

Private Generation Long-Term Resource Assessment (2019-2038)

Prepared for:

PacifiCorp

Prepared by: Jay Paidipati Shalom Goffri Andrea Romano Ryan Auker

August 15th, 2018

Navigant Consulting, Inc. 1375 Walnut Street, Suite 100 Boulder, CO 80302

415.356.7100 navigant.com

TABLE OF CONTENTS

Executive Summary	1
Key Findings	2
Report Organization	6
Private Generation Market Penetration Methodology	8
1.1 Methodology	8
1.2 Market Penetration Approach	8
1.3 Assess Technical Potential	9
1.4 Simple Payback	9
1.5 Payback Acceptance Curves	10
1.6 Market Penetration Curves	10
1.7 Key Assumptions	12
1.7.1 Technology Assumptions	
1.7.2 Scenario Assumptions	
1.7.3 Incentives	19
Results	24
1.8 PacifiCorp Territories	24
1.8.1 California	
1.8.2 Idaho	
1.8.3 Oregon	
1.8.4 Utah	
1.8.5 Washington	
1.8.6 Wyoming	
APPENDIX A. Customer Data	
APPENDIX B. System Capacity Assumptions	B-3
APPENDIX C. Washington high-efficiency cogeneration Levelized Costs	C-7
C.1 Key Assumptions	C-7
C.2 Results	C-8
APPENDIX D. Detailed Numeric Results	D-9
D.1 Utah	D-9
D.2 Oregon	D-14
D.3 Washington	D-20
D.4 Idaho	D-25
D.5 California	D-31
D.6 Wyoming	D-36

DISCLAIMER

This report was prepared by Navigant Consulting, Inc. (Navigant) for PacifiCorp and/or its affiliates or subsidiaries. The work presented in this report represents Navigant's professional judgment based on the information available at the time this report was prepared. Navigant is not responsible for the reader's use of, or reliance upon, the report, nor any decisions based on the report.

NAVIGANT MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESSED OR IMPLIED.

Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or the data, information, findings and opinions contained in the report.

August 15th, 2018

EXECUTIVE SUMMARY

Navigant Consulting, Inc. (Navigant) prepared this Private Generation Long-term Resource Assessment on behalf of PacifiCorp. In this study private generation (PG) sources provide customer-sited (behind the meter) energy generation and are generally of relatively small size, generating less than the amount of energy used at a location. The purpose of this study is to support PacifiCorp's 2019 Integrated Resource Plan (IRP) by projecting the level of private generation resources PacifiCorp's customers might install over the next twenty years under base, low, and high penetration scenarios.

This study builds on Navigant's previous assessments, ^{1, 2} which supported PacifiCorp's 2015 and 2017 IRP, incorporating updated load forecasts, market data, technology cost and performance projections. Navigant evaluated five private generation technologies in detail in this report:

- 1. Photovoltaic (Solar) Systems
- 2. Small Scale Wind
- 3. Small Scale Hydro
- 4. Reciprocating Engines
- 5. Micro-turbines

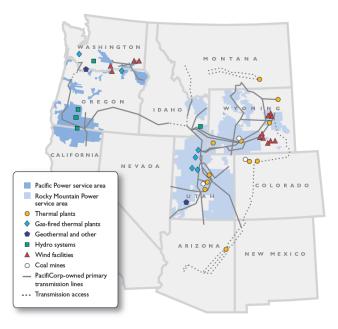
Project sizes were determined based on average customer load across the commercial, irrigation, industrial and residential customer classes.

Private generation technical potential ³ and expected market penetration⁴ for each technology was estimated for each major customer class in each state in PacifiCorp's service territory. Shown in Figure 1, PacifiCorp serves customers in California, Idaho, Oregon, Utah, Washington, and Wyoming.

¹ Navigant, Distributed Generation Resource Assessment for Long-Term Planning Study,

http://www.pacificorp.com/content/dam/pacificorp/doc/Energy_Sources/Integrated_Resource_Plan/2015IRP/2015IRPStudy/Naviga nt_Distributed-Generation-Resource-Study_06-09-2014.pdf.

² Navigant, Private Generation Long-Term Resource Assessment (2017-2036),


http://www.pacificorp.com/content/dam/pacificorp/doc/Energy_Sources/Integrated_Resource_Plan/2017_IRP/PacifiCorp_IRP_PG_ Resource_Assessment_Final.pdf.

³ Total resource potential factoring out resources that cannot be accessed due to non-economic reasons (i.e. land use restrictions, siting constraints and regulatory prohibitions), including those specific to each technology. Technical potential does not vary by scenario.

⁴ Based on economic potential (technical potential that can be developed because it's not more expensive than competing options), estimates the timeline associated with the diffusion of the technology into the marketplace, considering the technology's relative economics, maturity, and development timeline.

Figure 1 PacifiCorp Service Territory⁵

Key Findings

Using PacifiCorp-specific information on customer size and retail rates in each state and public data sources for technology costs and performance, Navigant conducted a payback analysis and used Fisher-Pry⁶ diffusion curves to determine likely market penetration for PG technologies from 2019 to 2038. This analysis was performed for typical commercial, irrigation, industrial and residential PacifiCorp customers in each state.

In the base scenario, Navigant estimates approximately 1.3 GW AC of PG capacity will be installed in PacifiCorp's territory from 2019-2038.⁷ As shown in Figure 2, the low and high scenarios project a cumulative installed capacity of 0.6 GW AC and 2.3 GW AC, respectively. The main differences between scenarios include variation in technology costs, system performance, and electricity rate escalation assumptions. These assumptions are provided in Table 8.

⁵ http://www.pacificorp.com/content/dam/pacificorp/doc/About_Us/Company_Overview/Service_Area_Map.pdf.

⁶ Fisher-Pry are researchers who studied the economics of "S-curves", which describe how quickly products penetrate the market. They codified their findings based on payback period, which measures how long it takes to recoup initial high first costs with energy savings over time.

⁷ All capacity numbers across all five resources are projected in MW-AC. Figures throughout the report are all in MW-AC.

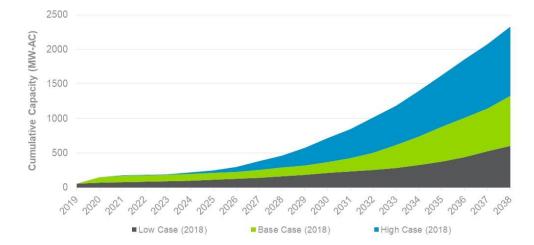


Figure 2 Cumulative Market Penetration Results (MW AC), 2019 - 2038

Figure 3 indicates that Utah and Oregon will drive most PG installations over the next two decades, largely because these two states are PacifiCorp's largest markets in terms of customers and sales⁸. Reference APPENDIX A for detailed state-specific customer data. In both states, PG installations are also driven by local tax credits and incentives. As displayed in Figure 4, solar represents the highest expected market penetration across the five technologies examined, with residential solar development leading the way, followed by non-residential solar (commercial, industrial, and irrigation). The Results section of the report contains results by state and technology for the high, base, and low scenarios.

Figure 3 also compares this study's results to Navigant's 2016 report. The three main factors that impacted the adoption results from 2016 to 2018 include: electric rate, system cost and policy. Reference

Table 1 for a detailed comparison of the 2016 and 2018 adoption results. In the short-term, factors impacting adoption have a dampening effect on the market, yet more aggressive reduction in solar PV system costs longer-term, result in increased adoption over time. In 2036, the latest year in both studies, cumulative adoption in the base case is around 1000 MW in the 2018 study and around 1200 MW in the 2016 study.

⁸ The report reflects the regulatory modifications to the PG program in Utah, as included in Schedule 136 (Utah Docket 14-035-114)

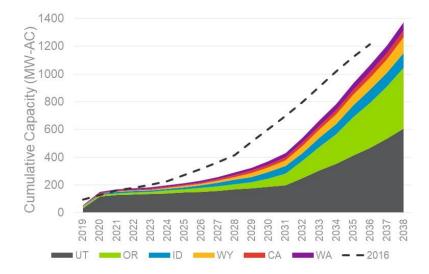
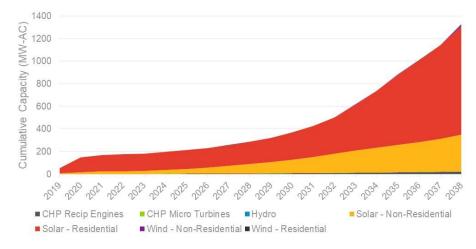
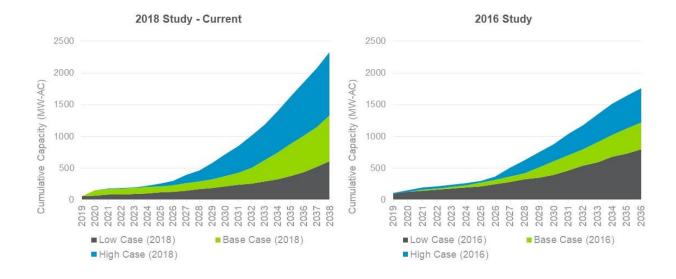



Figure 4 Cumulative Market Penetration Results by Technology (MW AC), 2019 – 2038, Base Case

The main factors that impacted the adoption results from 2016 to 2018 include: retail rates, system cost and policy. In general, the rates used in this study changed relative to the 2016 study as PacifiCorp's ability to calculate more accurate offset rates has increased. The technologies have not changed substantially since 2016, except for solar PV, where costs have continued to decline more rapidly than expected with ongoing declines expected in the future. Solar PV policies in key states (e.g., California, Oregon, Utah and Washington) have continued to fluctuate with an impact on expected near-term and long-term adoption. These changes between the 2016 and 2018 analysis are detailed in

Table 1.


Table 1 Adoption Change from Electric Rate, System Cost and Policy Changes from 2016 to 2018

State	Estimated Adoption Change	Key Adoption Drivers
CA	2036 - Market increased from 20 MW to 40 MW	 Rates: Increase (residential, commercial, industrial) Solar PV Cost: Declines in the later years are more sustained Policy: New mandatory solar for new building is included in the analysis
ID	2036 – Market increased from 40 MW to 90 MW, primarily in the residential sector	 Rates: Increase (residential, commercial, industrial) Solar PV Cost: Declines in the later years are more sustained Policy: No change
OR	2036 – Market remained relatively consistent, with adoption shifting to later years which seems reasonable given incentive declines offset by cost declines in future years	 Rates: Decrease (commercial, irrigation) Solar PV Cost: Declines in the later years are more sustained Policy: Incentive and cap reduced for residential and C&I Residential Energy Tax Credit – sunset in 2017
UT	2036 – Market decreased from 800 MW to 470 MW. Decline seems reasonable given residential incentive declines, and commercial rate declines	 Rates: Reduced net metering rates Solar PV Cost: Declines in the later years are more sustained Policy: Incentive for residential solar PV reduced from \$2000 to \$1600 in 2019 declining to \$400 in 2024 and \$0 beyond; NEM reduction to around 90% of full rates The report reflects the regulatory modifications to the PG program in Utah, as included in Schedule 136 (Utah Docket 14-035-114)
WA	2036 - Market increased from 25 MW to 50 MW	 Rates: Small changes only Solar PV Cost: Declines in the later years are more sustained Policy: Solar and wind FiT reduced rate for an 8 year period
WY	2036 - Market increased from 40 MW to 85 MW	 Rate: Small changes only Solar PV Cost: Declines in the later years are more sustained Policy: None

The impact of these factors, in aggregate, on PG adoption are shown in Figure 5. In the short-term, factors impacting adoption have a dampening effect on the market, yet more aggressive reduction in solar PV system costs longer-term, result in increased adoption over time. In 2036, the latest year in both studies, cumulative adoption in the base case is around 1,000 MW in the 2018 study and around 1,200 MW in the 2016 study.

Figure 5 Cumulative Market Penetration Results by Scenario (MW AC), 2018 and 2016 Study

Private Generation Long-Term Resource Assessment (2019-2038)

Report Organization

The report is organized as follows:

• Private Generation Market Penetration Methodology

- Results
- APPENDIX A: Customer Data
- APPENDIX B: System Capacity Assumptions
- APPENDIX C: Detailed Numeric Results

PRIVATE GENERATION MARKET PENETRATION METHODOLOGY

This section provides a high-level overview of the study methodology.

1.1 Methodology

In assessing the technical and market potential of each private generation (PG) resource and opportunity in PacifiCorp's service area, the study considered many key factors, including:

- Technology maturity, costs, and future cost projections
- Industry practices, current and expected
- Net metering policies
- Federal and state tax incentives
- Utility or third-party incentives
- O&M costs
- Historical performance, and expected performance projections
- Hourly PG Generation
- Consumer behavior and market penetration

1.2 Market Penetration Approach

The following five-step process was used to estimate the market penetration of PG resources in each scenario:

- 1. **Assess a Technology's Technical Potential:** Technical potential is the amount of a technology that can be physically installed without considering economics or other barriers to customer adoption. For example, technical potential assumes that photovoltaic systems are installed on all suitable residential roofs.
- 2. Calculate Simple Payback Period for Each Year of Analysis: From past work in projecting the penetration of new technologies, Navigant has found that Simple Payback Period is a key indicator of customer uptake. Navigant used all relevant federal, state, and utility incentives in its calculation of paybacks, incorporating their projected reduction and/or discontinuation over time, where appropriate.
- 3. **Project Ultimate Adoption Using Payback Acceptance Curves:** Payback Acceptance Curves estimate the percentage of a market that will ultimately adopt a technology, but do not factor in how long adoption will take.
- 4. **Project Market Penetration Using Market Penetration Curves:** Market penetration curves factor in market and technology characteristics, projecting the adoption timeline.
- 5. **Project Market Penetration under Different Scenarios.** In addition to the base case scenario, high and low case scenarios were created by varying cost, performance, and retail rate projections.⁹

⁹ In the case of Utah, the Base and High cases for 2019 and 2020 solar PV installations were adjusted to reflect the capacity cap included within Schedule 136 (Utah Docket 14-035-114)

These five steps are explained in detail in the following sections.

1.3 Assess Technical Potential

Each technology considered has its own characteristics and data sources that influence the technical potential assessment; the amount of a technology that can be physically installed within PacifiCorp's service territory without considering economics or other barriers to customer adoption. For this Navigant used the number of customers, system size, and access factors by technology. Navigant escalated technical potentials at the same rate PacifiCorp projects its sales will change over time. This also does not account for the electrical system's ability to integrate private generation.

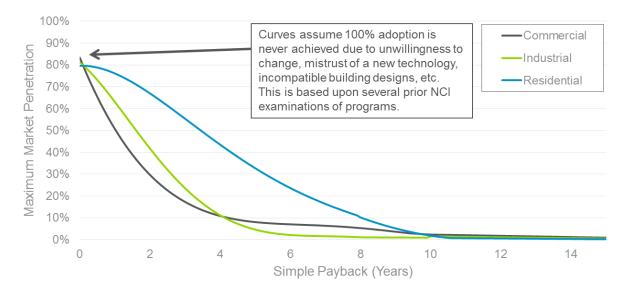
1.4 Simple Payback

For each customer class (i.e., residential, commercial, irrigation and industrial), technology, and state, Navigant calculated the simple payback period using the following formula:

Simple Payback Period = (Net Initial Costs) / (Net Annual Savings)

Net Initial Costs = Installed Cost – Federal Incentives – Capacity-Based Incentives*(1 – Tax Rate)¹⁰

Net Annual Savings = Annual Energy Bills Savings + (Performance Based Incentives – O&M Costs – Fuel Costs) * (1 – Tax Rate)¹⁰


- Federal tax credits can be taken against a system's full value if other (i.e. utility or state supplied) capacity-based or performance-based incentives are considered taxable.
- Navigant's Market Penetration model calculates first year simple payback assuming new installations for each year of analysis.
- For electric bills savings, Navigant conducted an 8,760-hourly analysis to consider actual rate schedules, actual output profiles, and demand charges. System performance assumptions are listed in Section 1.3 above. Solar performance and wind performance profiles were calculated for representative locations within each state based on the National Renewable Energy Laboratory (NREL) System Advisory Model (SAM). Building load profiles were provided by PacifiCorp and were scaled to match the average electricity usage for each customer class based on billing data.

¹⁰ Applies to all non-federal incentives regardless if it's coming from the state or another state-based entity.

1.5 Payback Acceptance Curves

For private generation technologies, Navigant used the following payback acceptance curves to model market penetration of PG sources from the retail customer's perspective.

Figure 6 Payback Acceptance Curves

Source: Navigant Consulting based upon work for various utilities, federal government organizations, and state/local organizations. The curves were developed from customer surveys, mining of historical program data, and industry interviews.

These payback curves are based upon work for various utilities, federal government organizations, and state local organizations. They were developed from customer surveys, mining of historical program data, and industry interviews.¹¹ Given a calculated payback period, the curve predicts the level of maximum market penetration. For example, if the technical potential is 100 MW, the 3-year commercial payback predicts that 15% of this technical potential, or 15 MW, will ultimately be achieved over the long term.

1.6 Market Penetration Curves

To determine the future PG market penetration within PacifiCorp's territory, Navigant modeled the growth of PG technologies from 2019 thru 2038. The model is a Fisher-Pry based technology adoption model that calculates the market growth of PG technologies. It uses a lowest-cost approach to consumers to develop expected market growth curves based on maximum achievable market penetration and market saturation time, as defined below.¹²

• Market Penetration – The percentage of a market that purchases or adopts a specific product or technology. The Fisher-Pry model estimates the achievable market penetration based on characteristics of the technology and industry. Market penetration curves (sometimes called S-

¹¹ Payback acceptance curves are based on a broad set of data from across the United States and may not predict customer behavior in a specific market (e.g. Utah customers may install solar at different paybacks than indicated by the payback acceptance curves due to market specific reasons).

¹² Michelfelder and Morrin, "Overview of New Product Diffusion Sales Forecasting Models" provides a summary of product diffusion models, including Fisher-Pry. Available: <u>law.unh.edu/assets/images/uploads/pages/ipmanagement-new-product-</u> <u>diffusion-sales-forecasting-models.pdf</u>

curves) are well established tools for estimating diffusion or penetration of technologies into the market. Navigant applies the market penetration curve to the payback acceptance curve shown in Figure 6 Payback Acceptance Curves.

• **Market Saturation Time** – The duration in years for a technology to increase market penetration from around 10% to 80%.

The Fisher-Pry model estimates market saturation time based on 12 different market input factors; those with the most substantial impact include:

- **Payback Period** Years required for the cumulative cost savings to equal or surpass the incremental first cost of equipment.
- **Market Risk** Risk associated with uncertainty and instability in the marketplace, which can be due to uncertainty regarding cost, industry viability, or even customer awareness, confidence, or brand reputation. An example of a high market risk environment is a jurisdiction lacking long-term, stable guarantees for incentives.
- **Technology Risk** Measures how well-proven and the availability of the technology. For example, technologies that are completely new to the industry have a higher risk, whereas technologies that are only new to a specific market (or application) and have been proven elsewhere have lower risk.
- **Government Regulation** Measure of government involvement in the market. A governmentstated goal is an example of low government involvement, whereas a government mandated minimum efficiency requirement is an example of high involvement, having a significant impact on the market.

The model uses these factors to determine market growth instead of relying on individual assumptions about annual market growth for each technology or various supply and/or demand curves that may sometimes be used in market penetration modeling. With this approach, the model does not account for other more qualitative limiting market factors, such as the ability to train quality installers or manufacture equipment at a sufficient rate to meet the growth rates. Corporate sustainability, and other non-economic growth factors, are also not modeled.

The Fisher-Pry market growth curves have been developed and refined over time based on empirical adoption data for a wide range of technologies.¹³ The model is an imitative model that uses equations developed from historical penetration rates of real products for over two decades. It has been validated in this industry via comparison to historical data for solar photovoltaics, a key focus of this study.

Navigant Consulting has used gathered market data on the adoption of technologies over the past 120 years and fit the data using Fisher-Pry curves. A key parameter when using market penetration curves is the assumed year of introduction. For the market penetration curves used in this study, Navigant assumed that the first-year introduction occurred when the simple payback period was less than 25 years (per the pay-back acceptance curves used, this is the highest pay-back period that has any adoption) or when state or local incentives were first introduced.

When the above payback period, market risk, technology risk, and government regulation factors above are analyzed, our general Fisher-Pry based method gives rise to the following market penetration curves used in this study:

¹³ Fisher, J. C. and R. H. Pry, "A Simple Substitution Model of Technological Change", Technological Forecasting and Social Change, 3 (March 1971), 75-88.

5

10

0

Source: Navigant Consulting, November 2008 as taken from Fisher, J.C. and R.H. Pry, A Simple Substitution Model of Technological Change, *Technological Forecasting and Social Change*, Vol 3, Pages 75 – 99, 1971.

Years Since Introduction

20

25

30

35

40

The model is designed to analyze the adoption of a single technology entering a market and assumes that the PG market penetration analyzed for each technology is additive because the underlying resources limiting installations (sun, wind, water, high thermal loads) are generally mutually exclusive, and because current levels of market penetration are relatively low (plenty of customers exist for each technology).

15

1.7 Key Assumptions

The following section details the key technology-specific and base, low and high scenario assumptions.

1.7.1 Technology Assumptions

The following tables summarize cost and performance assumptions for each technology. System size assumptions are provided in APPENDIX B.

1.7.1.1 Reciprocating Engines

A reciprocating engine uses one or more reciprocating pistons to convert pressure into rotating motion. In a combined heat and power (CHP) application, a small CHP source will burn a fuel (natural gas) to produce both electricity and heat. In many applications, the heat is transferred to water, and this hot water is then used to heat a building. In this study we assume the reciprocating engine generates electricity by using natural gas as the fuel.

¹⁴ Realized market penetration is applied to the maximum market penetration (Figure 7) for each technology, customer payback, and point in time. For example, a residential customer with a five-year payback would have a maximum market penetration of around 35 percent, as indicated by the residential payback acceptance curve (Figure 6). A technology that was introduced 10 years ago will have realized about 20 percent of its maximum market penetration (Figure 7), having a market penetration of about seven percent of the technical potential.

Navigant sized the system to meet the minimum customer load, assuming the reciprocating engine system would function to meet the customer's base load. Based on system size and product availability, reciprocating engines were assumed a reasonable technology for commercial and industrial customers. Assumptions on system capacity sizes in each state are detailed in APPENDIX B. Table 2 Reciprocating Engine Assumptions provides the cost and performance assumptions used in the analysis and the source for each.

PG Resource Costs	Units	2019 Baseline	Sources
Installed Cost – 100kW	\$/kW	\$2,970	EPA, Catalog of CHP Technologies, March 2015, pg. 2-15
Change in Annual Installed Cost	%	0.4%	ICF International Inc., Combined Heat and Power: Policy Analysis and 2011-2030 Market Assessment, pg. 92
Variable O&M	\$/MWh	\$20	ICF International Inc., Combined Heat and Power: Policy Analysis and 2011-2030 Market Assessment, pg. 92
Change in Annual O&M Cost	%	-1.0%	Navigant Assumption
Fuel Cost	\$/MWh	PacifiCorp Gas Forecast	PacifiCorp Forecast
PG Performance Assu	umptions		
Electric Heat Rate (HHV)	Btu/kWh	12,637	EPA, Catalog of CHP Technologies, March 2015, pg. 2-10

Table 2 Reciprocating Engine Assumptions¹⁵

1.7.1.2 Micro-turbines

Micro-turbines use natural gas to start a combustor, which drives a turbine. The turbine in turn drives an AC generator and compressor, and the waste heat is exhausted to the user. The device therefore produces electrical power from the generator, and waste heat to the user. In this study we assume the micro-turbine generates electricity by using natural gas as the fuel.

Navigant sized the system to meet the minimum customer load, assuming the reciprocating engine system would function to meet the customer's base load. Based on system size and product availability, reciprocating engines were assumed a reasonable technology for commercial and industrial customers. Assumptions on system capacity sizes in each state are detailed in APPENDIX B. Table 3 Micro-turbines Assumptions provides the cost and performance assumptions used in the analysis and the source for each.

¹⁵ EPA, Catalog of CHP Technologies: <u>www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies.pdf;</u> ICF, Combined Heat and Power Policy Analysis, <u>www.energy.ca.gov/2012publications/CEC-200-2012-002/CEC-200-2012-002.pdf</u>

PG Resource Costs	Units	2019 Baseline	Sources
Installed Cost – 30kW	\$/kW	\$2,685	EPA, Catalog of CHP Technologies, March 2015, pg. 5- 7
Change in Annual Installed Cost	%	-0.3%	ICF International Inc., Combined Heat and Power: Policy Analysis and 2011-2030 Market Assessment, pg. 97
Variable O&M	\$/MWh	\$23	ICF International Inc., Combined Heat and Power: Policy Analysis and 2011-2030 Market Assessment, pg. 97
Change in Annual O&M Cost	%	-1.0%	Navigant Assumption
Fuel Cost	\$/MWh	PacifiCorp Gas Forecast	PacifiCorp Forecast
PG Performance Assur	nptions		
Electric Heat Rate (HHV)	Btu/kWh	15,535	EPA, Catalog of CHP Technologies, March 2015, pg. 5-6

Table 3 Micro-turbines Assumptions¹⁶

1.7.1.3 Small Hydro

Small hydro is the development of hydroelectric power on a scale serving a small community or industrial plant. The detailed national small hydro studies conducted by the Department of Energy (DOE) from 2004 to 2013,¹⁷ formed the basis of Navigant's small hydro technical potential estimate. In the Pacific Northwest Basin, which covers WA, OR, ID, and WY, a detailed stream-by-stream analysis was performed in 2013, and DOE provided these data to Navigant directly. For these states, Navigant combined detailed GIS PacifiCorp service territory data with detailed GIS data on each stream / water source. Using this method, Navigant could sum the technical potentials of only those streams located in PacifiCorp's service territory. For the other two states, Utah and California, Navigant relied on an older 2006 national analysis, and multiplied the given state figures by the area served by PacifiCorp within that state. Table 4 provides the cost and performance assumptions used in the analysis and the source for each.

¹⁶ EPA, Catalog of CHP Technologies: <u>www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies.pdf;</u> ICF, Combined Heat and Power Policy Analysis, <u>www.energy.ca.gov/2012publications/CEC-200-2012-002/CEC-200-2012-002.pdf</u>

¹⁷ Navigant used the same methodology and sources as in the 2014 study.

PG Resource Costs	Units	2019 Baseline	Sources
Installed Cost	\$/kW	\$4,000	Double average plant costs in "Quantifying the Value of Hydropower in the Electric Grid: Plant Cost Elements." Electric Power Research Institute, November 2011; this accounts for permitting/project costs
Change in Annual Installed Cost	%	0.00%	Mature technology, consistent with other mature technologies in the IRP.
Fixed O&M	\$/kW-yr.	\$52	Renewable Energy Technologies: Cost Analysis Series. "Hydropower." International Renewable Energy Agency, June 2012.
Change in Annual O&M Cost	%	-1.0%	Navigant Assumption
PG Performance Ass	umptions		
Capacity Factor	%	50% ±5%	Average capacity factor variance will be reflected in the low and high penetration scenarios.

Table 4 Small Hydro Assumptions¹⁸

1.7.1.4 Solar Photovoltaics

Solar photovoltaic (solar) systems convert sunlight to electricity. Navigant applied a 15% discount factor to account DC to AC conversion¹⁹. System size was then multiplied by the number of customers and the roof access factor. Assumptions on system capacity sizes in each state are detailed in APPENDIX B and access factors remained consistent with the 2014 and 2016 studies. Table 5 Solar Assumptions provides the cost and performance assumptions used in the analysis and the source for each.

¹⁸ Note: No change from 2014 study.

¹⁹ Navigant used a 15% discount factor to account for DC to AC conversion in PV systems. This value is consistent with industry standards and current system design.

PG Resource Costs	Units	2019 Baseline	Sources	
Installed Cost – Res	\$/kW DC	UT: ~\$2,500 Other: \$2,750		
Installed Cost – Non-Res	\$/kW DC	All Markets: ~\$1,900	Navigant Forecast validated by NREL, U.S. Photovoltaic Prices and Cost Breakdowns: Q1 2017 Benchmarks for Residential, Commercial	
Average Change in Annual Installed Cost (2015-2034)	%	-2.8% (Res) -2.5% (Non-Res)	and Utility-Scale Systems	
Fixed O&M – Res	\$/kW-yr.	\$25	National Renewable Energy Laboratory, U.S. Residential Photovoltaic (PV) System Prices, Q4 2017 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices, Oct. 2014; National Renewable Energy Laboratory, Distributed Generation Renewable Energy Estimate of Costs, Accessed February 1, 2016	
Fixed O&M – Non-Res	\$/kW-yr.	\$23		
Change in Annual O&M Cost	%	-1.0%	Navigant Assumption	
DC to AC Derate Factor	#	0.85	Industry Standard	

Table 5 Solar Assumptions

As shown in Figure 8 and Figure 9, the rapid decline in solar costs over the past decade has driven private solar adoption across the country for all customer classes. In the past, these cost declines were primarily due to reduction in the cost of equipment (e.g. panels, inverters and balance of system components) driven by economies of scale and improvements in efficiency. Solar costs are expected to continue to decline over the next decade as system efficiencies continue to increase, although these declines are expected to occur at a slower rate than what occurred in recent years. In the long term, Navigant expects price reductions to decline as the industry matures and efficiency gains become harder to achieve.

Navigant's national solar cost forecast includes a low, base and high forecast. For this project, Navigant developed a PacifiCorp forecast which is the average between the national base and high forecast. Navigant decided to use this forecast for California, Idaho, Oregon, Washington and Wyoming, as all those states currently have small solar markets in PacifiCorp territory, resulting in less competition and economies of scale to drive down local solar costs. For Utah, Navigant used the base cost forecast, as Utah has a larger and more mature private solar market.

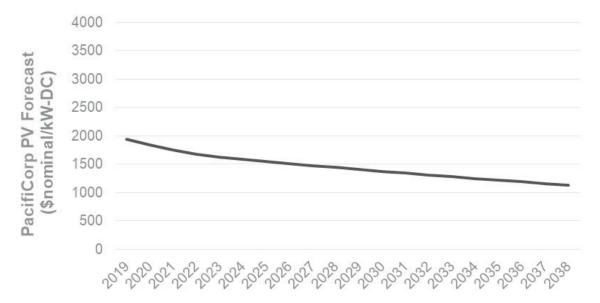
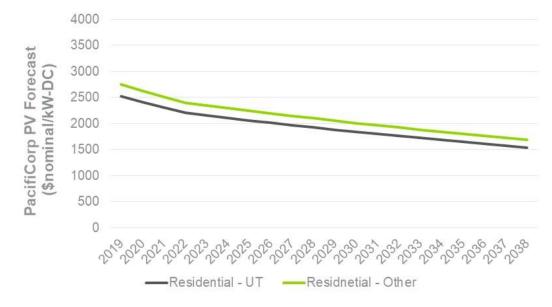



Figure 8. Non-Residential Solar System Costs, 2019-2038

The solar capacity factors (Table 5) were calculated using NREL's System Advisory Model for each state territory.

Table 6 Solar Capacity Factors²⁰

Performance Assumptions						
		(kW-DC/kWh AC)				
	UT	16.3%				
	WY	16.8%				
Capacity	WA	14.0%				
Factor	CA	16.6%				
	ID	16.0%				
	OR	12.4%				

1.7.1.5 Small Wind

Wind power is the use of air flow through wind turbines to mechanically power generators for electricity. Navigant sized the wind systems at 80% of customer load to reduce the chance that the wind system will produce more than the customer's electric load in a given year. System size was then multiplied by the number of customers and the access factor. The 2014 and 2016 study access factors were used for this study.

The following cost and performance assumptions were used in the analysis. Table 7 Wind Assumptions

PG Resource Costs	Units	2019 Baseline	Sources
Installed Cost – Res (2.5-10kW)	\$/kW	\$7,200	Department of Energy, 2014 Distributed Wind Market
Installed Cost – Com (11-100kW)	\$/kW	\$6,000	Report, August 2015
Change in Annual Installed Cost	%	0.0%	Mature technology, consistent with other mature technologies in the IRP.
Fixed O&M	\$/kW-yr.	\$40	Department of Energy, 2014 Distributed Wind Market Report, August 2015
Change in Annual O&M Cost	%	-1.0%	Navigant Assumption
	PG Performance Assumptions		sumptions
Capacity Factor	%	20% (2013) - 25% (2034)	Small scale wind hub heights are lower, with shorter turbine blades, relative to 30% capacity factor large scale turbines.

²⁰ Navigant used a DC to AC solar PV derate factor of 85%.

1.7.2 Scenario Assumptions

NAVIGANT

Navigant used the market penetration model to analyze three scenarios, capturing the impact of major changes that could affect market penetration. For the low and high penetration cases, Navigant varied technology costs, system performance, and electricity rate assumptions.

Scenarios								
Cases	Technology Costs	Performance	Electricity Rates	Other				
Base Case	See technology and cost section	As modeled	 Increase at inflation rate, assumed at 2.0% 	Assumes the net metering cap is achieved. Solar PV adoption forecast was adjusted in 2019 and 2020 to reflect this.				
				Adoption in all other years is based on customer economics.				
Low Attractiveness	PV: Years 1-10: Same as Base Case	PV: Same as Base Case Other: 5% worse	 Increases at 1.6%, 0.4%/year lower than 	Assumes adoptions in based on customer economics for all				
	 Years 11+: Rate of decline is 25% lower than base case 		the Base Case	years.				
	 Other: Mature technologies. Same as base case 							
	PV: Years 1-10: Same as Base Case	Reciprocating Engines: 0.5% better (mature)	 Increases at 2.4%, 0.4%/year higher than 	Assumes the net metering cap is achieved. Solar PV adoption				
High Attractiveness	 Years 11+: rate of decline is 50% higher than base case Other: Mature technologies. Same as 	 Micro-turbines: 2% better Hydro: 5% better (reflecting wide performance distribution uncertainty) PV/Wind: 1% better (relatively mature) 	the Base Case	forecast was adjusted in 2019 and 2020 to reflect this. • Adoption in all other years is based on customer economics.				
	base case							

Table 8 Scenario Variable Modifications

Technology cost reduction is the variable with the largest impact on market penetration over the next 20 years. Average technology performance assumptions are relatively constant across states and sites. Changes in electricity rates are modeled conservatively, reflecting the long-term stability of electricity rates in the United States. Navigant expects short-term volatility for all variables but when averaged over the 20-year IRP period, long-term trends show less variation.

1.7.3 Incentives

Federal and state incentives are a very important PG market penetration driver, as they can reduce a customer's payback period significantly.

1.7.3.1 Federal

The Federal Business Energy Investment Tax Credit (ITC) allows the owner of the system to claim a tax credit for a certain percentage of the installed PG system price.²¹ The ITC, originally set to expire in 2016 for residential solar systems and reduce to 10% for commercial solar systems, was extended for solar PV systems in December 2015 through the end of 2021, with step downs occurring in 2020 through 2022. The table below details how the ITC applies to the technologies evaluated in this study, however, this schedule may change in the future.

²¹ Business Energy Investment Tax Credit, <u>http://energy.gov/savings/business-energy-investment-tax-credit-itc</u>.

Technology	2019	2020	2021	2022	2023	>2023
Recip. Engines	10%	10%	10%	0%	0%	0%
Micro Turbines	10%	10%	10%	0%	0%	0%
Small Hydro	0%	0%	0%	0%	0%	0%
PV - Com	30%	26%	22%	10%	10%	10%
PV - Res	30%	26%	22%	0%	0%	0%
Wind - Com	12%	0%	0%	0%	0%	0%
Wind - Res	30%	26%	22%	22%	0%	0%

Table 9 Federal Tax Incentives

1.7.3.2 State

State incentives drive the local market and are an important aspect promoting PG market penetration. Currently, all states evaluated have full retail rate net energy metering (NEM) in place for all customer classes considered in this analysis. The study assumes that NEM policy remains constant, although future uncertainty exists surrounding NEM policy. Longer-term uncertainty also exists regarding other state incentives. Idaho also has a local state residential personal tax deduction for solar and wind projects. Currently, state incentives do not exist in California²² or Wyoming.

The report reflects the regulatory modifications to the PG program in Utah, as included in Schedule 136²³. The value of generated energy takes into consideration the reduced compensation for exported energy included in the tariff as well as the capacity cap (see section 1.8.4 for more detail).

The following tables detail the assumptions made regarding local state incentives.

²² In 2007, California launched the California Solar Initiative, however, incentives no longer remain in most utility territories, http://csi-trigger.com/.

²³ Utah Docket 14-035-114

Table 10 Oregon Incentives

Technology	2019	2020	2021	2022	2023	>2023
Recip. Engines	0	0	0	0	0	0
Micro Turbines	0	0	0	0	0	0
Small Hydro	0	0	0	0	0	0
PV – Com (\$/W)	\$0.50- \$0.20/W	\$0.50- \$0.20/W	\$0.50- \$0.20/W	\$0.50- \$0.20/W	\$0.50- \$0.20/W	\$0.50- \$0.20/W
PV – Res (\$/W)	\$0.55/W	\$0.55/W	\$0.55/W	\$0.55/W	\$0.55/W	\$0.55/W
Wind – Com (\$/kWh)	0	0	0	0	0	0
Wind – Res (\$)	0	0	0	0	0	0

* Energy Trust of Oregon Solar Incentive (capped at \$1.5M/year for residential). Table 11 Utah Incentives

Technolog y	2019	2020	2021	2022	2023	2023	>2024
Recip. Engines (%)	10	10	10	10	10	10	10
Micro Turbines (%)	10	10	10	10	10	10	10
Small Hydro (%)	10	10	10	10	10	10	10
PV – Com (%)	10	10	10	10	10	10	10
PV – Res (\$)*	\$1,600	\$1,600	\$1,600	\$1,200	\$800	\$400	\$0
Wind – Com (%)	10	10	10	10	10	10	10
Wind – Res (\$)*	\$1,200	\$800	\$400	\$0	\$0	\$0	\$0

*Renewable Energy Systems Tax Credit, Program Cap: Residential cap = \$2,000; commercial systems <660kW, no limit

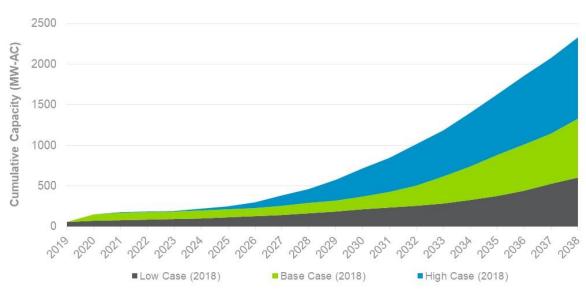
Table	12	Washington	Incentives
Table	-	masnington	moonuves

Technology	2019	2020	2021	2022	2023	>2023
Recip. Engines	0	0	0	0	0	0
Micro Turbines	0	0	0	0	0	0
Small Hydro	0	0	0	0	0	0
PV - Com (\$/kWh)*	\$0.04 (+\$0.04)	\$0.02 (+\$0.03)	\$0.02 (+\$0.02)	0	0	0
PV - Res (\$/kWh)*	\$0.14 (+\$0.04)	\$0.12 (+\$0.03)	\$0.10 (+\$0.02)	0	0	0
Wind − Com (\$/kWh)*	\$0.04 (+\$0.04)	\$0.02 (+\$0.03)	\$0.02 (+\$0.02)	0	0	0
Wind - Res (\$/kWh)*	\$0.14 (+\$0.04)	\$0.12 (+\$0.03)	\$0.10 (+\$0.02)	0	0	0

* Feed-in Tariff: \$/kWh for all kWh generated through mid-2020; annually capped at \$5,000/year,

http://programs.dsireusa.org/system/program/detail/5698

Technolog y	2019	2020	2021	2022	2023	>2023
Recip. Engines	0	0	0	0	0	0
Micro Turbines	0	0	0	0	0	0
Small Hydro	0	0	0	0	0	0
PV - Com	0	0	0	0	0	0
PV – Res (%)*	40,20,20,20	40,20,20,20	40,20,20,20	40,20,20,20	40,20,20,20	40,20,20,20
Wind – Com	0	0	0	0	0	0
Wind – Res (%)*	40,20,20,20	40,20,20,20	40,20,20,20	40,20,20,20	40,20,20,20	40,20,20,20


Table 13 Idaho Incentives

* Residential Alternative Energy Income Tax Deduction: 40% in the first year and 20% for the next three years, http://programs.dsireusa.org/system/program/detail/137.

RESULTS

Navigant estimates approximately 1.3 GW of PG capacity will be installed in PacifiCorp's territory from 2019-2038 in the base case scenario. As shown in Figure 10, the low and high scenarios project a cumulative installed capacity of 0.60 GW and 2.3 GW by 2038, respectively. The main drivers between the different scenarios include variation in technology costs, system performance, and electricity rate assumptions.

1.8 PacifiCorp Territories

The following sections report the results by state, providing high, base and low scenario installation projections. Results for each scenario are also broken out by technology. The solar sector exhibits the highest adoption across all states. Generally non-residential solar adoption is less sensitive to high and low scenario adjustments when compared to the residential sector. This is because the residential customer payback is more sensitive to scenario changes (e.g. technology costs, performance, electricity rates) when compared to non-residential sectors.

1.8.1 California

PacifiCorp's customers in northern California are projected to install about 48 MW of capacity over the next two decades in the base case, averaging about 2.4 MW, annually. California does not currently have any state incentives promoting the installation of PG and the ratcheting down of the Federal ITC from 2020 to 2022 has a negative impact on annual capacity installations after 2020. The main driver of PG in California is its high electricity rates relative to other states. Over time, the increase in PG installation capacity is driven by escalating electricity rates (benchmarked to inflation) and declining technology costs. Both residential and non-residential solar installations are responsible for the majority of PG growth over the horizon of this study.

While the low and high scenarios follow similar market trends as the base case, the cumulative installations over the planning horizon differ significantly, as shown in Figure 11. The 48 MW from the base case decreases by 35% to 31 MW in the low case and increases by 40% to 67 MW in the high case.

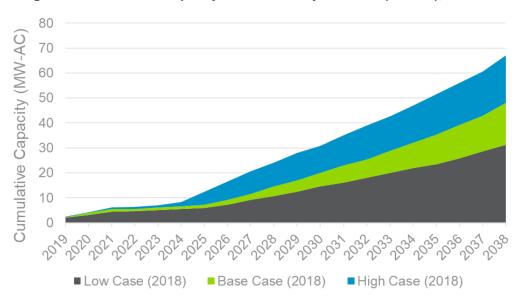
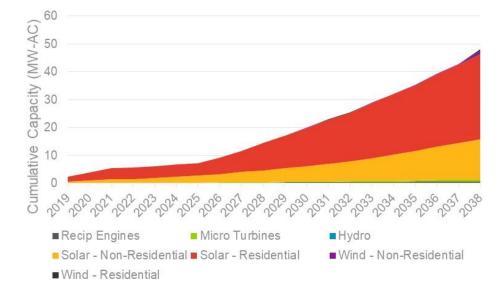




Figure 12. Cumulative Capacity Installations by Technology (MW AC), California Base Case

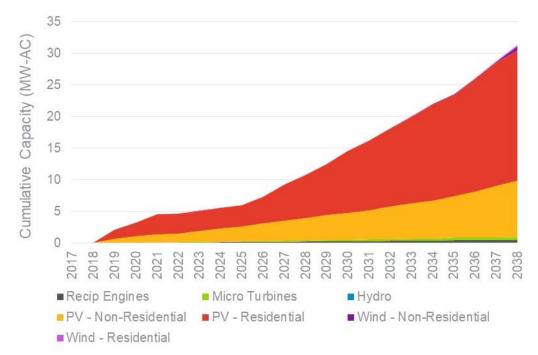


Figure 13. Cumulative Capacity Installations by Technology (MW AC), California High Case

Figure 14. Cumulative Capacity Installations by Technology (MW AC), California Low Case

1.8.2 Idaho

PacifiCorp's Idaho customers are projected to install about 108 MW of capacity over the next two decades in the base case, averaging about 5.4 MW annually. Idaho currently has a Residential

Alternative Energy Income Tax Deduction for residential solar and wind installations²⁴, although this incentive seems to have had minimal impact on the market, as non-residential solar installations are responsible for the majority of PG growth in the early years due to a combination of technical potential and escalating electric rates. The ratcheting down of the Federal ITC from 2020 to 2022 has a negative impact on annual capacity installations in the short term and overtime the increase in PG installation capacity is driven by escalating electricity rates (benchmarked to inflation) and declining technology costs.

While the low and high scenarios follow similar market trends as the base case, the cumulative installations over the planning horizon differ significantly, as shown in Figure 15. The 108 MW from the base case decreases by 34% to 71 MW in the low case and increases by 32% to 143 MW in the high case.

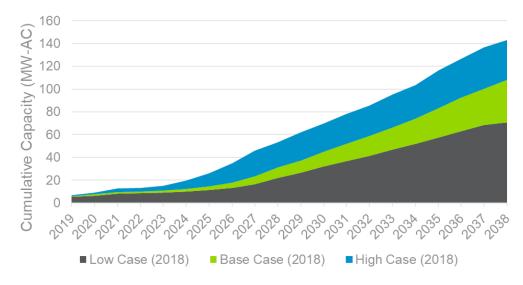


Figure 15. Cumulative Capacity Installations by Scenario (MW AC), Idaho

²⁴ Residential Alternative Energy Income Tax Deduction: 40% in the first year and 20% for the next three years, <u>http://programs.dsireusa.org/system/program/detail/137</u>.

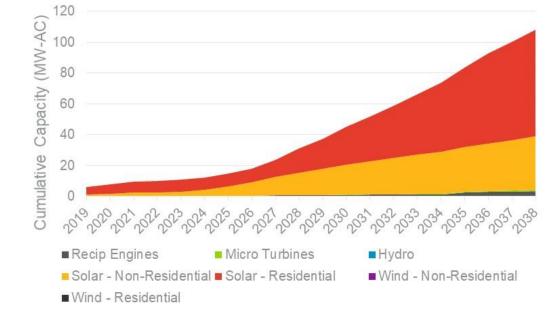
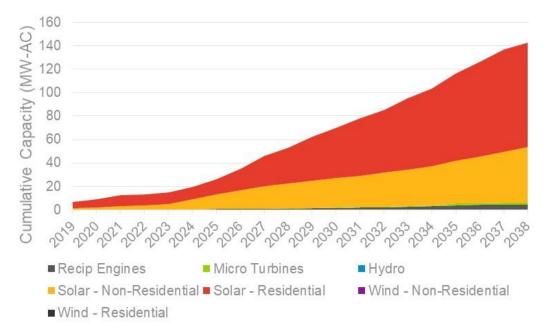



Figure 16. Cumulative Capacity Installations by Technology (MW AC), Idaho Base Case

Figure 17. Cumulative Capacity Installations by Technology (MW AC), Idaho High Case

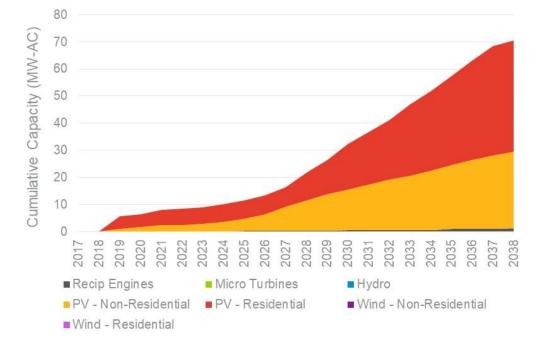


Figure 18. Cumulative Capacity Installations by Technology (MW AC), Idaho Low Case

1.8.3 Oregon

PacifiCorp's Oregon customers are projected to install about 435 MW of PG capacity over the next two decades in the base case, averaging about 21.75 MW annually. Solar is responsible for the majority of PG growth over the horizon of this study, with small growth from CHP reciprocating engines and non-residential wind. The stronger solar resource in Oregon relative to most of other states in PacifiCorp's territory and the Energy Trust of Oregon's Solar Incentive drive solar market adoption. The ratcheting down of the Federal ITC from 2020 to 2022 results in a relatively flat market in the short term but overtime the increase in solar capacity installation is driven by escalating electricity rates (benchmarked to inflation) and declining technology costs.

While the low and high scenarios follow similar market trends as the base case, the cumulative installations over the planning horizon differ significantly, as shown in Figure 19. The 435 MW from the base case decreases by 58% to 184 MW in the low case and increases by 123% to 968 MW in the high case.

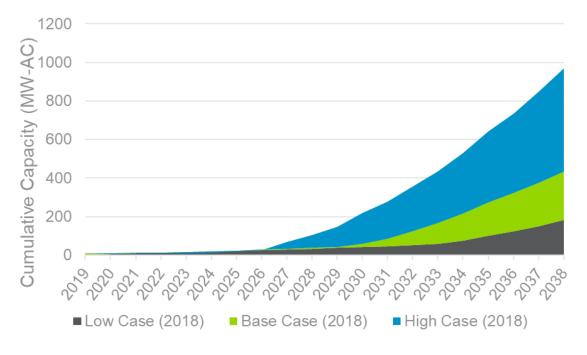
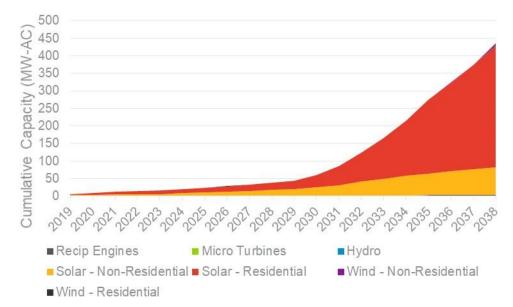



Figure 19. Cumulative Capacity Installations by Scenario (MW AC), Oregon

Figure 20. Cumulative Capacity Installations by Technology (MW AC), Oregon Base Case

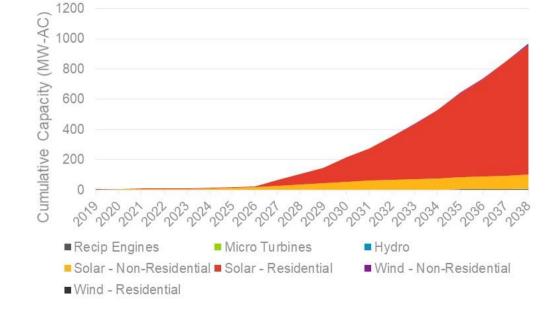
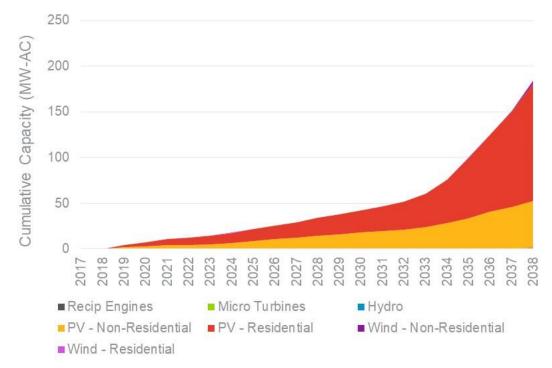
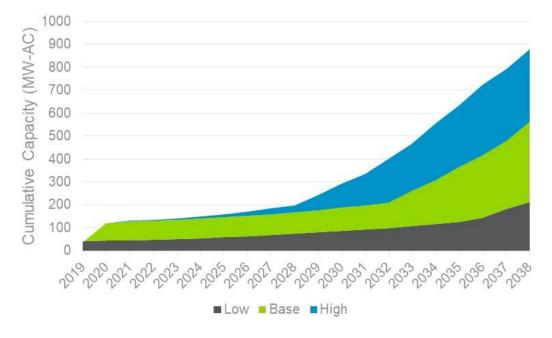



Figure 21. Cumulative Capacity Installations by Technology (MW AC), Oregon High Case

Figure 22 Cumulative Capacity Installations by Technology (MW AC), Oregon Low Case

1.8.4 Utah


PacifiCorp's Utah customers are projected to install about 560 MW of PG capacity over the next two decades in the base case, averaging 28 MW annually. Solar is responsible for most PG installations over

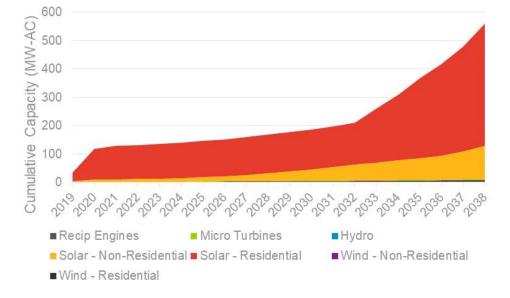
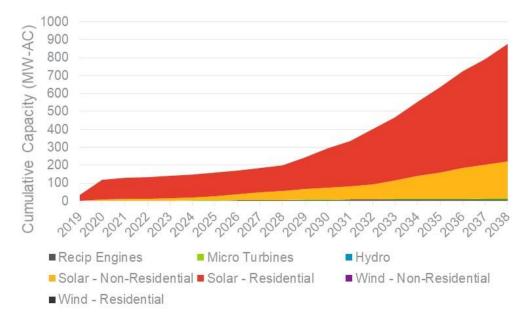
the horizon of this study, with reciprocating engines being installed in small numbers in future years. Utah has the strongest solar resource in PacifiCorp's territory and system costs are lower than in other states due to Utah's larger and more mature market.

The projection in the early years is dominated by residential customers adopting solar. The state Renewable Energy Systems Tax Credit applies to all technologies evaluated and has an impact on solar adoption. Solar adoption declines dramatically in 2020 as the ITC ratchets down. In 2025 projected capacity installation increases as solar prices continue to decline and utility rates escalate (benchmarked to inflation).

The report reflects the regulatory modifications to the PG program in Utah, as included in Schedule 136.²⁵ The value of generated energy takes into consideration the recently approved compensation for exported energy included in the tariff. Additionally, the forecast installations for years 2019 and 2020 in the base and high case reflects the capacity cap included within Schedule 136, while low case reflects the assumptions as outlined in Table 11.

While the low and high scenarios follow similar market trends as the base case, the cumulative installations over the planning horizon differ significantly, as shown in Figure 23. The 560 MW from the base case decreases by 62% to 213 MW in the low case and increases by 56% to 879 MW in the high case.

²⁵ Utah Docket 14-035-114

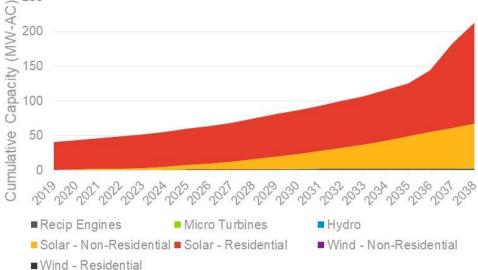

Figure 24. Cumulative Capacity Installations by Technology (MW AC), Utah Base Case

Figure 25. Cumulative Capacity Installations by Technology (MW AC), Utah High Case

Figure 26. Cumulative Capacity Installations by Technology (MW AC), Utah Low Case

1.8.5 Washington

PacifiCorp's Washington customers are expected to install about 59.6 MW of PG capacity over the next two decades in the base case, averaging 2.98 MW annually. Solar is responsible for most PG installations over the horizon of this study, with reciprocating engines being installed in small numbers in future years. Washington does not have a very strong solar resource, yet the lucrative Feed-In-Tariff in Washington, which extends through 2021, should drive the solar market in the near term. The solar market is driven by non-residential solar installations, most likely due to the lower cost of installing larger systems. Solar adoption declines dramatically in 2020 as the ITC ratchets down. In 2025, installation capacity increases as solar prices continue to decline and utility rates escalate (benchmarked to inflation).

While the low and high scenarios follow similar market trends as the base case, the cumulative installations over the planning horizon differ significantly, as shown in Figure 27. The 59.6 MW from the base case decreases by 35% to 38.5 MW in the low case and increases by 83% to 109 MW in the high case.

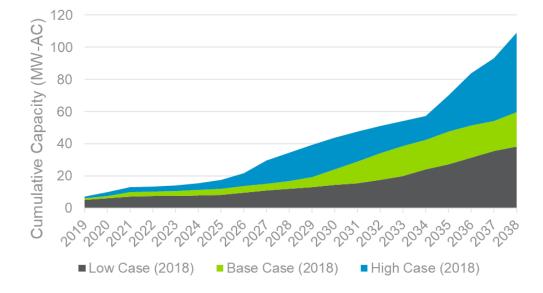
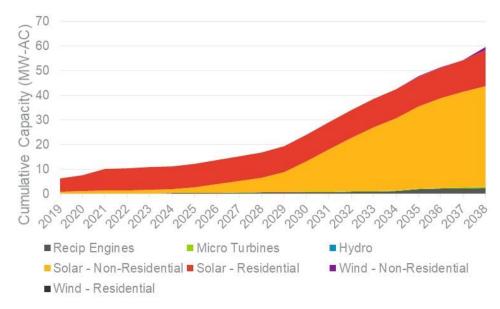
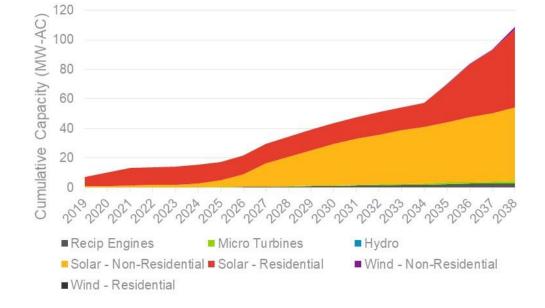




Figure 27. Cumulative Capacity Installations by Scenario (MW AC), Washington

Figure 28. Cumulative Capacity Installations by Technology (MW AC), Washington Base Case

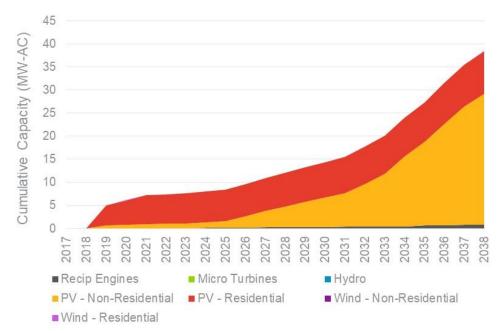


Figure 29. Cumulative Capacity Installations by Technology (MW AC), Washington High Case

Figure 30. Cumulative Capacity Installations by Technology (MW AC), Washington Low Case

1.8.6 Wyoming

PacifiCorp's Wyoming customers are projected to install about 114 MW of capacity over the next two decades in the base case, averaging about 5.7 MW annually. Solar is responsible for most PG

installations over the horizon of this study, with reciprocating engines, and small wind being installed in small numbers in future years. Wyoming does not have any state incentives promoting the installation of PG. Similar to other states, the ratcheting down of the Federal ITC from 2020 to 2022 has a negative impact on annual capacity installations but in 2023 the market begins to grow at a faster pace, driven by escalating electricity rates (benchmarked to inflation) and declining technology costs. Both residential and non-residential solar installations are responsible for the majority of PG growth over the horizon of this study.

While the low and high scenarios follow similar market trends as the base case, the cumulative installations over the planning horizon differ significantly, as shown in Figure 31. The 114 MW from the base case decreases by 40% to 68 MW in the low case and increases by 45% to 165 MW in the high case.

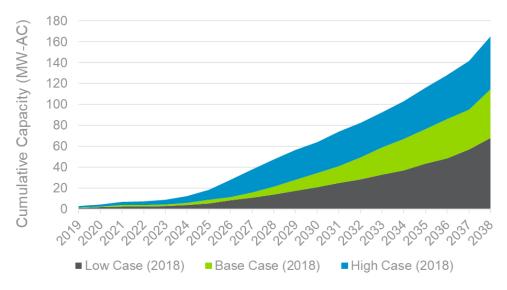


Figure 31. Cumulative Capacity Installations by Scenario, Wyoming

Figure 32. Cumulative Capacity Installations by Technology (MW AC), Wyoming Base Case

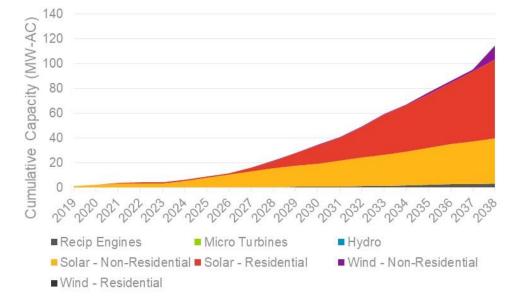
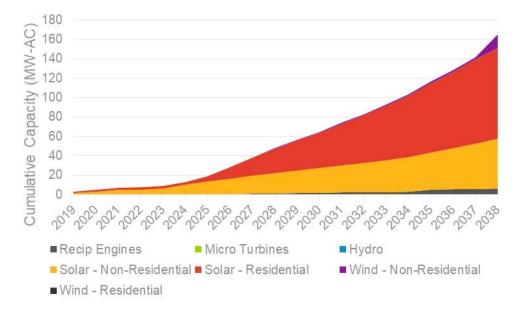



Figure 33. Cumulative Capacity Installations by Technology, Wyoming High Case

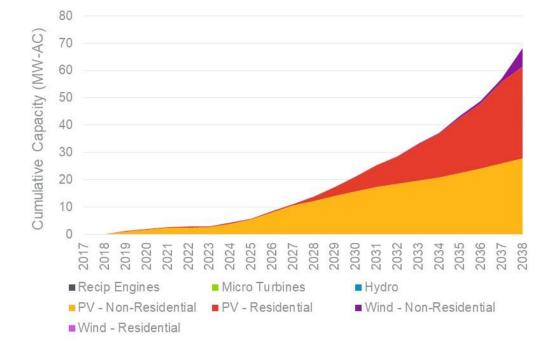


Figure 34. Cumulative Capacity Installations by Technology (MW AC), Wyoming Low Case

APPENDIX A. CUSTOMER DATA

Table 14 California

Rate Class	# Customers	2018 MWh Sales	Avg. Rates (\$/kWh)
Residential	35,741	374,836	0.166
Commercial	7,262	226,557	0.151
Industrial	117	57,571	0.137
Irrigation	1,841	96,201	0.132

Table 15 Idaho

Rate Class	# Customers	2018 MWh Sales	Avg. Rates (\$/kWh)
Residential	63,910	697,043	0.132
Commercial	8,868	517,881	0.089
Industrial	608	1,712,919	0.072
Irrigation	5,025	643,351	0.091

Table 16 Oregon

Rate Class	# Customers	2018 MWh Sales	Avg. Rates (\$/kWh)
Residential	507,660	5,587,970	0.101
Commercial	67,474	5,244,915	0.091
Industrial	1,540	1,700,386	0.078
Irrigation	7,725	332,594	0.096

Table 17 Utah

Rate Class	# Customers	2018 MWh Sales	Avg. Rates (\$/kWh)
Residential	807,897	6,824,025	0.110
Commercial	87,524	8,766,980	0.058
Industrial	4,892	7,725,402	0.065
Irrigation	3,249	222,757	0.077

Table 18 Washington

Rate Class	# Customers	2018 MWh Sales	Avg. Rates (\$/kWh)
Residential	109,376	1,582,882	0.099
Commercial	16,021	1,528,895	0.084
Industrial	477	753,191	0.072
Irrigation	5,057	160,403	0.087

Table 19 Wyoming

Rate Class	# Customers	2018 MWh Sales	Avg. Rates (\$/kWh)
Residential	115,479	1,016,366	0.119
Commercial	23,010	1,382,275	0.090
Industrial	2,064	6,878,595	0.066
Irrigation	764	24,564	0.092

APPENDIX B. SYSTEM CAPACITY ASSUMPTIONS

Table 20 Access Factors (%)

Technology	CA	ID	OR	UT	WA	WY
Recip. Engines	N/A	N/A	N/A	N/A	N/A	N/A
Micro Turbines	N/A	N/A	N/A	N/A	N/A	N/A
Small Hydro	N/A	N/A	N/A	N/A	N/A	N/A
PV - Com	42%	42%	42%	42%	42%	42%
PV - Res	35%	35%	35%	35%	35%	35%
Wind - Com	5%	5%	8%	16%	8%	51%
Wind - Res	5%	5%	8%	16%	8%	51%

Table 21 California (kW AC)

Technology	Commercial	Irrigation	Residential	Industrial
Recip. Engines	2	N/A	N/A	28
Micro Turbines	2	N/A	N/A	28
Small Hydro	500	N/A	N/A	500
PV - Com	18	29	N/A	212
PV - Res	N/A	N/A	6	N/A
Wind - Com	10	16	N/A	113
Wind - Res	N/A	N/A	3	N/A

Table 22 Idaho (kW AC)

Technology	Commercial	Irrigation	Residential	Industrial
Recip. Engines	4	N/A	N/A	185
Micro Turbines	4	N/A	N/A	185
Small Hydro	500	N/A	N/A	500
PV - Com	31	68	N/A	250
PV - Res	N/A	N/A	6	N/A
Wind - Com	29	62	N/A	1515
Wind - Res	N/A	N/A	6	N/A

Table 23 Oregon (kW AC)

Technology	Commercial	Irrigation	Residential	Industrial
Recip. Engines	6	N/A	N/A	110
Micro Turbines	6	N/A	N/A	110
Small Hydro	500	N/A	N/A	500
PV - Com	25	32	N/A	100
PV - Res	N/A	N/A	6	N/A
Wind - Com	30	17	N/A	584
Wind - Res	N/A	N/A	4	N/A

Table 24 Utah (kW AC)

Technology	Commercial	Irrigation	Residential	Industrial
Recip. Engines	7	N/A	N/A	150
Micro Turbines	7	N/A	N/A	150
Small Hydro	500	N/A	N/A	500
PV - Com	58	39	N/A	130
PV - Res	N/A	N/A	5	N/A
Wind - Com	56	N/A	N/A	938
Wind - Res	N/A	N/A	5	N/A

Table 25 Washington (kW AC)

Technology	Commercial	Irrigation	Residential	Industrial
Recip. Engines	6	N/A	N/A	88
Micro Turbines	6	N/A	N/A	88
Small Hydro	500	N/A	N/A	500
PV - Com	65	21	N/A	250
PV - Res	N/A	N/A	10	N/A
Wind - Com	41	13	N/A	655
Wind - Res	N/A	N/A	6	N/A

Table 26 Wyoming (kW AC)

Technology	Commercial	Irrigation	Residential	Industrial
Recip. Engines	150	N/A	N/A	150
Micro Turbines	150	N/A	N/A	150
Small Hydro	500	N/A	N/A	500
PV - Com	25	17	N/A	150
PV - Res	N/A	N/A	5	N/A
Wind - Com	23	11	N/A	1192
Wind - Res	N/A	N/A	3	N/A

APPENDIX C. WASHINGTON HIGH-EFFICIENCY COGENERATION LEVELIZED COSTS

Section 480.109.100 of the Washington Administrative Code²⁶ establishes high-efficiency cogeneration as a form of conservation that electric utilities must assess when identifying cost-effective, reliable, and feasible conservation for the purpose of establishing 10-year forecasts and biennial targets. To supplement the analysis in the main body of this report addressing reliability and feasibility, this appendix, analyzes the levelized cost of energy (LCOE) of these resources, for use in cost-effectiveness analysis.

Key assumptions for the analysis are presented in Table 27 and Table 28. It is worth noting that the LCOE calculation is for the electrical generation component only and the cost of the heat recapture and recovery was taken out of the total installed system cost. PacifiCorp provided the natural gas pricing and the weighted average cost of capital (WACC) assumptions.

C.1 Key Assumptions

DG Resource Costs	Units	2019	2028	2038	Notes
Installed System Cost	\$/W	\$2.67/W	\$2.77/W	\$2.88/W	 EPA, Catalog of CHP Technologies, March 2015, pg. 2-15 Assumed cost for electrical generation only, system cost was reduced by 10% to exclude heating generation costs.
Asset Life	Years	25	25	25	
Capacity Factor	%	85%	85%	85%	Navigant Assumption
Variable O&M	\$/MWh	\$20	\$20	\$20	ICF International Inc., Combined Heat and Power: Policy Analysis and 2011-2030 Market Assessment, pg. 92
Fuel Cost	\$/MMBtu	PacifiCorp Gas Forecast	PacifiCorp Gas Forecast	PacifiCorp Gas Forecast	Provided by PacifiCorp
WACC	%	6.57%	6.57%	6.57%	Provided by PacifiCorp

Table 27 Reciprocating Engines LCOE – Key Assumptions²⁷

²⁶ http://apps.leg.wa.gov/WAC/default.aspx?cite=480-109-100

²⁷ EPA, Catalog of CHP Technologies: <u>www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies.pdf;</u>

ICF, Combined Heat and Power Policy Analysis, www.energy.ca.gov/2012publications/CEC-200-2012-002/CEC-200-2012-002.pdf

DG Resource Costs	Units	2019	2028	2038	Notes
Installed System Cost	\$/W	\$2.56/W	\$2.55/W	\$2.54/W	 EPA, Catalog of CHP Technologies, March 2015, pg. 2-15 Assumed cost for electrical generation only, system cost was reduced by 5% to exclude heating generation costs.
Asset Life	Years	25	25	25	Assumption
Capacity Factor	%	85%	85%	85%	Assumption
Variable O&M	\$/MWh	\$20	\$20	\$20	ICF International Inc., Combined Heat and Power: Policy Analysis and 2011-2030 Market Assessment, pg. 92
Fuel Cost	\$/MMBtu	PacifiCorp Gas Forecast	PacifiCorp Gas Forecast	PacifiCorp Gas Forecast	Provided by PacifiCorp
WACC	%	6.57%	6.57%	6.57%	Provided by PacifiCorp

Table 28 Micro-turbines LCOE – Key Assumptions²⁸

C.2 Results

The results of the LCOE analysis are presented in Table 29, with levelized costs estimated to range from \$92/MWh to \$115/MWh over the forecast period, varying by year and technology.

Technology	Units	2017	2026	2036
Reciprocating Engines	\$/MWh	91.1	103.4	115.0
Microturbines	\$/MWh	92.5	101.8	111.6

Table 29 LCOE Results – Electric Component Only

²⁸ EPA, Catalog of CHP Technologies: <u>www.epa.gov/sites/production/files/2015-07/documents/catalog_of_chp_technologies.pdf;</u> ICF, Combined Heat and Power Policy Analysis, <u>www.energy.ca.gov/2012publications/CEC-200-2012-002/CEC-200-2012-002.pdf</u>

APPENDIX D. DETAILED NUMERIC RESULTS

D.1 Utah

					00.00								`	- /	Buse C	/450					
Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.3	0.3	0.3	0.3	0.4	0.5	0.4	0.5	0.6	0.3	0.5	0.5	0.2	0.6	0.5	0.3	0.7	0.5	0.4	0.5
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.1	0.1	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.2
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	31.4	77.6	9.3	2.5	2.5	2.8	2.2	2.0	2.5	3.1	2.6	2.8	2.8	4.0	42.0	41.3	48.3	43.1	46.2	62.8
PV	Commercial	2.3	6.2	0.3	0.3	0.3	1.4	2.0	1.3	4.0	5.0	5.0	4.6	4.5	4.9	4.9	4.5	4.7	5.1	12.7	17.9
PV	Industrial	0.4	0.3	0.4	0.1	0.1	0.5	0.7	0.5	0.6	0.7	1.3	1.8	2.6	3.3	1.9	2.3	2.1	1.6	1.4	1.1
PV	Irrigation	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.4	0.5	0.5	0.4	0.4
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 30. Utah – Incremental Annual Market Penetration (MW AC) – Base Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	2067	2214	2513	2444	3023	3907	3257	3923	4172	1919	3629	3390	1496	4459	3989	2275	5401	3675	3141	3821
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	737	739	891	14	15	607	386	1055	796	61	365	454	45	583	761	440	1734	1806	1408	1634
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	66047	163371	19580	5207	5279	5893	4569	4264	5240	6445	5388	5827	5927	8331	88522	86962	101780	90825	97299	132218
PV	Commercial	4798	13016	575	718	728	2963	4131	2654	8412	10447	10621	9604	9534	10334	10258	9449	9906	10696	26686	37792
PV	Industrial	806	537	808	181	183	1112	1425	1039	1307	1402	2681	3698	5578	6903	4084	4901	4340	3333	2879	2334
PV	Irrigation	72	90	106	35	36	86	205	135	211	227	221	230	182	518	490	908	950	974	917	800
Wind	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	70
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 31. Utah – Incremental Annual Market Penetration (MWh) – Base Case

Table 32. Utah – Incremental Annual Market Penetration (MW AC) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.2	0.1	0.2	0.0	0.0	0.2	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.2	0.1	0.0	0.2	0.1	0.1	0.1
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	40.2	2.1	1.8	2.0	2.0	2.3	1.8	1.9	2.0	2.5	2.1	2.3	2.3	2.8	2.3	2.8	3.0	12.9	33.0	24.4
PV	Commercial	0.3	0.3	0.3	0.3	0.3	0.9	2.1	1.3	1.8	2.8	3.5	2.9	3.6	3.1	3.1	4.2	3.6	3.8	3.7	3.4
PV	Industrial	0.1	0.3	0.3	0.1	0.1	0.4	0.7	0.4	0.6	0.6	0.5	0.5	0.4	0.9	1.2	1.9	2.3	2.4	1.7	2.1
PV	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 33. Utah – Incremental Annual Market Penetration (MWh) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	1393	815	1527	27	153	1556	820	1403	1680	999	1385	975	472	1199	959	261	1120	1108	927	670

Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	385	153	112	8	8	15	0	4	8	21	9	13	14	27	14	26	28	37	23	0
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	84618	4421	3809	4241	4299	4800	3721	3994	4268	5249	4388	4746	4827	5920	4908	5953	6215	27176	69416	51343
PV	Commercial	735	611	548	685	695	1936	4479	2656	3703	5890	7343	6161	7592	6634	6514	8768	7489	8089	7875	7190
PV	Industrial	159	542	627	165	167	848	1386	865	1267	1171	949	984	932	1974	2446	3996	4846	5021	3490	4350
PV	Irrigation	34	72	76	34	35	45	201	135	208	186	142	147	176	154	145	163	170	287	384	363
Wind	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	27
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 34. Utah – Incremental Annual Market Penetration (MW AC) – High Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.6	0.7	0.7	0.6	0.7	0.5	0.6	0.5	0.5	0.6	0.4	0.4	0.3
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.1	0.1	0.2	0.0	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.3	0.6	0.6	1.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	31.4	77.6	10.5	3.0	3.0	3.4	2.6	2.4	3.0	3.7	37.1	41.3	35.7	52.5	44.6	65.4	57.8	65.0	49.5	67.8
PV	Commercial	2.3	6.2	0.4	0.4	0.9	3.1	7.2	5.7	7.1	4.8	4.8	5.0	4.1	9.7	18.9	22.2	17.4	21.7	15.4	15.9
PV	Industrial	0.4	0.3	0.4	0.1	0.4	1.0	1.0	1.5	3.8	3.0	2.3	2.0	1.4	1.6	1.1	1.5	1.4	1.7	1.5	2.1
PV	Irrigation	0.0	0.0	0.1	0.0	0.0	0.1	0.2	0.1	0.2	0.3	0.3	0.5	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 35. Utah – Incremental Annual Market Penetration (MWh) – High Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	2143	2550	2997	3229	3986	4477	4655	4195	5525	5016	4566	5092	3895	4590	3874	3741	4216	3317	2669	2548
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	904	876	1218	17	1032	1586	1377	1681	1818	1448	1740	1681	1295	2126	1650	1650	1919	4306	4311	7285
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	66047	16337 1	22026	6274	6359	7100	5504	5137	6313	7764	78119	87069	75261	11067 7	94037	13775 3	12166 6	13697 4	10418 3	14272 4
PV	Commercial	4798	13016	792	755	1830	6616	15157	12058	14868	10165	10064	10494	8697	20401	39833	46730	36685	45636	32442	33541
PV	Industrial	806	537	854	196	743	2012	2034	3192	8055	6357	4743	4255	2898	3355	2402	3058	2897	3570	3094	4389
PV	Irrigation	72	90	111	37	38	295	354	203	379	582	706	1095	828	832	756	731	679	528	580	365
Wind	Residential	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	80
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

D.2 Oregon

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.4	0.4	0.7
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2

Table 36. Oregon – Incremental Annual Market Penetration (MW AC) – Base Case

Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	2.5	2.1	2.2	1.6	1.7	1.7	1.7	1.8	2.2	3.1	2.9	11.4	20.2	27.1	33.9	41.6	52.4	41.3	45.1	50.0
PV	Commercial	2.2	1.0	0.9	0.2	0.3	2.0	1.8	1.9	1.7	1.8	1.7	3.5	4.7	9.1	7.1	6.7	4.7	5.4	3.6	3.2
PV	Industrial	0.1	0.0	0.1	0.0	0.0	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.5	0.6	0.7	0.7	0.6
PV	Irrigation	0.3	0.1	0.1	0.0	0.1	0.2	0.3	0.2	0.3	0.2	0.6	1.1	1.0	1.0	0.9	0.7	0.7	0.5	0.4	0.4
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.4	0.1	0.1	5.1
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4

Table 37. Oregon – Incremental Annual Market Penetration (MWh) – Base Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	255	302	370	101	518	599	641	803	1259	1424	1338	1397	1623	1257	1386	1394	3687	2823	2791	4964
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1389
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	4066	3364	3595	2617	2690	2778	2783	2871	3491	4897	4706	18274	32353	43453	54434	66701	83996	66306	72260	105385
PV	Commercial	3449	1674	1438	256	418	3157	2834	2974	2681	2834	2768	5686	7606	14623	11403	10677	7604	8702	5755	6698
PV	Industrial	157	74	83	14	39	126	146	278	290	271	272	282	240	254	248	726	1007	1168	1097	1296
PV	Irrigation	532	227	229	43	142	377	423	389	454	365	941	1684	1671	1633	1445	1043	1150	855	721	888
Wind	Residential	30	2	-1	27	0	0	0	0	0	1	0	0	0	0	11	25	25	25	20	868
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	26	167	156	164	173	841	202	161	7613
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	4	8	9	10	11	11	12	50	11	11	558

Table 38. Oregon – Incremental Annual Market Penetration (MW AC) – Low Case

				-		-	-		-				-								-
Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.0
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	2.2	2.1	2.1	1.6	1.7	1.7	1.7	1.8	1.8	2.6	2.6	2.6	2.7	2.8	6.3	11.4	18.4	17.9	20.6	23.6

PV	Commercial	1.9	0.7	1.0	0.1	0.2	1.3	1.7	1.8	1.6	1.5	1.2	1.5	1.1	1.2	1.8	3.2	4.2	6.2	4.3	6.0
PV	Industrial	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
PV	Irrigation	0.3	0.1	0.1	0.0	0.0	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.4	0.6	0.8	0.6	0.9	0.6	0.8
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.1	0.1	2.6
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2

Table 39. Oregon – Incremental Annual Market Penetration (MWh) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	12	117	170	0	0	103	320	358	424	491	533	511	464	545	457	536	1769	493	445	259
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	3600	3352	3351	2597	2667	2752	2763	2848	2912	4098	4122	4238	4350	4496	10131	18216	29544	28670	33055	49628
PV	Commercial	3062	1060	1643	235	259	2097	2744	2885	2598	2352	1877	2345	1835	1962	2857	5060	6703	9881	6867	12639
PV	Industrial	154	63	72	13	24	112	110	126	246	225	189	195	191	203	158	210	216	189	179	237
PV	Irrigation	484	216	218	40	44	349	412	378	388	295	339	289	411	719	922	1359	977	1404	936	1625

Wind	Residential	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	278
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	599	145	144	3794
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	58	8	10	339

Table 40. Oregon – Incremental Annual Market Penetration (MW AC) – High Case

r																					
Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.1	0.0	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.4	0.6	2.3	0.6	0.5	0.3
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.3	0.2	0.3	0.3
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	1.4	0.6	0.8	0.2	0.3	0.3	0.6	2.9	32.9	27.2	33.5	62.1	52.2	72.6	75.1	88.7	105.5	87.9	109.0	103.2
PV	Commercial	2.2	1.1	1.3	0.2	1.2	2.5	2.5	3.0	7.6	8.6	6.8	6.2	5.3	4.6	3.1	3.6	3.0	3.5	3.8	4.7
PV	Industrial	0.1	0.0	0.1	0.0	0.1	0.2	0.2	0.3	0.2	0.2	0.3	0.5	0.7	0.8	0.6	0.5	0.5	0.3	0.3	0.3
PV	Irrigation	0.3	0.2	0.2	0.0	0.2	0.4	0.3	1.0	1.4	1.2	0.9	0.8	0.6	0.5	0.4	0.5	0.5	0.5	0.7	0.9
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0.1	6.7
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5

						-								•							
Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	301	358	598	52	732	1182	1311	1419	1729	1770	1650	1870	1694	1700	2840	4386	17299	4434	3691	2312
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	1189	1392	1123	1184	2461	1857	2333	2103
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	2292	932	1219	371	409	478	901	4644	52710	43642	53724	99619	83645	116465	120358	142286	169183	140895	174726	217446
PV	Commercial	3577	1770	2121	293	1942	4027	4080	4764	12205	13868	10856	10020	8449	7418	4952	5796	4822	5590	6049	9872
PV	Industrial	162	78	87	16	96	396	379	402	384	262	461	822	1058	1291	942	846	726	539	549	559
PV	Irrigation	547	278	285	48	310	599	551	1606	2284	1894	1380	1214	982	743	643	832	788	760	1090	1842
Wind	Residential	36	8	3	39	0	1	0	0	0	1	0	0	21	25	29	25	37	38	37	1456
Wind	Commercial	1	-1	0	0	0	0	0	0	10	137	184	183	200	186	217	195	828	186	205	10000
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	6	9	11	12	13	12	15	11	13	51	12	11	702

Table 41. Oregon – Incremental Annual Market Penetration (MWh) – High Case

D.3 Washington

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.8	0.2	0.2	0.1
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	5.4	1.1	2.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.3	0.3	0.3	0.2	0.3	0.3	0.4	0.3	1.8
PV	Commercial	0.7	0.1	0.2	0.1	0.1	0.1	0.6	1.1	1.0	1.0	1.8	3.6	4.1	4.1	3.6	2.7	3.0	2.2	1.9	1.7
PV	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.5	0.6	0.5	0.4	0.4
PV	Irrigation	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.3	0.4	0.4	0.4	0.3	0.3	0.2	0.3	0.2	0.2
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.8
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1

Table 42. Washington – Incremental Annual Market Penetration (MW AC) – Base Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	220	266	331	68	370	460	455	540	565	531	556	551	449	693	829	848	6114	1411	1224	1086
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	38	40	65	-1	-1	0	81	187	170	134	226	174	178	265	262	242	752	418	620	523
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	9834	2066	4032	281	331	427	312	407	414	512	382	456	467	562	422	530	554	651	485	3832
PV	Commercial	1294	191	314	165	194	251	1034	1936	1735	1839	3275	6597	7408	7384	6592	4836	5414	4055	3347	3542
PV	Industrial	87	18	11	15	18	23	17	131	220	233	199	241	204	294	484	836	1172	926	640	829
PV	Irrigation	140	21	40	18	21	27	142	206	159	316	588	780	759	726	622	453	413	472	327	369
Wind	Residential	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	163
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	131	50	50	1254
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	5	5	157

Table 43. Washington – Incremental Annual Market Penetration (MWh) – Base Case

Table 44. Washington – Incremental Annual Market Penetration (MW AC) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2020	2027	2028	2029	2030	2031	2032	2033	2034	2035	2030	2037	2038

Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	4.4	0.9	1.0	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
PV	Commercial	0.5	0.1	0.1	0.1	0.1	0.1	0.2	0.9	0.9	0.7	0.8	0.7	0.7	1.8	1.8	3.3	2.4	3.5	3.3	2.2
PV	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
PV	Irrigation	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.3	0.4	0.4	0.3	0.3	0.2
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 45. Washington – Incremental Annual Adoption (MWh) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reciprocating Engine	Industrial	150	162	222	-8	3	246	223	333	304	195	288	285	195	342	228	223	1556	338	290	171
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	7958	1717	1754	191	225	291	213	277	282	348	260	310	318	382	287	361	377	443	330	349
PV	Commercial	939	184	112	156	184	237	392	1650	1685	1277	1453	1262	1186	3178	3208	5993	4384	6387	5954	4641
PV	Industrial	84	17	10	15	17	22	16	21	137	165	160	169	164	143	169	149	155	168	239	475
PV	Irrigation	103	20	33	17	20	26	60	176	180	137	155	198	321	253	606	637	636	462	578	446
Wind	Residential	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	141
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	106
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20

Table 46. Washington – Incremental Annual Market Penetration (MW AC) – High Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.5	0.1	0.1	0.1
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.3
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	6.5	2.5	2.7	0.2	0.3	0.3	0.2	0.3	0.3	0.4	0.3	0.3	0.4	0.4	0.3	0.5	9.5	10.6	6.9	9.8
PV	Commercial	0.7	0.1	0.3	0.1	0.1	0.9	1.3	3.2	6.4	3.9	3.4	3.1	2.5	1.9	1.9	1.7	1.9	2.4	2.0	3.2
PV	Industrial	0.1	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.4	0.5	0.6	0.4	0.4	0.3	0.2	0.3	0.2	0.2
PV	Irrigation	0.1	0.0	0.0	0.0	0.0	0.1	0.2	0.5	0.7	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.4
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	1.4
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2

 Table 47. Washington – Incremental Annual Market Penetration (MWh) – High Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	259	341	461	8	446	517	556	986	931	1212	1873	1569	1584	1593	1454	1409	3809	1021	795	677
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	80	99	130	-3	148	205	222	288	303	292	423	546	572	682	591	609	1687	774	1362	2251

Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	11727	4539	4830	388	458	590	432	562	572	707	528	630	646	777	583	876	17133	19138	12529	20644
PV	Commercial	1339	199	575	174	206	1568	2402	5849	11621	6995	6209	5561	4508	3423	3473	3098	3443	4312	3560	6662
PV	Industrial	113	19	12	16	19	48	298	315	296	391	672	891	1053	807	683	606	438	509	369	441
PV	Irrigation	145	22	88	19	23	175	366	885	1198	688	588	517	345	403	292	339	397	515	433	832
Wind	Residential	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	173
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	62	261	56	45	2043
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	3	6	6	27	5	6	241

D.4 Idaho

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1.1	0.3	0.3	0.4
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 48. Idaho – Incremental Annual Market Penetration (MW AC) – Base Case

Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.1	0.1	0.1
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	4.9	1.1	1.1	0.3	0.3	0.3	0.3	0.3	2.3	5.0	3.6	5.1	4.4	4.9	5.3	5.9	6.4	7.1	5.3	5.1
PV	Commercial	0.4	0.2	0.2	0.1	0.2	0.3	0.8	1.1	1.5	1.0	1.1	1.0	0.6	0.6	0.6	0.5	0.5	0.7	0.7	0.8
PV	Industrial	0.2	0.1	0.1	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.1	0.4	0.6	0.7	0.6	0.6	0.5	0.4	0.3	0.3
PV	Irrigation	0.5	0.3	0.4	0.1	0.1	0.7	1.0	1.5	1.5	1.5	1.3	0.9	0.9	0.7	0.6	0.7	0.7	0.7	1.0	1.1
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 49. Idaho – Incremental Annual Market Penetration (MWh) – Base Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	314	364	470	50	567	660	728	874	852	786	854	956	684	907	704	678	8049	2373	2225	3307
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	108	360	280	481	465	394	1382	491	430	442
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	10086	2201	2267	614	642	684	584	620	4825	10247	7337	10553	9093	10154	10896	12139	13297	14657	10969	10823
PV	Commercial	830	441	482	115	391	607	1605	2215	3082	1978	2271	2013	1340	1253	1315	1106	942	1346	1534	1745
PV	Industrial	402	186	218	39	68	341	345	315	322	382	285	900	1216	1405	1334	1235	1087	786	674	562
PV	Irrigation	1044	638	805	153	224	1532	2030	3098	3127	2997	2647	1914	1935	1457	1306	1385	1531	1429	2048	2381
Wind	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 50. Idaho – Incremental Annual Market Penetration (MW AC) – Low Case

			1	1	1															1	
Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.1	0.1	0.1
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	4.5	0.2	1.0	0.2	0.3	0.3	0.2	0.2	0.3	3.1	2.3	4.1	2.5	2.7	4.1	3.2	3.5	3.8	3.9	0.7

PV	Commercial	0.4	0.2	0.2	0.1	0.1	0.3	0.3	0.7	1.0	1.0	1.0	0.7	0.9	0.6	0.6	0.8	0.5	0.5	0.5	0.4
PV	Industrial	0.2	0.1	0.1	0.0	0.0	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.5	0.6	0.4	0.5
PV	Irrigation	0.5	0.3	0.2	0.1	0.2	0.4	0.6	0.8	1.5	1.2	1.2	0.9	0.8	1.0	0.7	0.7	0.6	0.6	0.7	0.4
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 51. Idaho – Incremental Annual Market Penetration (MWh) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	183	199	236	3	172	293	314	360	346	316	361	311	244	352	183	448	2641	497	453	415
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	9306	500	2007	507	530	564	482	512	613	6362	4846	8415	5193	5665	8450	6640	7155	7805	8076	1430
PV	Commercial	814	426	469	111	220	668	575	1360	1974	2048	2032	1457	1846	1308	1202	1554	1100	1083	964	889
PV	Industrial	391	176	175	36	37	303	293	348	314	233	275	233	218	233	581	622	1132	1180	817	1124
PV	Irrigation	959	620	515	142	384	745	1187	1737	3132	2551	2468	1758	1596	2105	1397	1380	1323	1308	1472	774

Wind	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 52. Idaho – Incremental Annual Market Penetration (MW AC) – High Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.3	0.2	0.3	0.4	0.3	0.4	1.0	0.3	0.2	0.2
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.4	0.1	0.1	0.2
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	5.5	1.2	2.6	0.4	0.4	0.4	2.3	5.5	7.6	4.7	6.6	5.7	6.2	4.9	7.0	5.6	8.1	6.4	6.4	1.4
PV	Commercial	0.4	0.3	0.5	0.1	0.4	1.6	1.6	1.4	1.2	0.6	0.7	0.6	0.5	0.7	0.6	1.0	1.3	1.2	1.4	1.6
PV	Industrial	0.2	0.1	0.1	0.0	0.1	0.2	0.2	0.4	0.8	0.8	0.6	0.5	0.4	0.3	0.3	0.3	0.3	0.3	0.4	0.5
PV	Irrigation	0.6	0.5	0.5	0.1	0.6	2.3	1.9	1.7	1.2	0.9	0.7	0.7	0.7	0.9	1.1	1.0	1.7	1.6	1.9	2.1
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	362	427	553	197	660	821	915	1009	1076	1254	1863	1613	2359	3307	2452	3241	7409	2218	1426	1172
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	94	113	159	1	81	282	330	424	464	458	519	508	475	789	1024	1205	2994	1009	965	1274
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	11266	2475	5341	792	829	882	4673	11318	15614	9759	13595	11777	12783	10129	14535	11465	16801	13228	13225	2972
PV	Commercial	846	519	1025	133	870	3404	3358	2968	2388	1317	1360	1151	1118	1376	1201	2029	2668	2492	2851	3365
PV	Industrial	443	198	265	44	245	482	452	769	1739	1616	1235	1115	916	669	698	570	597	693	790	991
PV	Irrigation	1234	1030	1055	176	1157	4818	4023	3442	2443	1851	1413	1452	1451	1823	2216	2125	3609	3349	3835	4524
Wind	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	26
Wind	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	15	189
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	18	16	300

Table 53. Idaho – Incremental Annual Market Penetration (MWh) – High Case

D.5 California

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	1.8	1.1	1.1	0.1	0.1	0.1	0.1	1.6	1.7	2.2	1.8	2.0	2.1	1.7	2.4	1.9	2.0	2.2	2.2	2.5
PV	Commercial	0.4	0.2	0.2	0.0	0.2	0.3	0.2	0.3	0.4	0.4	0.4	0.5	0.6	0.4	0.7	0.9	0.6	1.2	0.7	0.8
PV	Industrial	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.2
PV	Irrigation	0.2	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.3	0.2	0.3	0.4	0.3
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2

Table 54. California – Incremental Annual Market Penetration (MW AC) – Base Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	115	115	168	49	204	242	199	284	305	220	313	320	164	314	294	105	995	100	326	64
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	102	113	139	56	170	200	218	243	260	281	279	285	285	295	277	287	746	349	326	64
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	3784	2374	2456	121	127	166	125	3392	3737	4790	3911	4220	4559	3540	5174	3997	4307	4754	4696	5202
PV	Commercial	755	531	488	73	446	629	508	581	902	850	929	1099	1224	821	1553	1879	1189	2464	1423	1626
PV	Industrial	191	123	110	17	118	128	119	108	153	148	156	186	205	258	288	355	423	281	525	341
PV	Irrigation	328	201	180	33	215	210	151	198	222	215	222	378	314	397	443	549	357	738	818	534
Wind	Residential	26	-1	3	13	-1	0	-1	-1	-1	2	3	5	3	5	3	3	15	47	54	770
Wind	Commercial	3	0	6	8	9	10	12	12	14	13	12	12	13	11	9	18	137	19	28	1076
Wind	Industrial	0	0	0	1	1	1	1	1	1	2	1	2	1	1	1	3	10	2	2	100
Wind	Irrigation	0	0	1	2	3	4	4	4	5	5	4	5	4	5	3	4	15	8	7	276

Table 55. California – Incremental Annual Market Penetration (MWh) – Base Case

Table 56. California – Incremental Annual Market Penetration (MW AC) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038]
------------	--------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	---

Reciprocating	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	1.5	0.7	1.0	0.0	0.0	0.1	0.0	0.8	1.5	1.2	1.2	1.7	1.2	1.3	1.4	1.5	0.9	1.7	1.7	1.11083
PV	Commercial	0.3	0.2	0.2	0.0	0.2	0.2	0.2	0.3	0.3	0.2	0.3	0.2	0.2	0.4	0.3	0.3	0.3	0.4	0.7	0.5
PV	Industrial	0.1	0.1	0.1	0.0	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
PV	Irrigation	0.2	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1

Table 57. California – Incremental Annual Market Penetration (MWh) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Reciprocating Engine	Industrial	92	94	132	37	156	150	190	210	166	228	149	214	212	113	189	75	786	73	39	232
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	72	87	105	46	124	160	156	171	142	181	174	173	169	172	156	161	534	210	195	43
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	3122	1524	2067	99	104	136	67	1799	3228	2528	2612	3571	2648	2889	2892	3175	1924	3675	3671	2340
PV	Commercial	722	510	464	71	461	474	427	627	553	436	669	462	440	935	551	650	726	838	1543	1026
PV	Industrial	179	121	108	17	99	125	108	95	125	84	114	83	132	99	172	121	137	159	285	196
PV	Irrigation	333	174	178	28	183	212	147	180	147	170	165	122	185	143	239	174	196	396	238	284
Wind	Residential	11	6	5	10	0	0	-1	0	0	0	0	0	3	3	3	3	3	3	3	215
Wind	Commercial	2	0	3	7	7	9	9	10	10	11	10	12	10	10	6	8	30	18	16	585
Wind	Industrial	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	4	1	2	59
Wind	Irrigation	0	0	1	2	2	2	2	3	4	4	3	4	3	3	4	3	14	3	3	184

Table 58. California – Incremental Annual Market Penetration (MW AC) – High Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.1
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.2	0.0	0.1	0.1
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	1.8	1.2	1.7	0.1	0.1	0.5	3.2	3.0	2.7	2.4	2.5	1.8	2.8	2.2	2.1	2.4	2.5	2.8	2.7	1.8
PV	Commercial	0.4	0.3	0.2	0.0	0.3	0.5	0.6	0.6	0.8	0.7	0.8	0.5	1.0	1.1	0.7	1.4	0.9	1.0	1.0	1.1
PV	Industrial	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.2	0.3	0.2	0.4	0.2	0.2
PV	Irrigation	0.1	0.1	0.1	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.2	0.3	0.3	0.4	0.2	0.5	0.3	0.6	0.4
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3

Table 59. California – Incremental Annual Market Penetration (MWh) – High Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	121	151	187	46	226	269	297	334	360	255	372	381	383	183	353	366	952	440	65	425
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	105	130	160	83	204	242	267	389	340	371	372	381	383	183	353	366	1268	124	410	449

Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	3849	2658	3562	145	152	1107	6861	6468	5856	5092	5258	3945	5987	4673	4596	5061	5416	5945	5767	3794
PV	Commercial	860	559	519	75	659	1001	1291	1386	1739	1556	1716	1092	2056	2459	1398	2993	1850	2081	2049	2321
PV	Industrial	192	126	113	24	169	181	216	306	320	294	324	380	422	276	527	628	392	809	463	526
PV	Irrigation	319	205	184	42	272	274	310	431	453	421	682	328	608	740	821	523	1073	695	1304	829
Wind	Residential	55	-1	-1	19	-1	-1	-1	-1	-1	0	-1	-1	-1	43	86	68	119	91	96	2198
Wind	Commercial	2	0	7	9	10	12	12	14	15	15	13	22	21	21	44	33	132	26	21	1264
Wind	Industrial	0	0	0	1	1	1	1	2	2	2	2	3	3	3	3	3	9	2	3	122
Wind	Irrigation	1	0	1	3	3	4	4	5	5	6	5	5	5	5	4	4	44	19	12	431

D.6 Wyoming

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.7	0.2	0.2	0.5
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 60. Wyoming – Incremental Annual Market Penetration (MW AC) – Base Case

Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	0.2	0.1	0.6	0.0	0.0	0.0	0.0	0.0	2.0	2.8	4.4	4.5	4.0	6.1	7.1	5.2	5.7	6.4	6.8	7.4
PV	Commercial	0.8	0.8	0.8	0.1	0.1	1.5	2.2	2.2	2.1	2.0	1.3	1.2	1.2	1.0	0.9	0.8	1.2	1.6	1.3	1.5
PV	Industrial	0.3	0.2	0.2	0.0	0.0	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.8	1.2	1.3	1.3	1.2	1.1	0.7	0.6
PV	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.1	0.1	9.0
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2

Table 61. Wyoming – Incremental Annual Market Penetration (MWh) – Base Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	0	0	0	0	0	0	0	0	246	1402	1802	1728	1885	1850	1689	1752	5406	1506	1368	3452
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PV	Residential	480	118	1253	87	87	98	70	100	4395	5996	9603	9698	8631	13127	15412	11311	12422	13949	14681	15538
PV	Commercial	1831	1639	1672	257	256	3290	4770	4854	4611	4264	2910	2688	2674	2178	1981	1827	2625	3395	2848	3255
PV	Industrial	716	345	416	64	80	676	764	620	732	676	654	686	1829	2576	2879	2815	2575	2320	1518	1303
PV	Irrigation	62	31	50	7	7	91	111	110	102	92	63	58	48	50	47	57	52	85	71	118
Wind	Residential	7	3	2	8	0	0	0	0	0	0	0	1	3	4	6	5	5	5	5	248
Wind	Commercial	-1	-1	-1	0	0	0	-1	0	66	228	225	251	270	289	245	301	1237	289	212	13392
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	1	4	4	4	5	5	5	5	5	21	5	5	249

Table 62. Wyoming – Incremental Annual Market Penetration (MW AC) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	1.1	1.7	2.1	2.5	2.1	3.4	2.7	4.3	3.4	6.2	3.5
PV	Commercial	0.8	0.4	0.5	0.1	0.2	0.9	1.2	2.2	2.3	1.3	1.7	1.2	1.4	1.0	0.9	0.9	0.9	0.9	0.8	0.8

PV	Industrial	0.2	0.1	0.2	0.0	0.0	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.2	0.2	0.2	0.3	0.6	0.8	1.1	1.1
PV	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.6	0.1	0.1	5.7
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1

Table 63. Wyoming – Incremental Annual Market Penetration (MWh) – Low Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	424	115	111	62	62	70	49	59	200	2408	3576	4531	5511	4454	7260	5749	9328	7377	13471	7414
PV	Commercial	1652	897	1145	222	325	1923	2671	4858	4979	2902	3626	2590	3059	2229	1922	1957	1886	1964	1670	1612
PV	Industrial	522	325	325	57	57	559	657	599	712	559	439	561	434	471	445	732	1260	1702	2385	2335
PV	Irrigation	42	28	38	6	6	51	98	90	113	87	58	57	66	48	42	43	42	45	39	39
Wind	Residential	5	2	0	5	0	0	0	0	0	0	0	0	0	0	1	3	3	3	3	134

Wind	Commercial	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	226	202	1389	202	239	8429
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	1	4	4	4	24	5	3	165

Table 64. Wyoming – Incremental Annual Market Penetration (MW AC) – High Case

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reciprocating Engine	Industrial	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.6	1.7	0.5	0.5	0.4
Reciprocating Engine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Micro Turbine	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Small Hydro	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PV	Residential	1.1	0.5	1.0	0.1	0.1	0.1	2.6	6.1	7.0	6.7	5.7	5.0	7.1	6.3	6.6	7.4	8.2	6.5	9.2	7.0
PV	Commercial	1.4	1.0	1.2	0.1	1.2	3.1	2.7	2.2	1.6	1.3	1.0	1.2	1.2	1.2	1.9	1.8	2.2	3.8	3.2	3.8
PV	Industrial	0.4	0.2	0.2	0.0	0.2	0.4	0.5	0.4	1.0	1.3	1.5	1.2	1.0	0.9	0.7	0.6	0.5	0.6	0.6	0.7
PV	Irrigation	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1
Wind	Residential	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
Wind	Commercial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.1	0.1	11.1
Wind	Industrial	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wind	Irrigation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2

Technology	Sector	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Reciprocating Engine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reciprocating Engine	Industrial	0	0	0	0	0	1057	1406	1674	1895	1933	2234	2099	2173	2264	1818	4194	12773	4049	3806	3093
Reciprocating Engine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micro Turbine	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Commercial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Small Hydro	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PV	Residential	2289	1013	2190	162	161	182	5643	13270	15206	14495	12445	10734	15361	13570	14349	16133	17679	14178	19965	14671
PV	Commercial	3041	2175	2652	315	2556	6675	5854	4811	3411	2785	2184	2491	2702	2661	4060	3904	4674	8277	6952	7945
PV	Industrial	878	439	444	73	530	974	982	941	2271	2751	3320	2574	2209	1968	1575	1216	1182	1303	1303	1527
PV	Irrigation	90	61	64	8	63	151	127	103	74	56	52	61	67	91	78	98	169	156	174	199
Wind	Residential	9	5	3	10	0	0	0	0	0	0	3	6	6	5	6	5	7	6	5	326
Wind	Commercial	-2	-1	-1	0	0	0	98	204	245	287	278	340	316	287	322	331	1213	311	328	16419
Wind	Industrial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wind	Irrigation	0	0	0	0	0	0	4	4	5	5	6	6	5	6	6	6	21	6	5	308

Table 65. Wyoming – Incremental Annual Market Penetration (MWh) – High Case