nhc

Lewis River Hydroelectric Projects Settlement Agreement

Lower Constructed Channel Habitat Options

Presentation to the Aquatics Coordinating Committee (ACC)

Derek Ray, P.Geo. Thursday, March 8, 2007 Ariel, Washington

northwest hydraulic consultants Inland and Alpine Fisheries Consulting

Lower Constructed Channel

Length: 1100 ft
Width: 30 to 60 feet
Relatively low gradient of 1.3%
Flow control at inlet – 14 cfs
Seepage flow from adjacent canal

 Gravel and boulders with significant fine sediment inputs
 Outlet drains to Lewis River

hC IAF

Habitat Assessment

Physical Assessment

-Form -Process -Function •Biological Assessment -Species present

-Future species

-Limiting habitat types

Habitat Assessment – Physical

Early succession riparian community

- Constant discharge
- Generally low gradient
- Fine sediment transport
- **Beaver activity**
- Surprisingly unstable

Habitat Assessment – Biological

Assumed fish to benefit at present

- Rainbow trout
- Cutthroat trout
- Brook trout
- Kokanee

As they are re-introduced

- Spring Chinook
- Winter run Steelhead
- Coho

Anadromous

nhc IAF(

Resident

Habitat Assessment – Biological

Limiting habitat conditions

- Pools residual depth
- Spawning lack of gravel, fine sediments, low velocities
- Access potential velocity barrier at mouth
- Cover lack of effective in-channel wood
- Stability long-term stability is compromised by site and riparian conditions

Habitat Assessment – Conclusion

The Constructed Channel exists as a functioning channel that appears to support a variety of fish species as well as other aquatic organisms.

However, there are limitations to the productivity of the site that could be improved upon with a moderate intervention.

Habitat Goals

Physical

Enhancement of existing habitat
Promote long-term channel stability
Promote long-term stability of habitat elements
Improve riparian health and diversity
Reduce fine sediment inputs
Improve flushing and/or storage of fine sediments

Habitat Goals

Biological

- -Enhancement of existing habitat
- -Create additional spawning
- –Improve riparian health and diversity
- Improve quality and diversity of rearing habitat
- Reduce or eliminate barriers to migration
- –Increase instream habitat diversity

Proposed Habitat Plan

Habitat Plan was designed to:

- -Function within the existing processes
- -Minimize adverse impacts to the site
- -Be constructible
- Provide various design components that can be implemented independently
- Allow post-construction modification without machine access

Components:

Outlet channel realignment
Channel narrowing using LWD
Porous rock weirs
Raised planting pads
Inlet channel realignment
Off-channel ponds and pools
Coniferous riparian planting

Riparian planting Purpose: -Accelerate natural succession -Greater diversity in the riparian community -Improve habitat for non-aquatic species -Make use of raised planting pads and access routes **Method:** -Mix of species but mostly conifers -Some fruit bearing species nhc IAF(

Log Structures

Riparian Community

Interaction with a mature riparian community:

Channel form
Nutrient cycles
Shading

Riparian Enhancement

Planted: 2003 Photo: 2006

Constructed Channels

Howlow River, Vancouver Island

Questions and Discussion...