, so I extracted all of the data in raw format (csv files) for use in Excel and R (a statistical programming package). I then developed "key tables" that allowed me to filter and process the raw data as needed (in R). This overall approach provided an efficient and flexible platform for analysis.

The following data summaries and analysis are <u>exploratory</u> only. It was not my intention to examine only certain release types (e.g., production versus experimental releases) or address other nuances. Rather, I was interested in developing analytical procedures (for later use with refined datasets) and characterizing general patterns of age-specific CWT recoveries across years (i.e., to get a "sense" for the data and runs).

Data summaries

Hatchery releases were filtered to include only those for spring Chinook and coho (type N and S) released in the Lewis River basin. Releases began in brood year 1972 for spring Chinook, 1976 for coho (type S), and 1986 for coho (type N). I further limited releases to brood years 1988-2008 (a period when releases were made for all runs in each year, with almost ages of spring Chinook recovered). This provided a total of 115 releases (by specific tag code), which are summarized in Table 2. The total number of CWTs released were roughly 5.1, 2.4, and 2.7 million for spring Chinook, coho (N), and coho (S), respectively.

	LEWIS	SPEELYAI
Chinook (spr)	43	1
Coho (type N)	35	0
Coho (type S)	34	2

 Table 2. Total hatchery releases (by tag code) across brood years 1988-2008.

A key step for simplifying cohort models is to define a limited set of fisheries for computing incidental mortalities. Recovery locations in RMIS are defined via a "fishery code" and a "location code" (among other variables). Across the 115 releases, CWTs recoveries were associated with 36 unique fishery codes (Table 3) and over 400 location codes. Note that fishery codes (Table 3) include recoveries at hatcheries (code 50) and spawning grounds (code 54). To simplify the recovery structure, I pooled fishery codes into ten categories ("pooled groups"), which were then further pooled into four "lumped groups" for summaries (Table 3). Again, these are tentative and for exploratory purposes only.

Recoveries (across years) are summarized by pooed group in Table 4. These data correspond to "estimated" recoveries (i.e., expanded estimates provided by RMIS that account for sampling fractions), with the exception of "Spawning Ground" recoveries for coho (these were reported almost exclusively as observed recoveries without expansions). Note that the miscellaneous fishery codes assigned to the "Other Ocean" and "Other Freshwater" pooled groups (Table 3) account for very low proportions of the total recoveries (Table 4).

Other interesting summaries included age-specific recoveries by lumped group (Table 5) and by group and month (not shown).

Strays

To provide a rough indication of potential straying rates, I tabulated recoveries by specific location (RMIS field "location name") within the four fishery codes corresponding to hatchery (Table 6), spawning ground (Table 7), freshwater sport (Table 8), and Columbia River sport recoveries (Table 9).

For example, across brood years, 3.4% of the estimated recoveries of spring Chinook occurred at hatchery facilities outside of the Lewis River basin (Table 6). (Assuming I identified in-basin facilities correctly). Only 0.1% of coho were recovered at out-of-basin facilities. Roughly 1% to 2% of observed spawning-ground recoveries appear to be outside the Lewis River basin (e.g., Kalama River; Table 7). Similar inferences can be drawn using freshwater sport (Table 8) and Columbia River sport recoveries (Table 9), recognizing that these are much more ambiguous in nature (i.e., fish captured in other tributaries or upstream in the Columbia River may have returned to the Lewis River basin).

Fishery	Fishery	Pooled	Lumped
code	name	group	group
10	Ocean Troll (non-treaty)	Ocean Troll	Ocean Catch
11	Ocean Troll - Day Boat	Ocean Troll	Ocean Catch
12	Ocean Troll - Trip Boat	Ocean Troll	Ocean Catch
15	Treaty Troll	Ocean Troll	Ocean Catch
20	Ocean Gillnet non-treaty	Other Ocean	Ocean Catch
21	Columbia River Gillnet	Columbia River Gillnet	Freshwater Catch
22	Coastal Gillnet	Other Ocean	Ocean Catch
23	Mixed Net and Seine	Other Ocean	Ocean Catch
24	Freshwater Net	Other Freshwater	Freshwater Catch
25	Commercial Seine	Other Ocean	Ocean Catch
26	Terminal Seine	Other Freshwater	Freshwater Catch
27	Freshwater Seine	Other Freshwater	Freshwater Catch
40	Ocean Sport	Ocean Sport	Ocean Catch
41	Sport (charter)	Ocean Sport	Ocean Catch
42	Sport (private)	Ocean Sport	Ocean Catch
43	Sport (jetty)	Ocean Sport	Ocean Catch
44	Columbia River Sport	Columbia River Sport	Freshwater Catch
45	Estuary Sport	Estuary Sport	Ocean Catch
46	Freshwater Sport	Freshwater Sport	Freshwater Catch
50	Hatchery	Hatchery	Hatchery
52	Fish Trap (freshwater)	Other Freshwater	Freshwater Catch
54	Spawning Ground	Spawning Ground	Spawning Ground
61	Test Fishery Net	Other Ocean	Ocean Catch
64	Test Fishery Unkn Mult Gr	Other Ocean	Ocean Catch
70	Juv Sampling - Troll(Mar)	Other Ocean	Ocean Catch
72	Juv Sampling - Seine(Mar)	Other Ocean	Ocean Catch
74	Juv Sampling - trawl(mar)	Other Ocean	Ocean Catch
80	Hake Trawl, At-Sea	Other Ocean	Ocean Catch
81	Groundfish Obs (Gulf AK)	Other Ocean	Ocean Catch
82	Grdfish Obs (Ber/Aleuts)	Other Ocean	Ocean Catch
83	Foreign Research Vessels	Other Ocean	Ocean Catch
85	Ocean Trawl By-Catch	Other Ocean	Ocean Catch
88	Juvenile Sampling - trawl	Other Ocean	Ocean Catch
90	Multiple Gear	Other Ocean	Ocean Catch
95	Confiscated	Other Ocean	Ocean Catch
800	Hake Trawl, Shoreside	Other Ocean	Ocean Catch

Table 3. Recovery locations for Lewis River hatchery releases by RMIS fishery code and name. Fishery codes were pooled (Pooled group) and then further combined (Lumped group).

_		Estimated			Percent		
Pooled group	Chinook	Coho (N)	Coho (S)	Chinook	Coho (N)	Coho (S)	
Ocean Troll	2273	2140	974	12.4%	2.7%	1.4%	
Ocean Sport	331	12052	7799	1.8%	15.2%	11.1%	
Other Ocean	101	261	77	0.5%	0.3%	0.1%	
Estuary Sport	50	682	1580	0.3%	0.9%	2.2%	
Columbia River Gillnet	348	15242	1578	1.9%	19.2%	2.2%	
Columbia River Sport	342	37	190	1.9%	0.0%	0.3%	
Freshwater Sport	3971	2171	1568	21.7%	2.7%	2.2%	
Other Freshwater	4	1	15	0.0%	0.0%	0.0%	
Hatchery	9404	45923	55494	51.3%	57.9%	78.7%	
Spawning Ground	1492	815	1212	8.1%	1.0%	1.7%	
Total	18315	79322	70487	100.0%	100.0%	100.0%	

Table 4. Recoveries by pooled group for Lewis River hatchery releases of spring Chinook and coho (all years combined).

Table 5. Recoveries by lumped group and age for Lewis River hatchery releases of spring Chinook and coho (all years combined).

Run	Group	age=2	3	4	5	6	7
Chinook	Ocean Catch	41	474	1852	357	30	0
	Freshwater Catch	289	292	1661	2279	142	2
	Hatchery	169	407	3651	4837	332	7
	Spawning Ground	8	41	469	919	55	0
Coho (N)	Ocean Catch	22	15101	6	4	0	0
	Freshwater Catch	747	16704	0	0	0	0
	Hatchery	5846	40076	0	0	0	0
	Spawning Ground	27	788	0	0	0	0
Coho (S)	Ocean Catch	34	10395	0	0	0	0
	Freshwater Catch	352	2996	4	0	0	0
	Hatchery	7589	47905	0	0	0	0
	Spawning Ground	28	1184	0	0	0	0

	-	•	•
Location	Chinook (Spr)	Coho (N)	Coho (S)
ALSEA HATCHERY	0	1	0
BIG CR (LWR COL R)	0	1	1
BONNEVILLE HATCHERY	0	2	5
COLE RIVERS HATCHERY	0	5	2
COWLITZ SALMON HATCH	99	0	3
EAGLE CR NFH	0	0	1
ELK R HATCHERY	0	2	0
ENTIAT NFH	1	0	0
FALLERT CR HATCHERY	0	0	25
GEORGE ADAMS HATCHRY	0	1	0
KALAMA FALLS HATCHRY	249	18	17
LEWIS RIVER HATCHERY	1544	37848	45152
LTL WHITE SALMON NFH	0	0	1
MERWIN DAM FCF	7512	8034	10276
MINTER CR HATCHERY	0	1	1
ROCK CR HATCHERY	0	0	1
SALMON R HATCHERY	0	2	0
SANDY HATCHERY	0	2	1
WASHOUGAL HATCHERY	0	5	7
Total	9404	45923	55494
Lewis total	9056	45882	55428
Other total	348	41	66
Percent other	3.7%	0.1%	0.1%

Table 6. Estimated recoveries at hatchery facilities by location (all years combined).

-			
Location	Chinook (Spr)	Coho (N)	Coho (S)
ABERNATHY CR 25.0297	0	0	1
BITTER CR 27.0367	0	1	0
CEDAR CR 27.0339	26	22	554
COLVIN CR 27.0392	0	21	119
ELK VALLEY CR	0	1	0
FIDDLE CR (SILTCOOS)	0	1	0
GNAT CR (LWR COL R	0	1	0
JOHNSON CR 27.0327	0	7	6
KALAMA R 27.0002	3	2	15
LEWIS R - EF 27.0173	1	3	29
LEWIS R -NF 27.0168	39	388	162
LEWIS R 27.0168	35	41	26
LEWIS R & CEDAR CR	122	0	0
LEWIS R + LEWIS R-NF	45	320	288
LITTL WHITE SALMON R	0	1	0
MILL CR 25.0284	0	1	2
MOON CR TRIB A (N FK COQU	0	1	0
NETTLE CR (ALSEA R)	0	1	0
NEWTON CR	0	0	1
PARADISE CR SEC #2	0	0	1
PUP CR 27.0345	0	0	2
ROSS CR 27.0305	0	3	0
SCHOLFIELD CR (UMPQU	0	0	1
SILVER CR (ROGUE R)	0	0	1
UMPQUA R SPAWN 43	0	0	3
WIND R 29.0023	0	0	1
Total	271	815	1212

Table 7. Observed spawning-ground recoveries by location (all years combined).

Location	Chinook (Spr)	Coho (N)	Coho (S)
CASCADE R -LOWER 3.1411	0	0	9
CHEHALIS R 22.0190	0	4	0
COWLITZ R 26.0002	14	0	0
KALAMA R 27.0002	109	0	0
LEWIS R -NF 27.0168	561	1175	870
LEWIS R 27.0168	2635	630	644
LEWIS R & CEDAR CR	227	0	0
LEWIS R + LEWIS R-NF	365	362	31
TOUTLE R-NF 26.0314	0	0	14
WILLAMETTE R LWR BTS	51	0	0
WIND R 29.0023	8	0	0
Total	3971	2171	1568

Table 8. Estimated recoveries in "freshwater sport" fisheries by location (all years combined).

Table 9. Estimated recoveries in Columbia River sport fisheries by location (all years combined).

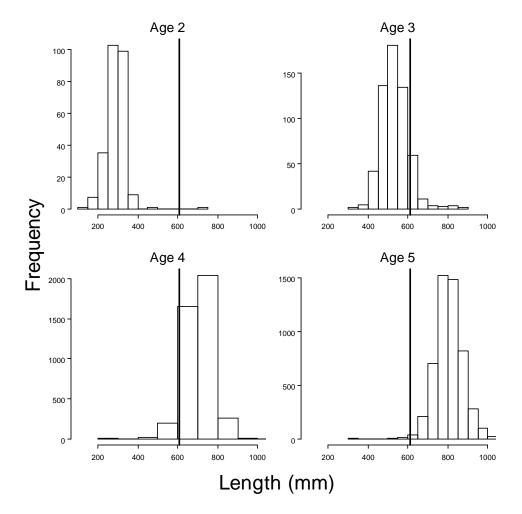
Estimated	Chinook (Spr)	Coho (N)	Coho (S)
COL R OR SPORT SEC 2	0	6	0
COL R OR SPORT SEC 3	20	0	0
COL R OR SPORT SEC 4	46	0	0
COL R OR SPORT SEC 5	18	7	16
COL R OR SPORT SEC 6	8	0	0
COL R OR SPORT SEC 7	18	7	70
COL R OR SPORT SEC 9	9	0	0
COL R OR SPT SEC 10	16	0	38
COL R WA SEC 10	55	0	0
COL R WA SEC 4	24	0	6
COL R WA SEC 6	9	0	13
COL R WA SEC 7	0	0	26
COL R WA SPORT SEC 3	22	0	0
COL R WA SPORT SEC 5	65	0	6
COL R WA SPORT SEC 8	27	18	15
COL R WA SPORT SEC 9	9	0	0
Total	342	37	190

Example cohort reconstructions and measures of ocean recruits

To develop initial methods, I conducted reconstructions for spring Chinook using pooled releases by brood year. (These analyses were coded in R to quickly produce results across brood years). The cohort model included:

- (a) Ages 3 to 6;
- (b) Annual time steps;
- (c) Survival rates (applied at year end) of 0.7 for age 3, 0.8 for age 4, and 0.9 for age 5 (consistent with CTC 2014a);
- (d) Fisheries defined by the "pooled groups" in Table 3; and
- (e) Incidental mortality rate parameters (*r* and *d*) used in CTC (2014a), as summarized below in Table 10.

The model did not include straying rates or pre-spawning mortality, and all hatchery and spawning ground recoveries were included regardless of location. Crude estimates of the proportion of legal-sized fish (q) were derived using fork length distributions of hatchery recoveries and an assumed size limit of 24 inches (Figure 3). The estimates of q were 0.07 for age 3, 0.95 for age 4, and 1.0 for ages 5 and 6.


Results: Estimates of maturity rates are presented in Table 11, while Table 12 summarizes estimated recoveries and measures of ocean recruits by brood year. Obviously, recoveries were limited for some brood years (e.g., 1991 and 1995), yielding unreliable estimates, but again this is just exploratory. Across years, median estimates of maturity rate were 0.02 for age 3, 0.33 for age 4, and 0.95 for age 5. As expected, reconstructed estimates of age-3 "ocean recruits" were much greater than C+E measures (about 65% higher on average). Estimates of adult equivalent returns (AER) tended to be slightly higher than C+E measures (about 4% higher on average).

Conclusions

I have developed procedures to rapidly extract and process RMIS data, and conduct the necessary cohort reconstructions to generate measures of ocean recruitment. Additional refinements to the cohort model are needed, but the framework is in place. The preliminary results for spring Chinook suggest that differences between measures of C+E and AER will be relatively minor (due in large part to low harvest rates), reducing the practical importance of simplified structures and assumptions in the cohort model (i.e., keep it reasonably simple). Reconstructions for marked coho will be even simpler with one age class and no size limits. The current framework allows for rapid assessment of historic data, which may be important if comparisons with other stocks (e.g., FRAM index stocks) are needed or requested.

	Catch-and-	release (<i>r</i>)	
Pooled group	Sublegal	Legal	Dropoff (d)
Ocean Troll	0.220	0.185	0.016
Ocean Sport	0.123	0.123	0.069
Other Ocean	0	0	0
Estuary Sport	0.123	0.123	0.069
Columbia River Gillnet	0.9	0.9	0
Columbia River Sport	0.123	0.123	0.069
Freshwater Sport	0.123	0.123	0.069
Other Freshwater	0	0	0

Table 10. Incidental mortality rate parameters used in the cohort model (values from Appendix F of CTC 2014b).

Figure 3. Fork length distributions of spring Chinook recoveries at hatchery facilities by age (all years). Solid vertical line depicts an example size limit of 24 inches.

	•		1 0	
Broo	dYr	Age 3	Age 4	Age 5
198	38	0.040	0.322	0.968
198	39	0.041	0.332	0.790
199	90	0.043	0.199	0.966
199	91	0.000	0.330	0.796
199	92	0.020	0.337	0.913
199	93	0.004	0.274	0.925
199	94	0.004	0.219	0.988
199	95	0.000	0.398	1.000
199	96	0.026	0.438	0.965
199	97	0.021	0.397	0.951
199	98	0.018	0.239	0.922
199	99	0.004	0.118	0.832
200	00	0.070	0.645	0.975
200)1	0.034	0.310	0.907
200)2	0.015	0.315	0.956
200)3	0.020	0.295	0.927
200)4	0.057	0.327	0.950
200)5	0.045	0.596	0.935
200)6	0.118	0.732	0.992
200)7	0.021	0.411	0.942
200)8	0.107	0.909	1.000

Table 11. Estimates of maturity rates by brood year derived from cohort reconstructions of hatchery releases of spring Chinook.

_		Estimated i	recoveries		00	cean recru	its
Brood	Ocean	Freshwater		Spawning			
Year	Catch	Catch	Hatchery	Ground	C+E	Age 3	AER
1988	501	1264	246	286	2297	3890	2410
1989	176	269	72	100	618	1118	687
1990	58	352	205	31	646	1147	693
1991	2	6	21	0	29	50	30
1992	15	107	231	40	393	651	398
1993	36	19	95	15	166	287	171
1994	34	29	170	46	278	466	276
1995	3	24	50	8	85	140	86
1996	10	301	194	60	565	927	584
1997	330	614	754	261	1959	3476	2162
1998	345	301	1028	358	2031	3457	2066
1999	414	167	1003	149	1734	3097	1766
2000	49	159	707	0	915	1370	924
2001	110	98	490	12	711	1195	733
2002	320	396	1909	62	2687	4471	2719
2003	89	101	535	2	727	1230	746
2004	16	23	223	0	262	422	264
2005	36	41	218	55	349	582	383
2006	69	71	676	0	816	1243	873
2007	20	16	144	0	181	289	180
2008	79	17	256	0	352	494	356
Total	2713	4374	9228	1484	17799	30002	18508

Table 12. Estimated recoveries and measures of ocean recruitment (by brood year) for hatchery releases of spring Chinook.

Next steps

Remaining tasks include:

- (1) Finalize the cohort models for <u>marked</u> spring Chinook and coho runs. I recommend that the time steps, equation structures, and assumed parameter values mimic those of the Chinook and coho versions of FRAM, which are most applicable to Lewis River runs (I currently have used PSC Chinook Model structures/assumptions). This will be a relatively easy task and would provide a clearly defensible framework. For spring Chinook, it is critical that a defensible age-3 estimate of *q* (proportion of vulnerable fish) be developed. For all runs, we need to account for, or defensibly dismiss, straying rates and pre-spawn mortality rates (review methods in Cramer 1996 & 1997 for strays).
- (2) Develop ocean recruit measures for <u>unmarked</u> runs based on DIT releases. It is not practical to model mark-selective fisheries and incidental mortalities within a cohort reconstruction. Fishery-specific computations within FRAM are complex and evolving (Conrad et al. 2013). It is much more reasonable to develop metrics using either DIT releases or exploitation-rate estimates for regional index stocks modelled in FRAM.
- (3) Review the Lewis River sampling programs and data sources that determine age-specific terminal harvests and escapements. These data are crucial for measuring brood-year ocean recruits. It is unlikely that the terminal harvest and escapement data pulled from RMIS will be complete or sufficient. The process will begin with in-river harvest/escapement data, followed by CWT releases and RMIS data, and finalized by appropriately expanding results to obtain complete production of hatchery and natural runs.
- (4) Outline annual procedures for (a) integrating the terminal harvest and escapement data with RMIS recoveries (ocean and Columbia River), and (b) computing measure of ocean recruits for Chinook, coho, and steelhead runs.

References

- Conrad, R., A. Hagen-Breaux, and H. Yuen. 2013. Unbiased methods for calculating mortality in mark-selective fisheries models for ocean salmon. North American Journal of Fisheries Management 33: 253–264.
- Cramer, S.P. 1996. Contribution to catch and spawning escapement of salmon produced at Cowlitz Salmon Hatchery and steelhead produced at Cowlitz Trout Hatchery. Contract report, S.P. Cramer & Associates, submitted to Tacoma Public Utilities.

- Cramer, S.P. 1997. Comparative Contribution to Catch and Escapement of Fall Chinook Fingerlings from Cowlitz Hatchery to that of Wild Fish From the Lewis River. Contract report, S.P. Cramer & Associates, submitted to Tacoma Public Utilities.
- CTC (Chinook Technical Committee). 2014a. 2013 Exploitation Rate Analysis and Model
 Calibration, Volume One. Pacific Salmon Commission Report TCCHINOOK (14)-1 V.
 1. Vancouver, British Columbia.
- CTC (Chinook Technical Committee). 2014b. 2013 Exploitation Rate Analysis and Model Calibration, Volume Two (Supplemental Appendices). Pacific Salmon Commission Report TCCHINOOK (14)-2 V. 1. Vancouver, British Columbia.
- MEW (Model Evaluation Workgroup). 2008. Fisheries Regulation Assessment Model (FRAM) Technical Documentation for Coho and Chinook v. 3.0. (Document prepared for the Council and its advisory entities.) Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, ortland, Oregon 97220-1384.
- PacifiCorp Energy and Cowlitz PUD. 2006. Services Review Draft: Lewis River Hatchery and Supplementation Plan (FERC Project Nos. 935, 2071, 2111, 2213). April 2006.
- PacifiCorp Energy and Cowlitz PUD. 2010. Aquatic Monitoring and Evaluation Plan for the Lewis River. June 2010.
- Palmer-Zwahlen, M.L., A.M. Grover, and J.A. Duran. 2006. Feather River Chinook cohort reconstruction brood years 1998 and 1999 fall and spring runs. Final Report California Department of Fish and Game, Santa Rosa, CA.
- Prager, M. H. and M. S. Mohr. 2001. The harvest rate model for Klamath River fall Chinook salmon, with management applications and comments on model development and documentation. North American Journal of Fisheries Management 21:533–547.
- Pyper, B.J., Cramer, S.P., Ericksen, R.P., and Sitts, R.M. 2012. Implications of mark-selective fishing for ocean harvests and escapements of Sacramento River fall Chinook populations. Marine and Coastal Fisheries 4: 373-390.

Lewis River Fish Passage Report March 2014

Merwin Sorting Facility Fish Collection and General Operations

The Merwin Sorting Facility continued to operate daily through March 2014. During that period, a total 344 fish were captured; the majority (91%) of these fish were winter steelhead (n = 314). Other species collected included resident rainbow trout (n = 15), cutthroat trout (n = 11), sockeye salmon (n = 2), whitefish (n=1), and largescale sucker (n = 1). The two sockeye salmon were collected immediately following the spill event that occurred mid-March and were suspected to be kokanee.

River flow at Merwin Dam fluctuated approximately 5,020 cubic feet per second (cfs) to 26,400 cfs throughout the month of March. Heavy rainfall earlier in the month attributed to opening spill gates 2-4 at Merwin Dam; spill at Merwin Dam occurred from March 4th through March 10th, 2014.

Only the 30 cfs Ladder Water Supply (LWS) was used during the month of March. The Auxiliary Water Supply (AWS) system, which boosts attraction flow to 400 cfs, was still being tested. Full operation of the AWS system is anticipated in early April 2014.

Upstream Transport

A total 291 (111 m: 180 f) winter steelhead having a Blank Wire Tag (BWT) were collected and transported upstream during March 2014. Including these fish, a total 348 (132 m: 216 f) BWT steelhead have been transported and released into the headwaters of Swift Reservoir late 2013. In addition to winter steelhead, 8 cutthroat trout greater than 13 inches in length were also transported and released upstream. All other fish collected at the Merwin Sorting Facility were returned the river downstream of Merwin Dam.

Swift Floating Surface Collector

The Swift Floating Surface Collector (FSC) did not operate during March in consideration of the fish net repair project. Based on the project schedule, the FSC did go back into operation on March 31, 2014.

Jate	ı																											rw	vin	A		t T	por 'raj																											D			at (>13 inches)	at (< 13 inches)	Rainbow (< 20 inches)	out (> 13 inches)	out (< 13 inches)	sh		Ι	
Reporting Date					Sp	oring	Chin	ook												F	larly	v Co	ho													Late	e Co	oho						3	S. St	teelł	nead		W	. Stee	elhea	d		Fa	all C	hinc	ook		Sochava	.vc y	5		Cutthroat	tthro	oqui	É	u Tr	iitefi	cker	Daily Total	
porti	AI	D-Clip		AD+C	WT	CW	T Only	r	W	'ild		TOT	ΓAL		AD-	Clip		AD+	CWT		CWI	Γ Onl	у		Wild			TOTA	L		AD-Cl	lip	A	D+CV	VT	CW	VT On	nly	,	Wild		TO	TAL	1	Fresh	. 1	Recap	AI	D-Clip	BW	Т	Wild		AD-C	lip		Wil	d	222		Chum		Cui	Cui	Rai	Bu	Bu	M,	Sucl	ily '	
Re	М	F I	JK M	1 F	JK	М	F J	K N	A	F JI	K N	1 F	F JI	K N	1 I	F JI	K N	M I	J	IK I	M	F.	JK	М	F	JK	М	F	JK	М	F	JK	М	F	JK	М	F	JK	М	F	JK I	M	F JI	K M	ИF	FN	ИF	M	F	М	F	M	М	F	JK	М	F	JK	М	F	М	F								D	
01-Mar																																																			2														1					3	
02-Mar																							_																		_			_						1														_		_		_		2	
03-Mar			_					_				_				_							_								ļ		_									_		_			_	_	1		3		_	_	_	_								_		_				4	
04-Mar 05-Mar				_				_				+	+	-	+	_	+	+	+			+	_				<u> </u>	<u> </u>	<u> </u>		-	-	-		\square								_	_	+		_		_		2		_	-	-	_	_	+		-			1			_	_			3	
05-Mar 06-Mar		_	_	_			_	-	_			_	+	+	+	_		+	+		_	+	_				_	_	-		-		—	<u> </u>					_		_	_	_	-	+	_	_	1	_	5	2		_	-	-	-	4-	+						1		_	_			4	
06-Mar 07-Mar		_		-			_		-			_	-		+	_		-	-			_	-						-			-									-	_			-		-	1	-	5	1				-	-	-	-						-		-		-		1	
07-Mar 08-Mar				+		-				+					+	+		-			+	+							+																+			1	+	2	5						+	+												8	
09-Mar																			+												1	1																		_	-							1												-	
10-Mar																															1	İ.																1	1	6	5														2					15	
11-Mar																															1																				1																			1	
12-Mar																																																1	1	6																				23	-
13-Mar																																																		2													2							6	
14-Mar																							_																		_			_					1	12									1				5	2	5	_		1		34	
15-Mar																							_																											3																				6	
16-Mar			_					_				_				_							_								ļ		_									_		_			_	_	_	8			_	_	_	_			1					_	1	_				19	
17-Mar				_						_		_	_					_	_	_			_									-	-						-		_	_			_		_	1	_	10				_	_	_		_							1	_		_		28	
18-Mar 19-Mar			_	_				_		_		_	_	-		_		_	+	_			_									-	-								_	_	_	_	_	_	_	-	_	0			_	_	_	_		_						_		_		_		3	
20-Mar			_				_	-		_	_	_	_	-	_	_	+	+	+	_	_		-									-	-								_	_	_	-	_	_	_	-	_	1 7			-	_	_	-		-						_	1	-	_	-		4	
20-Mar				_			_		_			-	_		_	_	-	_	-			_	-						-	-	-	-									_		_	-	_			1		3					-		-	-						-	1	_		-	_	8	
21-Mar			-	-			-	-	_			_	+	-		_	+	+	+	_			-									+	-									_		-	-		_	2		1			-	-		-		-						-	-	-		-		6	
22-Mar												-			+			+	+				-		_						1	1				-	-		_						-				2	2		1			+		-	+								-				8	
24-Mar										+					+			-	+			+							1																+					4				1	1		+	+							1					10	
25-Mar																																1																	1																1					1	
26-Mar																															1																	2		8	18	1							1											29	_
27-Mar																																																	1	9		1					1								1				1	28	
28-Mar																																																		2																				9	
29-Mar																																							[1		9																				22	
30-Mar			_												+	\perp													<u> </u>		-		<u> </u>																_	4							+	+							1					19	
31-Mar		_					_	_				_	_	4				_	_				_						<u> </u>		_		-									_	_	_			_	1			8			_	-	_	_	_		_				_		_	_			15	
Monthly	0	0	0 0	0	0	0	0 0	0 0	D	0 0	D O) 0	0 0	0) (0 0) (D)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0) 0	0 0	0 (0 0	13	3 7	111	180	1 2	0	0	0	0	0	0	2	0	0	0	8	3	15	0	0	1	1	344	ł
Annual	0	0	• •	0	0	0	0								, c					0		0	•	0	0	0	0	0	0	10	4	3	0	0	0	0	0	0	2	0	, 0	7.	4 6	, .			, o	72	75	132	216	- ~	0	0	0	•	0	0	2	0	0	0	6	3	16	•	0	-	-	549	

Thursday, April 3rd, 2014