

2018 Renewable Resources Assessment

PacifiCorp

2018 Renewable Resources Assessment Project No. 109571

> Revision 3 October 2018

2018 Renewable Resources Assessment

prepared for

PacifiCorp 2018 Renewable Resources Assessment Salt Lake City, Utah

Project No. 109571

Revision 3 October 2018

prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

COPYRIGHT © 2018 BURNS & McDONNELL ENGINEERING COMPANY, INC.

TABLE OF CONTENTS

Page No.

1.0	INTR 1.1	ODUCTION
	1.1	Assessment Approach
	1.2	Statement of Limitations
2.0	STUE	DY BASIS AND ASSUMPTIONS2-1
	2.1	Scope Basis
	2.2	General Assumptions
	2.3	EPC Project Indirect Costs
	2.4	Owner Costs
	2.5	Cost Estimate Exclusions
	2.6	Operating and Maintenance Assumptions
3.0	SOL	AR PHOTOVOLTAIC
	3.1	PV General Description
	3.2	PV Performance
	3.3	PV Cost Estimates
	3.4	PV O&M Cost Estimate
4.0	ON-S	HORE WIND
	4.1	Wind Energy General Description
	4.2	Wind Performance
	4.3	Wind Cost Estimate
	4.4	Wind Energy O&M Estimates
	4.5	Wind Energy Production Tax Credit
5.0	PUM	PED HYDRO ENERGY STORAGE
	5.1	General Description
	5.2	PHES Cost Estimate
6.0	СОМ	PRESSED AIR ENERGY STORAGE
	6.1	General Description
	6.2	CAES Cost Estimate
	6.3	CAES Emissions Control
7.0	BAT	TERY STORAGE TECHNOLOGY7-1
	7.1	General Description
		7.1.1 Flow Batteries
		7.1.2 Conventional Batteries

	7.1.3 High Temperature Batteries	
7.2	Battery Emissions Controls	
7.3	Battery Storage Performance	
7.4	Regulatory Trends	
7.5	Battery Storage Cost Estimate	
7.6	Battery Storage O&M Cost Estimate	

APPENDIX A – SUMMARY TABLES APPENDIX B – SOLAR PVSYST MODEL OUTPUT (5MW) APPENDIX C – SOLAR OUTPUT SUMMARY APPENDIX D – WIND PERFORMANCE INFORMATION APPENDIX E – DECLINING COST CURVES

1.0 INTRODUCTION

PacifiCorp (Owner) retained Burns & McDonnell Engineering Company (BMcD) to evaluate various renewable energy resources in support of the development of the Owner's 2019 Integrated Resource Plan (IRP) and associated resource acquisition portfolios and/or products. The 2018 Renewable Resources Assessment (Assessment) is screening-level in nature and includes a comparison of technical capabilities, capital costs, and O&M costs that are representative of renewable energy and storage technologies listed below.

It is the understanding of BMcD that this Assessment will be used as preliminary information in support of the Owner's long-term power supply planning process. Any technologies of interest to the Owner should be followed by additional detailed studies to further investigate each technology and its direct application within the Owner's long-term plans.

1.1 Evaluated Technologies

- Single Axis Tracking Solar
- Onshore Wind
- Energy Storage
 - Pumped Hydro Energy Storage (PHES)
 - Compressed Air Energy Storage (CAES)
 - o Lithium Ion Battery
 - o Flow Battery
- Solar + Energy Storage
- Wind + Energy Storage

1.2 Assessment Approach

This report accompanies the Renewable Resources Assessment spreadsheet files (Summary Tables) provided by BMcD. The Summary Tables are broken out into three separate files for Solar, Wind, and Energy Storage options. The costs are expressed in mid-2018 dollars for a fixed price, turn-key resource implementation. Appendix A includes the Summary Tables.

This report compiles the assumptions and methodologies used by BMcD during the Assessment. Its purpose is to articulate that the delivered information is in alignment with PacifiCorp's intent to advance its resource planning initiatives.

1.3 Statement of Limitations

Estimates and projections prepared by BMcD relating to performance, construction costs, and operating and maintenance costs are based on experience, qualifications, and judgment as a professional consultant. BMcD has no control over weather, cost and availability of labor, material and equipment, labor productivity, construction contractor's procedures and methods, unavoidable delays, construction contractor's method of determining prices, economic conditions, government regulations and laws (including interpretation thereof), competitive bidding and market conditions or other factors affecting such estimates or projections. Actual rates, costs, performance ratings, schedules, etc., may vary from the data provided.

2.0 STUDY BASIS AND ASSUMPTIONS

2.1 Scope Basis

Scope and economic assumptions used in developing the Assessment are presented below. Key assumptions are listed as footnotes in the summary tables, but the following expands on those with greater detail for what is assumed for the various technologies.

2.2 General Assumptions

The assumptions below govern the overall approach of the Assessment:

- All estimates are screening-level in nature, do not reflect guaranteed costs, and are not intended for budgetary purposes. Estimates concentrate on differential values between options and not absolute information.
- All information is preliminary and should not be used for construction purposes.
- All capital cost and O&M estimates are stated in mid-2018 US dollars (USD). Escalation is excluded.
- Estimates assume an Engineer, Procure, Construct (EPC) fixed price contract for project execution.
- Unless stated otherwise, all wind and solar options are based on a generic site with no existing structures or underground utilities and with sufficient area to receive, assemble and temporarily store construction material. Battery options are assumed to be located on existing Owner land.
- Sites are assumed to be flat, with minimal rock and with soils suitable for spread footings.
- Wind and solar technologies were evaluated across five states within Owner's service areas: Washington, Oregon, Idaho, Utah, and Wyoming. The specific locations within each state for potential wind/solar sites were determined by Owner.
- All performance estimates assume new and clean equipment. Operating degradation is excluded.
- Electrical scope is assumed to end at the high side of the generator step up transformer (GSU) unless otherwise specified in the summary table (most notably for CAES and PHES).
- Demolition or removal of hazardous materials is not included.

2.3 EPC Project Indirect Costs

The following project indirect costs are included in capital cost estimates:

- Construction/startup technical service
- Engineering and construction management

- Freight
- Startup spare parts
- EPC fees & contingency

2.4 Owner Costs

Allowances for Owner's costs are included in the pricing estimates. The cost buckets for Owner's costs varies slightly by technology, but is broken out in the summary tables in Appendix A.

2.5 Cost Estimate Exclusions

The following costs are excluded from all estimates:

- Financing fees
- Interest during construction (IDC)
- Escalation
- Performance and payment bond
- Sales tax
- Property taxes and insurance
- Off-site infrastructure
- Utility demand costs
- Decommissioning costs
- Salvage values

2.6 Operating and Maintenance Assumptions

Operations and maintenance (O&M) estimates are based on the following assumptions:

- O&M costs are based on a greenfield facility with new and clean equipment.
- O&M costs are in mid-2018 USD.
- Property taxes allowance included for solar and onshore wind options.
- Land lease allowance included for PV and onshore wind options.
- Li-Ion battery O&M includes costs for additional cells to be added over time.

3.0 SOLAR PHOTOVOLTAIC

This Assessment includes 5 MW, 50 MW, and 200 MW single axis tracking photovoltaic (PV) options evaluated at five locations within the PacifiCorp services area.

3.1 PV General Description

The conversion of solar radiation to useful energy in the form of electricity is a mature concept with extensive commercial experience that is continually developing into a diverse mix of technological designs. PV cells consist of a base material (most commonly silicon), which is manufactured into thin slices and then layered with positively (i.e. Phosphorus) and negatively (i.e. Boron) charged materials. At the junction of these oppositely charged materials, a "depletion" layer forms. When sunlight strikes the cell, the separation of charged particles generates an electric field that forces current to flow from the negative material to the positive material. This flow of current is captured via wiring connected to an electrode array on one side of the cell and an aluminum back-plate on the other. Approximately 15% of the solar energy incident on the solar cell can be converted to electrical energy by a typical silicon solar cell. As the cell ages, the conversion efficiency degrades at a rate of approximately 2% in the first year and 0.5% per year thereafter. At the end of a typical 30-year period, the conversion efficiency of the cell will still be approximately 80% of its initial efficiency.

3.2 PV Performance

BMcD pulled Typical Meteorological Year (TMY) weather data for each site to determine expected hourly irradiance. BMcD then ran simulations of each PV option using PVSYST software. The resultant capacity factors for single axis tracking systems are shown in the Summary Tables. Inverter loading ratios (ILR) for each base plant nominal output at the point of electrical interconnect are indicated in Table 3-1.

Nominal Output	Single-Axis Tracking (SAT) DC/AC Ratio
5 MW	1.32
50 MW	1.46
200 MW	1.46

Table 3-1: Inverter Loading Ratios in Assessment

There are different panel technologies which may exhibit different performance characteristics depending on the site. This assessment assumes poly-crystalline panels. The alternative, thin film technologies, are typically cheaper per panel, but they are also less energy dense, so it's likely that more panels would be required to achieve the same output. In addition, the two technologies respond differently to shaded conditions. The two technologies are also impacted differently by current solar tariffs which has also impacted availability of the two.

Appendix B shows the PVSYST model output for a 5 MW block with the input assumptions, losses, and output summary. Appendix C shows an additional output summary page unique for each solar option size and location. TMY data for each site as well as PVSYST 8760 outputs are provided to accompany this report outside of the formal report appendices.

3.3 PV Cost Estimates

Cost estimates were developed using in-house information based on BMcD project experience as an EPC contractor as well as an Owner's Engineer for EPC solar projects. Cost estimates assume an EPC project plus typical Owner's costs. A typical solar project cash flow is included in Appendix F.

PV cost estimates for the single axis tracking systems are included in the Summary Tables. Costs are based on the DC/AC ratios in Table 4-1 above, and \$/kW costs, based on the nominal AC output, are shown in Appendix A. The project scope assumes a medium voltage interconnection for the 5 MW options, and a high voltage interconnection for the 50 and 200 MW options. Owner's costs include a switchyard allowance for the larger scale options, but no transmission upgrade costs or high voltage transmission interconnect line costs are included.

PV installed costs have steadily declined for years. The main drivers of cost decreases include substantial module price reductions, lower inverter prices, and higher module efficiency. However, recent US tariffs have had an impact on PV panels and steel imports. Pricing in the summary table is based on actual competitive EPC market quotes since these tariffs have been in place to take into account this impact. The panel tariffs only impact crystalline solar modules, however the availability of CdTe is limited for the next couple years, so it is prudent to assume similar cost increases for thin film panels until the impacts of the tariff are clearer.

The 2018 Assessment excludes land costs from capital and Owner costs. It is assumed that all PV projects will be on leased land with allowances provided in the O&M costs.

3.4 PV O&M Cost Estimate

O&M costs for the PV options are shown in the Summary Tables. O&M costs are derived from BMcD project experience and vendor information. The 2018 Assessment includes allowances for land lease and property tax costs.

The following assumptions and clarifications apply to PV O&M:

- O&M costs assume that the system is remotely operated and that all O&M activities are performed through a third-party contract. Therefore, all O&M costs are modeled as fixed costs, shown in terms of \$MM per year.
- Land lease and property tax allowances are included based on in house data from previous projects.
- Equipment O&M costs are included to account for inverter maintenance and other routine equipment inspections.
- BOP costs are included to account for monitoring & security and site maintenance (vegetation, fencing, etc.).
- Panel cleaning and snow removal are not included in O&M costs.
- The capital replacement allowance is a sinking fund for inverter replacements, assuming they will be replaced once during the project life. It is a 15-year levelized cost based on the current inverter capital cost.

3.5 PV Plus Storage

The PV plus storage options combine the PV technology discussed in section 3.0 with the lithium ion batteries described in section 7.0. The battery storage size is set at approximately 25% of the total nominal output of the base solar options, with options for two, four, and eight hours of storage duration.

The storage system is assumed to be electrically coupled to the PV system on the AC side, meaning the PV and storage systems have separate inverters. However, there are use cases such as PV clipping that may be better served by a DC-DC connection. In a DC coupled system, the storage side would have a DC-DC voltage converter and connect to the PV system upstream of the DC-AC inverters. For a clipping application, a DC-DC connection allows the storage system to capture the DC output from the PV modules that may have otherwise been clipped by the inverters. Further study beyond the scope of this assessment would be required to determine the best electrical design for a particular application or site, but at this level of study, the capital costs provided are expected to be suitable for either AC or DC coupled systems.

Capital costs are show as add-on costs, broken out as project and owner's costs. These represent the additional capital above the PV base cost, intended to capture modest savings to account for shared system costs such as transformer(s) and switchgear. In addition, overlapping owner costs are eliminated

or reduced. Finally, a line for O&M add-on costs is also included which can be added with the base PV O&M costs to determine overall facility O&M.

As with the Li-Ion battery options, the co-located storage option assumes an operation profile of one cycle per day, which is used for calculating the O&M costs.

4.0 ON-SHORE WIND

4.1 Wind Energy General Description

Wind turbines convert the kinetic energy of wind into mechanical energy, which can be used to generate electrical energy that is supplied to the grid. Wind turbine energy conversion is a mature technology and is generally grouped into two types of configurations:

- Vertical-axis wind turbines, with the axis of rotation perpendicular to the ground.
- Horizontal-axis wind turbines, with the axis of rotation parallel to the ground.

Over 95 percent of turbines over 100 kW are horizontal-axis. Subsystems for either configuration typically include the following: a blade/rotor assembly to convert the energy in the wind to rotational shaft energy; a drive train, usually including a gearbox and a generator; a tower that supports the rotor and drive train; and other equipment, including controls, electrical cables, ground support equipment and interconnection equipment.

Wind turbine capacity is directly related to wind speed and equipment size, particularly to the rotor/blade diameter. The power generated by a turbine is proportional to the cube of the prevailing wind, that is, if the wind speed doubles, the available power will increase by a factor of eight. Because of this relationship, proper siting of turbines at locations with the highest possible average wind speeds is vital.

Appendix D includes NREL wind resource maps for Idaho, Oregon, Utah, Washington, and Wyoming with the locations of interest marked as provided by Owner.

4.2 Wind Performance

This Assessment includes 200 MW onshore wind generating facilities in Idaho, Oregon, Utah, Washington, and Wyoming service areas. BMcD relied on publicly available data and proprietary computational programs to complete the net capacity factor characterization. Generic project locations were selected within the area specified by Owner.

The Vestas V136-3.6 and GE3.8-137 wind turbine models were assumed for this analysis. The respective nameplate capacity, rotor diameter, and a hub height are provided in the Table 4-1. The maximum tip height of this package is under 500 feet, which means there are less likely to be conflicts with the Federal Aviation Administration (FAA) altitudes available for general aircraft. A generic power curve at standard atmospheric conditions for each of the sites was assumed for the V136-3.6 and GE3.8-137. Note that this turbine is intended only to be representative of a typical International Electrotechnical Commission wind

turbine. Because this analysis assumes generic site locations, the turbine selection is not optimized for a specific location or condition. Actual turbine selection requires further site-specific analysis.

	Vestas V136-3.6	GE3.8-137
Name Plate Capacity, MW	3.6	3.6
Rotor Diameter, meters	136	137
Hub Height, meters	80	80

Table 4-1: Summary of Wind Turbine Model Information

Using the NREL wind resource maps, the mean annual hub height wind speed at each potential project location was estimated and then extrapolated for the appropriate hub height to determine a representative wind speed. Using a Rayleigh distribution and power curve for the turbine technology described above, a gross annual capacity factor (GCF) was subsequently estimated for each site for both turbine types.

Annual losses for a wind energy facility were estimated at approximately 17 percent, which is a common assumption for screening level estimates in the wind industry. This loss factor was applied to the gross capacity factor estimates to derive a net annual capacity factor (NCF) for each potential site. Ideally, a utility-scale generation project should have an NCF of 30 percent or better. The NCF estimates for the PacifiCorp service areas are shown in the Summary Tables and represent an average of the two evaluated technologies.

4.3 Wind Cost Estimate

The wind energy cost estimate is shown in the Summary Tables. A typical cash flow for a wind project is included in Appendix F. Cost estimates assume an EPC project plus typical Owner's costs. Costs are based on a 200 MW plant with 3.6 MW turbines (56 total turbines) and 80-meter hub heights.

- Equipment and construction costs are broken down into subcategories per PacifiCorp's request. These breakouts represent the general scale of a 200 MW wind project but are not intended to indicate the expected scope for a specific site.
- The EPC scope includes a GSU transformer for interconnection at 230 kV.
- Land costs are excluded from the EPC and Owner's cost. For the 2018 Study, it is assumed that land is leased, and those costs are incorporated into the O&M estimate.

• Cost estimates also exclude escalation, interest during construction, financing fees, off-site infrastructure, and transmission.

4.4 Wind Energy O&M Estimates

O&M costs in the Summary Tables are derived from in-house information based on BMcD project experience and vendor information. Wind O&M costs are modeled as fixed O&M, including all typical operating expenses including:

- Labor costs
- Turbine O&M
- BOP O&M and other fixed costs (G&A, insurance, environmental costs, etc.)
- Property taxes
- Land lease payments

An allowance for capital replacement costs is not included within the annual O&M estimate in the Summary Table. A capital expenditures budget for a wind farm is generally a reserve that is funded over the life of the project that is dedicated to major component failures. An adequate capital expenditures budget is important for the long-term viability of the project, as major component failures are expected to occur, particularly as the facility ages.

If a capital replacement allowance is desired for planning purposes, Table 4-2 shows indicative budget expectations as a percentage of the total operating cost. As with operating expenses, however, these costs can vary with the type, size, or age of the facility, and project-specific considerations may justify deviations in the budgeted amounts.

Operational Years	Capital Expenditure Budget
0-2	None (warranty)
3 – 5	3% - 5%
6-10	5% - 10%
11 - 20	10% - 15%
21-30	15% - 20%
31-40	20% - 25%

Table 4-2:	Summary	of Indicative	Capital	Expenditures	Budget by Year
------------	---------	---------------	---------	--------------	----------------

4.5 Wind Energy Production Tax Credit

Tax credits such as the production tax credit (PTC) and investment tax credit (ITC) are not factored into the cost or O&M estimates in this Assessment, but an overview of the PTC is included below for reference.

To incentivize wind energy development, the PTC for wind was first included in the Energy Policy Act of 1992. It began as a \$15/MWh production credit and has since been adjusted for inflation, currently worth approximately \$24/MWh.

The PTC is awarded annually for the first 10 years of a wind facility's operation. Unlike the ITC that is common in the solar industry, there is no upfront incentive to offset capital costs. The PTC value is calculated by multiplying the \$/MWh credit times the total energy sold during a given tax year. At the end of the tax year, the total value of the PTC is applied to reduce or eliminate taxes that the owners would normally owe. If the PTC value is greater than the annual tax bill, the excess credits can potentially go unused unless the owner has a suitable tax equity partner.

Since 1992, the changing PTC expiration/phaseout schedules have directly impacted market fluctuations, driving wind industry expansions and contractions. The PTC is currently available for projects that begin construction by the end of 2019, but with a phaseout schedule that began in 2017. Projects that started construction in 2015 and 2016 will receive the full value of the PTC, but those that start(ed) construction in later years will receive reduced credits:

- 2017: 80% of the full PTC value
- 2018: 60% of the full PTC value
- 2019: 40% of the full PTC value
- 2020: PTC Expires

To avoid receiving a reduction in the PTC, a "Safe Harbor" clause allowed for developers to avoid the reduction through an upfront investment in wind turbines by the end of 2016. The Safe Harbor clause allowed for wind projects to be considered as having begun construction by the end of the year if a minimum of 5% of the project's total capital cost was incurred before January 1st, 2017.

Many wind farms were planned for construction and operation when it was assumed they would receive 100% of the PTC. However, with the reduction in the PTC, some of these projects are no longer financially viable for developers to operate. This may result in renegotiated or canceled PPAs, or transfers to utilities for operation.

4.6 Wind Plus Storage

The wind plus storage options combine the wind technology discussed in section 4.0 with the lithium ion batteries described in section 7.0. The battery storage size is set at approximately 25% of the total nominal output of the base solar options, with options for two, four, and eight hours of storage duration. The storage system is assumed to be electrically coupled to the wind system on the AC side, meaning the storage system has its own inverter.

Capital costs are shown as add-on costs, broken out as project and owner's costs. These represent the additional capital above the wind base cost, intended to capture modest savings to account for shared system costs such as transformer(s) and switchgear. In addition, overlapping owner costs are eliminated or reduced. Finally, a line for O&M add-on costs is also included which can be added to the base wind O&M costs to determine overall facility O&M. As with the Li-Ion battery options, the co-located storage option assumes an operation profile of one cycle per day, which is used for calculating the O&M costs.

5.0 PUMPED HYDRO ENERGY STORAGE

5.1 General Description

Pumped-hydro Energy Storage (PHES) offers a way of storing off peak generation that can be dispatched during peak demand hours. This is accomplished using a reversable pump-turbine generator-motor where water is pumped from a lower reservoir to an upper reservoir using surplus off-peak electrical power. Energy is then recaptured by releasing the water back through the turbine to the lower reservoir during peak demand. To utilize PHES, locations need to be identified that have suitable geography near high-voltage transmission lines.

PHES provides the ability to optimize the system for satisfying monthly or even seasonal energy needs and PHES can provide spinning reserve capacity with its rapid ramp-up capability. Energy stored offpeak and delivered on-peak can help reduce on-peak prices and is therefore beneficial to consumers. PHES is well suited for markets where there is a high spread in day-time and night-time energy costs, such that water can be pumped at a low cost and used to generate energy when costs are considerably higher.

PHES also has the ability to reduce cycling of existing generation plants. Additionally, PHES has a direct benefit to renewable resources as it is able to absorb excess energy that otherwise would need to be curtailed due to transmission constraints. This could increase the percentage of power generated by clean technologies and delivered during peak hours.

5.2 PHES Cost Estimate

The PHES cost estimate was based on information provided by developers with limited scope definition. We aligned the costs as closely as possible based on the information provided. The reason information from developers was used versus using a generic site for PHES is due to the significant importance of geographical location for this type of energy storage. The cost estimate is shown in the Summary Tables. PHES can see life cycle benefits as their high capital cost is offset by long lifespan of assets.

5-1

6.0 COMPRESSED AIR ENERGY STORAGE

6.1 General Description

Compressed air energy storage (CAES) offers a way of storing off peak generation that can be dispatched during peak demand hours. CAES is a proven, utility-scale energy storage technology that has been in operation globally for over 30 years. To utilize CAES, the project needs a suitable storage site, either above ground or below ground, and availability of transmission and fuel source. CAES facilities use off-peak electricity to power a compressor train that compresses air into an underground reservoir at approximately 850 psig. Energy is then recaptured by releasing the compressed air, heating it (typically) with natural gas firing, and generating power as the heated air travels through an expander.

This method of operation takes advantage of less expensive, off-peak power to charge the system to later be used for generation during periods of higher demand. CAES provides the ability to optimize the system for satisfying monthly, or even seasonal, energy needs and CAES can provide spinning reserve capacity with its rapid ramp-up capability. Energy stored off-peak and delivered on-peak can help reduce on-peak prices and is therefore beneficial to consumers. Additionally, CAES has a direct benefit to renewable resources as it is able to absorb excess energy that otherwise would need to be curtailed due to transmission constraints. This could increase the percentage of power generated by clean technologies and delivered during peak hours.

There have been two commercial CAES plants built and operated in the world. The first plant began commercial operations in 1978 and was installed near Huntorf, Germany. This 290 MW facility included major equipment by Brown, Boveri, and Company (BBC). The second is located near McIntosh, Alabama and is currently owned and operated by PowerSouth (originally by Alabama Electric Cooperative). This 110 MW facility began commercial operations in 1991 and employs Dresser Rand (DR) equipment. BMcD served as the Owner's engineer for this project.

"Second generation" CAES designs have recently been developed, but do not have commercial operating experience. The compression-expansion portion of these designs is similar to "first generation" CAES designs. The designs differ in that a simple cycle gas turbine plant operates in parallel to the compression-expansion train and the exhaust is used in a recuperator instead of utilizing a combustor to preheat the stored air.

CAES is well suited for markets where there is a high spread in day-time and night-time energy costs, such that air can be compressed at a low cost and used to generate energy when costs are considerably higher.

6.2 CAES Cost Estimate

The CAES cost estimate is shown in the Summary Tables. It was developed using generic Siemens information that includes the power island, balance of plant and reservoir. Cost estimates assume an EPC project plus typical Owner's costs.

6.3 CAES Emissions Control

A Selective Catalytic Reduction (SCR) system is utilized in the CAES design along with demineralized water injection in the combustor to achieve NOx emissions of 2 parts per million, volumetric dry (ppmvd). A carbon monoxide (CO) catalyst is also used to control CO emissions to 2 ppmvd at the exit of the stack.

The use of an SCR and a CO catalyst requires additional site infrastructure. An SCR system injects ammonia into the exhaust gas to absorb and react with the exhaust gas to strip out NOx. This requires onsite ammonia storage and provisions for ammonia unloading and transfer.

7.0 BATTERY STORAGE TECHNOLOGY

This Assessment includes standalone battery options for both lithium ion (Li-Ion) and flow battery technologies. Li-Ion options included 1 MW output with 15-minute, 2-hour, 4-hour, and 8-hour storage capacities as well as a 15 MW option with 4-hours of storage. A 1 MW, 6-hour flow cell battery option was also included. Additionally, the solar and wind summary tables include optional costs for adding Li-Ion battery capacity of 25% of the nominal renewable output to the site with 2, 4, or 8-hours of storage.

7.1 General Description

Electrochemical energy storage systems utilize chemical reactions within a battery cell to facilitate electron flow, converting electrical energy to chemical energy when charging and generating an electric current when discharged. Electrochemical technology is continually developing as one of the leading energy storage and load following technologies due to its modularity, ease of installation and operation, and relative design maturity. Development of electrochemical batteries has shifted into three categories, commonly termed "flow," "conventional," and "high temperature" battery designs. Each battery type has unique features yielding specific advantages compared to one another.

7.1.1 Flow Batteries

Flow batteries utilize an electrode cell stack with externally stored electrolyte material. The flow battery is comprised of positive and negative electrode cell stacks separated by a selectively permeable ion exchange membrane, in which the charge-inducing chemical reaction occurs, and liquid electrolyte storage tanks, which hold the stored energy until discharge is required. Various control and pumped circulation systems complete the flow battery system in which the cells can be stacked in series to achieve the desired voltage difference.

The battery is charged as the liquid electrolytes are pumped through the electrode cell stacks, which serve only as a catalyst and transport medium to the ion-inducing chemical reaction. The excess positive ions at the anode are allowed through the ion-selective membrane to maintain electroneutrality at the cathode, which experiences a buildup of negative ions. The charged electrolyte solution is circulated back to storage tanks until the process is allowed to repeat in reverse for discharge as necessary.

In addition to external electrolyte storage, flow batteries differ from traditional batteries in that energy conversion occurs as a direct result of the reduction-oxidation reactions occurring in the electrolyte solution itself. The electrode is not a component of the electrochemical fuel and does not participate in the chemical reaction. Therefore, the electrodes are not subject to the same deterioration that depletes electrical performance of traditional batteries, resulting in high cycling life of the flow battery. Flow

batteries are also scalable such that energy storage capacity is determined by the size of the electrolyte storage tanks, allowing the system to approach its theoretical energy density. Flow batteries are typically less capital intensive than some conventional batteries but require additional installation and operation costs associated with balance of plant equipment.

7.1.2 Conventional Batteries

A conventional battery contains a cathodic and an anodic electrode and an electrolyte sealed within a cell container that can be connected in series to increase overall facility storage and output. During charging, the electrolyte is ionized such that when discharged, a reduction-oxidation reaction occurs, which forces electrons to migrate from the anode to the cathode thereby generating electric current. Batteries are designated by the electrochemicals utilized within the cell; the most popular conventional batteries are lead acid and Li-Ion type batteries.

Lead acid batteries are the most mature and commercially accessible battery technology, as their design has undergone considerable development since conceptualized in the late 1800s. The Department of Energy (DOE) estimates there is approximately 110 MW of lead acid battery storage currently installed worldwide. Although lead acid batteries require relatively low capital cost, this technology also has inherently high maintenance costs and handling issues associated with toxicity, as well as low energy density (yields higher land and civil work requirements). Lead acid batteries also have a relatively short life cycle at 5 to 10 years, especially when used in high cycling applications.

Li-Ion batteries contain graphite and metal-oxide electrodes and lithium ions dissolved within an organic electrolyte. The movement of lithium ions during cell charge and discharge generates current. Li-Ion technology has seen a resurgence of development in recent years due to its high energy density, low self-discharge, and cycling tolerance. Many Li-Ion manufacturers currently offer 15-year warranties or performance guarantees. Consequently, Li- Ion has gained traction in several markets including the utility and automotive industries.

Li-Ion battery prices are trending downward, and continued development and investment by manufacturers are expected to further reduce production costs. While there is still a wide range of project cost expectations due to market uncertainty, Li-Ion batteries are anticipated to expand their reach in the utility market sector.

7.1.3 High Temperature Batteries

High temperature batteries operate similarly to conventional batteries, but they utilize molten salt electrodes and carry the added advantage that high temperature operation can yield heat for other

applications simultaneously. The technology is considered mature with ongoing commercial development at the grid level. The most popular and technically developed high temperature option is the Sodium Sulfur (NaS) battery. Japan-based NGK Insulators, the largest NaS battery manufacturer, installed a 4 MW system in Presidio, Texas in 2010 following operation of systems totaling more than 160 MW since the project's inception in the 1980s.

The NaS battery is typically a hermetically sealed cell that consists of a molten sulfur electrolyte at the cathode and molten sodium electrolyte at the anode, separated by a Beta-alumina ceramic membrane and enclosed in an aluminum casing. The membrane is selectively permeable only to positive sodium ions, which are created from the oxidation of sodium metal and pass through to combine with sulfur resulting in the formation of sodium polysulfides. As power is supplied to the battery in charging, the sodium ions are dissociated from the polysulfides and forced back through the membrane to re-form elemental sodium. The melting points of sodium and sulfur are approximately 98°C and 113°C, respectively. To maintain the electrolytes in liquid form and for optimal performance, the NaS battery systems are typically operated and stored at around 300°C, which results in a higher self-discharge rate of 14 percent to 18 percent. For this reason, these systems are usually designed for use in high-cycling applications and longer discharge durations.

NaS systems are expected to have an operable life of around 15 years and are one of the most developed chemical energy storage technologies. However, unlike other battery types, costs of NaS systems have historically held, making other options more commercially viable at present.

7.2 Battery Emissions Controls

No emission controls are currently required for battery storage facilities. However, Li-Ion batteries can release large amounts of gas during a fire event. While not currently an issue, there is potential for increased scrutiny as more battery systems are placed into service.

7.3 Battery Storage Performance

This assessment includes performance for multiple Li-Ion options as well as one flow battery option. Li-Ion systems can respond in seconds and exhibit excellent ramp rates and round-trip cycle efficiencies. Because the technology is rapidly advancing, there is uncertainty regarding estimates for cycle life, and these estimates vary greatly depending on the application and depth of discharge. The systems in this Assessment are assumed to perform one full cycle per day, and capacity factors are based on the duration of full discharge for 365 days. OEMs typically have battery products that are designed to suit different use-cases such as high power or high energy applications. The power to energy ratio is commonly shown as a C-ratio (for example, a 1MW / 4 MWh system would use a 0.25C battery product). However, the 8-hour battery option is based on a 0.25C system that is sized for twice the power and discharged for eight hours instead of four. While the technology continues to advance, commercially available, high energy batteries for utility scale applications are generally 0.25C and above.

Flow batteries are a maturing technology that is well suited for longer discharge durations (>4 hours, for example). Flow batteries can provide multiple use cases from the same system and they are not expected to exhibit performance degradation like lithium ion technologies. However, they typically have lower round trip efficiency than Li-Ion batteries. Storage durations are currently limited to commercial offerings from select vendors but are expected to broaden over the next several years. Performance guarantees of 20 years are expected with successful commercialization, but there is not necessarily a technical reason that original equipment manufacturer (OEM) and/or balance of plant (BOP) designs could not accommodate 30+ year life.

7.4 Regulatory Trends

Two (2) Federal Energy Regulatory Commission (FERC) Orders released in 2018 are expected to provide clarity on the role of storage in wholesale markets, and potentially drive continued growth. FERC Order 841 requires RTOs and ISOs to develop clear rules regulating the participation of energy storage systems in wholesale energy, capacity, and ancillary services markets. Prior to the final release of FERC 841, the California Public Utilities Commission introduced 11 rules to determine how multi-use storage products participate in California Independent System Operator (CAISO). FERC Order 842 addresses requirements for some generating facilities to provide frequency response, including accommodations for storage technologies. In addition, the Internal Revenue Service (IRS) is considering new guidance for the ITC that will impact projects combining storage with renewables.

7.5 Battery Storage Cost Estimate

The estimated costs of the Li-Ion and flow battery systems are included in the Summary Tables, based on BMcD experience and vendor correspondence. The key cost elements of a Li-Ion battery system are the inverter, the battery cells, the interconnection, and the installation. The capital costs reflect recent trends for overbuild capacity to account for short term degradation. The battery enclosures include space for future augmentation, but the costs associated with augmentation are covered in the O&M costs. It is assumed that land is available at an existing PacifiCorp facility and is therefore excluded from the cost estimate. These options assume the battery interconnects at medium voltage.

Flow battery estimates for the 1 MW option are based on zinc-bromine technology with a 6-hour storage duration. This is a modular design in which the OEM scope includes the stack, electrolyte storage, and associated pumps and controls in a factory assembled package. The EPC scope includes the inverters, switchgear, MV transformer, and installation.

7.6 Battery Storage O&M Cost Estimate

O&M estimates for the Li-Ion and flow battery systems are shown in the Summary Tables, based on BMcD experience and recent market trends. The battery storage system is assumed to be operated remotely.

The technical life of a Li-Ion battery project is expected to be 15 years, but battery performance degrades over time, and this degradation is considered in the system design. Systems can be "overbuilt" by including additional capacity in the initial installation, and they can also be designed for future augmentation. Augmentation means that designs account for the addition of future capacity to maintain guaranteed performance.

Overbuild and augmentation philosophies can vary between projects. Because battery costs are expected to continue falling, many installers/integrators are aiming for lower initial overbuild percentages to reduce initial capital costs, which means guarantees and service contracts will require more future augmentation to maintain capacity. Because costs should be lower in the future, the project economics may favor this approach. This assessment assumes minimal overbuild beyond system efficiency losses, and the O&M estimates include allowances for augmentation.

Battery storage O&M costs are modeled to represent the fixed and variable portions of performance guarantees and augmentation from recent BMcD project experience. The fixed O&M cost for the Li-Ion systems include a nominal fixed cost to administer and maintain the O&M contract with an OEM/integrator, plus an allowance for calendar degradation fees. Calendar degradation represents performance degradation and subsequent augmentation expected to occur regardless of the system's operation profile, even if the batteries sit unused. Because calendar degradation is not tied to system operation or output, it is modeled as part of the fixed O&M.

Variable O&M estimates for Li-ion options account for cycling degradation fees. Cycling the batteries increases performance degradation, so the performance guarantees provided by the OEM and/or integrator are commonly modeled to account for augmentation based on the expected operating profile. The variable O&M estimates in this assessment are based on an operation profile of one charge/discharge cycle per day and may not be valid for increased cycling.

Flow battery O&M costs are modeled around an annual service contract from the OEM or a factory trained third party. Costs are based on correspondence with manufacturers and are subject to change as the technology achieves greater commercialization and utilization in the utility sector. Unlike Li-Ion technologies, flow batteries generally do not exhibit calendar or cycle degradation, so there is not a variable O&M component per cycle. There is mechanical equipment that requires service based on an OEM recommended schedule, which is modeled as a levelized annual cost for the life of the system.

8.0 CONCLUSIONS

This Renewable Energy Resource Technology Assessment provides information to support PacifiCorp's power supply planning efforts. Information provided in this Assessment is screening level in nature and is intended to highlight indicative, differential costs associated with each technology. BMcD recommends that PacifiCorp use this information to update production cost models for comparison of renewable resource alternatives and their applicability to future resource plans. PacifiCorp should pursue additional engineering studies to define project scope, budget, and timeline for technologies of interest.

Renewable options include PV and wind systems. PV is a proven technology for daytime peaking power and a viable option to pursue renewable goals. PV capital costs have steadily declined for years, but recent import tariffs on PV panels and foreign steel may impact market trends. Wind energy generation is a proven technology and turbine costs dropped considerably over the past few years.

Utility-scale battery storage systems are being installed in varied applications from frequency response to arbitrage, and recent cost reduction trends are expected to continue. Li-Ion technology is achieving the greatest market penetration, aided in large part by its dominance in the automotive industry, but other technologies like flow batteries should be monitored, as well.

PacifiCorp's region has several geological sites that can support large scale storage options including PHES and CAES. This gives PacifiCorp flexibility in terms of energy storage. Smaller applications will be much better suited for battery technologies, but if a larger need is identified PHES or CAES could provide excellent larger scale alternatives. Both of these technologies benefit from economies of scale in regard to their total kWh of storage, allowing them to decrease the overall \$/kWh project costs.

8-1

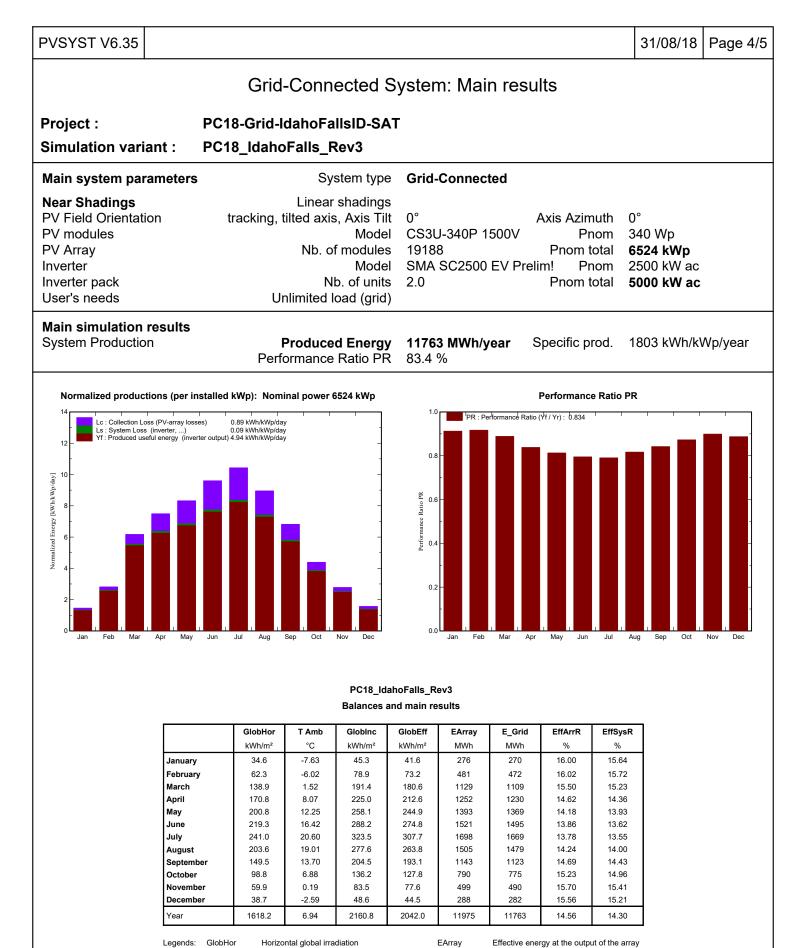
APPENDIX A – SUMMARY TABLES

PACIFICORP RENEWABLE TECHNOLOGY ASSESSMENT SUMMARY ENERGY STORAGE	-												
PROJECT TYPE	Pumped Hydro						Li-lon Battery						
BASE PLANT DESCRIPTION	Swan Lake	Goldendale	Seminoe	Flat Canyon	Idaho PS 1								
Nominal Output	400 MW	1200 MW	700 MW	300 MW	360 MW	320 MW	1 MW	1 MW	1 MW	1 MW	15 MW	1 MW	
	3,800 MWh	16,800 MWh	7,000 MWh	1,800 MWh	2,880 MWh	15,360 MWh	0.25 MWh	2 MWh	4 MWh	8 MWh	60 MWH	6 MWh	
Capacity Factor (%)	17%	17%	17%	17%	17%	20%	2%	8%	17%	33%	17%	25%	
Startup Time (Cold Start), minutes	1.5	1.5	1.5	1.5	1.5	10	N/A	N/A	N/A	N/A	N/A	N/A	
Full Pumping to Full Gen, minutes	4	4	4	4	4	7	N/A	N/A	N/A	N/A	N/A	N/A	
Transition Time from Charging to Discharging, minutes (note 10)	6	6	6	6	6	3	<1 sec in active mode						
Availability Factor, %	90%	90%	90%	90%	90%	96%	97%	97%	97%	97%	97%	95%	
Technology Rating	Mature	Mature	Mature	Mature	Mature	Commercial							
Life Cycle, yrs	60	60	60	60	60	30+	15	15	15	15	15	20	
Permitting & Construction Schedule, year (note 1)	6	10	8	6	12	3	1	1	1	1	1	2	
ESTIMATED PERFORMANCE													
Base Load Performance @ (Annual Average)													
Net Plant Output, kW	393,300	1,200,000	700,000	300,000	360,000	320,000	1,000	1,000	1,000	1,000	15,000	1,000	
Total Plant Storage, kWh (note 4)	3,736,350	16,800,000	7,000,000	1,800,000	2,880,000	15,360,000	250	2,000	4,000	8,000	60,000	6,000	
Time for Full Discharge, hours	9.5	14	10	6	8	48	0.25	2	4	8	4	6	
Time for Full Charge, hrs	9.5 N/A	14	12	7.5 N/A	8	192 4.230	0.3 N/A	2.3 N/A	4.6	9.2	4.6	8	
Heat Rate (HHV), Btu/kWh Round-Trip Efficiency (%) (note 5)	N/A 79%	N/A 79%	N/A 79%	N/A 79%	N/A 79%	4,230	N/A 88%	N/A 88%	N/A 88%	N/A 88%	N/A 88%	N/A 65%	
ESTIMATED CAPITAL AND O&M COSTS (Note 11)	79%	79%	79%	79%	79%	55%	00%	0070	00%	0070	00%	00%	
EPC Project Capital Costs, 2018 MM\$ (w/o Owner's Costs)	\$814	\$2,146	\$1,352	\$545	\$635	\$384	\$1.0	\$1.8	\$2.5	\$3.8	\$21.8	\$2.8	
Owner's Costs, 2018 MM\$	\$163	\$429	\$270	\$109	\$127	\$77	\$0.4	\$0.6	\$0.6	\$0.8	\$2.1	\$0.7	
Owner's Project Development	Included	Included	Included	Included	Included	Included	\$0.1	\$0.1	\$0.1	\$0.1	\$0.2	\$0.1	
Owner's Engineer	Included	Included	Included	Included	Included	Included	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	
Owner's Project Management	Included	Included	Included	Included	Included	Included	\$0.1	\$0.1	\$0.1	\$0.1	\$0.2	\$0.1	
Owner's Legal Costs	Included	Included	Included	Included	Included	Included	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	
Permitting and Licensing Fees	Included	Included	Included	Included	Included	Included	\$0.1	\$0.1	\$0.1	\$0.1	\$0.2	\$0.1	
Generation Switchyard (note 6)	Included in Project	N/A	N/A	N/A	N/A	N/A	N/A						
Obilitiation Owitchyard (note 0)	Costs	Costs	Costs	Costs	Costs	Costs	19/4	19/4	19/5	180	1975	19/5	
Transmission to Interconnection Point	Included in Project Costs	N/A	N/A	N/A	N/A	N/A	N/A						
Training/Testing	Included in Project	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1	\$0.1						
	Costs Included in Project												
Land	Costs	Costs	Costs	Costs	Costs	Costs	Assumes Co-located		Assumes Co-located	Assumes Co-located	Assumes Co-located	Assumes Co-located	
Builders Risk Insurance (0.45% of Project Cost)	Included	Included	Included	Included	Included	Included	\$0.00	\$0.01	\$0.01	\$0.02	\$0.1	\$0.01	
Owner's Contingency	Included	Included	Included	Included	Included	Included	\$0.1	\$0.1	\$0.1	\$0.2	\$1.1	\$0.2	
Total Screening Level Project Costs, 2018 MM\$	\$977	\$2,575	\$1,622	\$654	\$762	\$461	\$1.4	\$2.4	\$3.1	\$4.7	\$24.0	\$3.5	
EPC Project Costs, 2018 \$/kW EPC Project Costs, 2018 \$/kWh	\$2,070 \$220	\$1,790 \$130	\$1,930 \$190	\$1,820 \$300	\$1,760 \$220	\$1,200 \$30	\$990 \$3,940	\$1,780 \$890	\$2,470 \$620	\$3,850 \$480	\$1,450 \$360	\$2,790 \$460	
Total Screening Level Project Costs, 2018 \$/kW Total Screening Level Project Costs, 2018 \$/kWh	\$2,480 \$260	\$2,150 \$150	\$2,320 \$230	\$2,180 \$360	\$2,120 \$260	\$1,440 \$30	\$1,420 \$5,670	\$2,380 \$1,190	\$3,110 \$780	\$4,670 \$580	\$1,600 \$400	\$3,520 \$590	
O&M Cost, 2018 MM\$/yr Fixed O&M Cost, 2018 MM\$/yr Variable O&M Cost, 2018 MM\$/yr	\$7	\$15	\$12	\$5	\$6	\$2	\$0.009 \$0.008 \$0.001	\$0.035 \$0.024 \$0.011	\$0.056 \$0.035 \$0.021	\$0.094 \$0.052 \$0.042	\$0.489 \$0.172 \$0.317	\$0.032 \$0.032 Incl. in FOM	

 International Access
 International Access and Fixed Octas
 Internatecoces and Fixed

Note 8. Pumped Hydro O&M excludes major maintenance cost items, like generator rewinds, that are viewed as end of life repairs to extend the intended life of the asset. Note 9. Battery capacity factor and annual O&M is based on one full cycle per day. Note 10. CAES storage supports simultaneous operation of compression and expansion. Note 11. EPC and Owner's Cost estimates exclude AFUDC, Sales Tax, Insurance and Property Tax During Construction

Description During the problem Description During the problem Description Description <thdescription< th=""> Description Descr</thdescription<>	PACIFICORP RENEWABLE TECHNOLOGY ASSESSMENT SUMMARY TAE SOLAR GENERATION	BLE														
Name: A list of the start of the s	PROJECT TYPE	1						Solar Ph	otovoltaic - Single Avie	s Tracking						
Material Difference Hars Hars </th <th></th> <th>1</th> <th>Idaho Falls, ID</th> <th></th> <th colspan="3">Lakeview, OR</th> <th colspan="3"></th> <th colspan="3">Rock Springs, WY</th> <th colspan="3">Yakima WA</th>		1	Idaho Falls, ID		Lakeview, OR						Rock Springs, WY			Yakima WA		
matched Prime Prime Prime Prime Prime 11 Prime 10 Prim 10 Prim 10 Prim		5 MW		200 MW	5 MW		200 MW	5 MW		200 MW	5 MW		200 MW	5 MW		200 MW
ACC - Company and NUME - 1 APA B A	Nominal Output, MW	5	50	200	5	50	200	5	50	200	5	50	200	5	50	200
Matching Matchin																
American Land Algebra																
Prime Prim Prim Prim< P																99%
Nr/Nnew No.20 <													1.32			1.32
Normal sector Hand Sector																
Name Par varia Ser varia Ser varia Par																
Tending Condition of the set of	PV Degradation, %/yr (Note 3)															
Specific Structure 2																
Cartery Procession C	Technology Rating	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature
Sinte La Printer Open Annange 5:00 5:00 5:00 <t< td=""><td>Permitting & Construction Schedule, year</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td></t<>	Permitting & Construction Schedule, year	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Interface of the second seco																
Bartles Carlial Galary Carling																
PPC PC (2) Call (Call, 2) 19 M2 (bit Orma* Cash) FT <	Net Plant Output, kW	5,000	50,000	200,000	5,000	50,000	200,000	5,000	50,000	200,000	5,000	50,000	200,000	5,000	50,000	200,000
budges budges<	ESTIMATED CAPITAL AND O&M COSTS (Note 7)	1	1		1		1			1	1	1				
budge budge <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
Interstance																
Interstance		\$2 \$1	\$27									\$27		32 \$1	\$27	
Productorial field back for the set of the		\$0	\$3						\$3			\$3	\$13	\$0	\$3	\$13
Out-Out-Out-Out-Out-Out-Out-Out-Out-Out-			\$25						\$25					\$3	\$30	\$120
Dumers Project Development Dumers Project Marmint Dumers Dimers Project Development Dumers Dimers Dimers Dumers Dimers	Project Indirects, Fee, and Contingency	\$1	\$7	\$20	\$1	\$7	\$21	\$1	\$7	\$20	\$1	\$7	\$20	\$1	\$7	\$21
Outer Project Development 003 <td>Owner's Costs, 2018 MM\$</td> <td></td> <td>\$2</td> <td></td> <td></td>	Owner's Costs, 2018 MM\$													\$2		
Owner brail Code So 3			\$0.3	\$0.3	\$0.3											
Permitty and Licensing Feen 50.4 30.5 30.6 50.4 30.5 30.6 50.4 30.5 30.6 50.4 30.5 30.6 50.4 30.5 30.6 50.4 30.5 30.6 50.4 30.5 30.6 50.4 30.5 30.6 30.4 30.5 30.6 30.4 30.5 30.6 30.4 30.5 30.6 <t< td=""><td></td><td>\$0.1</td><td>\$0.1</td><td>\$0.1</td><td>\$0.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$0.1</td><td>\$0.1</td></t<>		\$0.1	\$0.1	\$0.1	\$0.1										\$0.1	\$0.1
Generation Switchyrer (Note 5) Transmissen Interpretation Switchyrer (Note 5) Transmissen Interpretation and Upgrades (Note 5) Solution (Note 4) Solution (Note 4) Soluti		\$0.3	\$0.3	\$0.3	\$0.3	\$0.3			\$0.3					\$0.3	\$0.3	\$0.3
Transistor Interformedian (Note 8) Transmissor Interformedian (Note 8) State So.0 So.0 So.0 So.0 So.0 So.0 So.0 So.0			\$2.0	\$2.0	\$0.0			\$0.9						\$0.0	\$2.0	\$2.0
Land (Nos 4) So.0	Transmission Interconnection (Note 8)	\$0.0	\$34.5	\$34.5	\$0.0	\$34.5	\$34.5	\$0.0	\$34.5	\$34.5	\$0.0	\$34.5	\$34.5	\$0.0	\$34.5	\$34.5
Open spine Partis Stop Stop <td></td>																
Buildes frak. haumane (0.45% of Project Costs) S0.0 S0.3 S1.2 S0.0 S1.2 S0.0 S1.2 S0.0 S1.2 S0.0 S1.2 S0.0 S1.2 S1.2 S																
Owners Comingany Sind Sind <td>Operating Spare Parts Buildern Bisk Insurance (0.45% of Broject Cost)</td> <td></td>	Operating Spare Parts Buildern Bisk Insurance (0.45% of Broject Cost)															
Total Screening Level Project Costs, 2018 MW 59 5125 5343 59 5124 5342 59 5130 5354 PC Project Costs, 2018 MW 51,430 51,420 51,320 51,520 51,520 51,520 51,520 51,420 51,420 51,100 51																
Total Science S1,720 S2,800 S1,720 S1,720 S1,820 S1,820 S1,820 S1,820 S1,720 S2,400 S1,710 S1,710 S2,400 S1,710 S1,010 S1,710 S1,010 S1,010 <th< th=""><th></th><th>\$9</th><th>\$125</th><th>\$343</th><th></th><th></th><th>\$365</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>\$364</th></th<>		\$9	\$125	\$343			\$365									\$364
Total Science S1,720 S2,800 S1,720 S1,720 S1,820 S1,820 S1,820 S1,820 S1,720 S2,400 S1,710 S1,710 S2,400 S1,710 S1,010 S1,710 S1,010 S1,010 <th< th=""><th>EBC Project Costs 2018 S/kW</th><th>\$1.420</th><th>\$1.420</th><th>\$1 290</th><th>\$1 520</th><th>\$1 520</th><th>\$1.490</th><th>\$1.420</th><th>\$1.410</th><th>\$1 290</th><th>\$1.420</th><th>\$1.410</th><th>\$1 290</th><th>\$1 510</th><th>\$1 510</th><th>\$1.490</th></th<>	EBC Project Costs 2018 S/kW	\$1.420	\$1.420	\$1 290	\$1 520	\$1 520	\$1.490	\$1.420	\$1.410	\$1 290	\$1.420	\$1.410	\$1 290	\$1 510	\$1 510	\$1.490
Optime Cond. 2018 SWM-yr S40.40																
Optime Cond. 2018 SWM-yr S40.40	ORM Cost 2018 MMS/vr	\$0.2	\$2.0	60.1	\$0.2	\$2.0	CO 1	\$0.2	\$2.0	CO 1	\$0.2	\$2.0	60.1	\$0.2	\$2.0	60.1
Co-Located Energy Storage - 2 hr Capacity Add-On Costs Downer 3 Costs, 2018 MMS Synery 1 MW 2 MWh 10 MW 20 MWh 50 MW 100 MWh 1 MW 2 MWh 50 MW 100 MWh 1 MW 20 MWh 50 MW 100 MWh 50 MW 200 MWh																
Add-On cots Copilal Const. 2018 MMS S17 S108 S33.7 S19 S13.7 S10.8 S33.7 S19 S15.7 S06.8 S33.7 S10.8 S33.7 S10.8 S33.7 S10.8 S33.7 S10.8 S33.7 S19.9 S17.7 S06.5 S11.7 S10.8 S33.7 S10.7 S10.8 S33.7 S10.8 S33.7 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
Capital Costs, 2018 MMS S17 S10.8 S3.7 S1.9 S1.5 S1.5 S1.7 S10.8 S3.7 S1.6 S3.6 S1.7 S10.8 S3.7 S1.9 S1.8 S3.7 S1.9 S1.8 S3.7 S1.8 S3.7 S1.8 S3.7 S1.8 S3.7 S1.9 S1.8 S3.8 More Mode Cost S0.00 S0.17 S0.00 S0.17 S0.07 S0.07<		1 MW 2 MWh	10 MW 20 MWh	50 MW 100 MWh	1 MW 2 MWh	10 MW 20 MWh	50 MW 100 MWh	1 MW 2 MWh	10 MW 20 MWh	50 MW 100 MWh	1 MW 2 MWh	10 MW 20 MWh	50 MW 100 MWh	1 MW 2 MWh	10 MW 20 MWh	50 MW 100 MWh
Incremental OMA Code, 2018 MMS/Yr 50.03 50.19 50.07 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.19 50.77 50.00 50.07		\$1.7	\$10.8	\$33.7	\$1.9	\$11.6	\$36.3	\$1.7	\$10.8	\$33.7	\$1.7	\$10.8	\$33.7	\$1.9	\$11.6	\$36.3
Colsciented Energy Storage - An Capacity 1 MW / 4 MWh 10 MW / 40 MWh<			\$1.2	\$2.7	\$0.5	\$1.3	\$2.8	\$0.5	\$1.2	\$2.7	\$0.5	\$1.2	\$2.7	\$0.5	\$1.3	\$2.8
Add-On costs Internetial Costs, 2018 MMS S2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$10.8 \$2.4 \$10.4 <td>Incremental O&M Cost, 2018 MM\$/Yr</td> <td>\$0.03</td> <td>\$0.19</td> <td>\$0.77</td> <td>\$0.03</td> <td>\$0.19</td> <td>\$0.77</td> <td>\$0.03</td> <td>\$0.19</td> <td>\$0.77</td> <td>\$0.0</td> <td>\$0.19</td> <td>\$0.77</td> <td>\$0.03</td> <td>\$0.19</td> <td>\$0.77</td>	Incremental O&M Cost, 2018 MM\$/Yr	\$0.03	\$0.19	\$0.77	\$0.03	\$0.19	\$0.77	\$0.03	\$0.19	\$0.77	\$0.0	\$0.19	\$0.77	\$0.03	\$0.19	\$0.77
Add-On costs Internetial Costs, 2018 MMS S2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$16.3 \$58.7 \$2.4 \$16.3 \$58.7 \$2.6 \$17.6 \$63.3 \$2.4 \$10.8 \$2.4 \$10.4 <td>Co-Located Energy Storage - 4 hr Capacity</td> <td>1 MW 4 MWh</td> <td>10 MW 40 MWh</td> <td>50 MW 200 MWh</td> <td>1 MW 4 MWh</td> <td>10 MW 40 MWh</td> <td>50 MW 200 MWh</td> <td>1 MW 4 MWh</td> <td>10 MW 40 MWh</td> <td>50 MW 200 MWh</td> <td>1 MW 4 MWh</td> <td>10 MW 40 MWh</td> <td>50 MW 200 MWh</td> <td>1 MW 4 MWh</td> <td>10 MW 40 MWh</td> <td>50 MW 200 MWh</td>	Co-Located Energy Storage - 4 hr Capacity	1 MW 4 MWh	10 MW 40 MWh	50 MW 200 MWh	1 MW 4 MWh	10 MW 40 MWh	50 MW 200 MWh	1 MW 4 MWh	10 MW 40 MWh	50 MW 200 MWh	1 MW 4 MWh	10 MW 40 MWh	50 MW 200 MWh	1 MW 4 MWh	10 MW 40 MWh	50 MW 200 MWh
Ommer Social 2018 MMS S0.6 S1.5 S4.0 S0.6 S1.5 S4.0 S0.6 S1.5 S4.0 S0.6 S4.3 S4.3 Intermental QMMS/rr S0.06 S3.5 S1.40 S0.6 S1.5 S1.40 S0.6 S1.5 S1.43 S0.6 S0.4 S1.5 S1.43 S0.6 S1.5 S1.6 S1.5 S1.6 S1.5 S1.43 S0.6 S1.5 S1.43 S0.6 S1.5 S1.4 S0.6 S1.5 S1.4 S0.6 S1.5 S1.4 S0.4 S1.5 S1.4 S0.4 S1.5 S1.4 S0.4 S1.5 S1.4 S0.4			1	1				1								
Incremental Q&M Cost, 2018 MM\$/Yr \$0.06 \$0.35 \$1.43 \$0.06 \$0.35 \$1.43 \$0.06 \$0.35 \$1.43 Co-Located Energy Storago-1 & Cogacity 10 MV 80 MWh																
Co-Located Energy Storage - 8 hr Capacity Add-On Costs 1 MW 8 MWh 10 MW 80 MWh 50 MW 400 MWh 1 MW 8 MWh 50 MW 400 MWh 1 MW 8 MWh 10 MW 80 MWh 50 MW 400 MWh 1 MW 8 MWh 10 MW 80 MWh 50 MW 400 MWh 1 MW 8 MWh 10 MW 80 MWh 50 MW 400 MWh 1 MW 8 MWh 10 MW 80 MWh 50 MW 400 MWh 1 MW 8 MWh 10 MW 80 MWh 50 MW 400 MWh 1 MW 80 MWh 50 MW 400 MWh 1 MW 8 MWh 10 MW 80 MWh 50 MW 400 MWh 1 MW 80 MWh 50 MW 400 MWh 50 MW 400 MWh 1 MW 80 MWh 50 MW 400 MWh 1 MW 80 MWh 50 MW 400 MWh 50 MW 400 MWh 50 MW 400 MWh 1 MW 80 MWh 50 MW 400 MWh 1 MW 80 MWh 50 MW 400 MWh 1 MW 80 MWh </td <td></td>																
Add-On Costs Capital Costs, 2018 MM\$ \$3.8 \$2.6.6 \$107.8 \$4.1 \$2.8.6 \$116.2 \$3.8 \$2.6.6 \$107.8 \$4.1 \$2.8.6 \$116.2 \$3.8 \$2.6.6 \$107.8 \$4.1 \$2.8.6 \$116.2 \$3.8 \$2.6.6 \$107.8 \$4.1 \$2.8.7 \$116.2 Owner's Costs, 2018 MM\$ \$0.6 \$2.1 \$6.7 \$0.8 \$2.1 \$6.7 \$0.8 \$2.2 \$7.2																
Capital Costs, 2018 MM\$ \$3.8 \$22.6 \$107.8 \$4.1 \$22.6 \$116.2 \$3.8 \$22.6 \$107.8 \$3.8 \$22.6 \$107.8 \$4.1 \$22.7 \$16.2 Owner's Costs, 2018 MM\$ \$0.6 \$2.1 \$5.7 \$0.7 \$2.2 \$7.2 \$0.8 \$2.1 \$5.8 \$2.1 \$5.7 \$5.0 \$2.2 \$7.2	Co-Located Energy Storage - 8 hr Capacity Add-On Costs	1 MW 8 MWh	10 MW 80 MWh	50 MW 400 MWh	1 MW 8 MWh	10 MW 80 MWh	50 MW 400 MWh	1 MW 8 MWh	10 MW 80 MWh	50 MW 400 MWh	1 MW 8 MWh	10 MW 80 MWh	50 MW 400 MWh	1 MW 8 MWh	10 MW 80 MWh	50 MW 400 MWh
Owner's Costs, 2018 MM\$ \$0.6 \$2.1 \$6.7 \$0.7 \$2.2 \$7.2 \$0.8 \$2.1 \$6.7 \$0.8 \$2.1 \$6.7 \$0.8 \$2.1 \$6.7 \$0.8 \$2.2 \$7.2		\$3.8	\$26.6	\$107.8	\$4.1	\$28.6	\$116.2	\$3.8	\$26.6	\$107.8	\$3.8	\$26.6	\$107.8	\$4.1	\$28.7	\$116.2
Incremental Q&M Cost, 2018 MMS/Yr \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.0 \$0.63 \$2.72 \$0.0 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.00 \$0.63 \$2.72 \$0.00 \$0.63 \$2.72 \$0.09 \$0.63 \$2.72 \$0.09 \$0.63 \$0.63 \$0.63 \$0.63 \$0.63 \$0.63 \$0.63 \$0.63 \$0.65 \$0.6	Owner's Costs, 2018 MM\$	\$0.6	\$2.1	\$6.7	\$0.7	\$2.2	\$7.2	\$0.8	\$2.1	\$6.7	\$0.8	\$2.1	\$6.7	\$0.8	\$2.2	\$7.2
	Incremental O&M Cost, 2018 MM\$/Yr	\$0.09	\$0.63	\$2.72	\$0.09	\$0.63	\$2.72	\$0.09	\$0.63	\$2.72	\$0.0	\$0.63	\$2.72	\$0.09	\$0.63	\$2.72


Notes
Notes
Notes
Notes
Notes
Notes
Notes
Notes
Solar capacity factor accounts for typical losses. 50 and 200 MW options have AC capacity overbuilt for high voltage losses. Additional inverters and economic efficiencies for overbuilding for larger sizes results in the capacity factor different between the two larger sizes and the 5 MW installation.
Note 3. Pv/ degradation based on typical warranty information for polycrystalline products. Assuming factory recommended maintenance is performed, PV performance is estimated to degrade -2% in the first year and 0.5% each following year. The first year 2% degradation is accounted for in the PVSyst model output for year 1.
Note 3. PV degradation based on typical warranty information for polycrystalline products. Assuming factory recommended maintenance is performed, PV performance is estimated to degrade -2% in the first year and 0.5% each following year. The first year 2% degradation is accounted for in the PVSyst model output for year 1.
Note 6. PV project sassume that liand waterington cost as ear include in 0.8M, not capial costs. Assuming factory recommended maintenance is performed, PV performance is estimated to degrade -2% in the first year and 0.5% each following year. The first year 2% degradation is accounted for in the PVSyst model output for year 1.
Note 6. Drog not Washington cost estimates assume that liand watering in the output of the degrade of the 0.2% of the degrade of 0.2% of the d

PROJECT TYPE PROJECT LOCATION			Onshore Wind		
	Pocatello, ID	Arlington, OR	Monticello, UT	Medicine Bow, WY	Goldendale, WA
BASE PLANT DESCRIPTION	200 MW	200 MW	200 MW	200 MW	200 MW
Nominal Output, MW	200	200	200	200	200
Number of Turbines	56 x 3.6 MW	56 x 3.6 MW	56 x 3.6 MW	56 x 3.6 MW	56 x 3.6 MW
Capacity Factor (Note 1)	37.1%	37.1%	29.5%	43.6%	37.1%
Availability Factor, % (Note 2)	95%	95%	95%	95%	95%
Assumed Land Use, Acres	56	56	56	56	56
Technology Rating	Mature	Mature	Mature	Mature	Mature
6, C					
Permitting & Construction Schedule, year	2.5	2.5	2.5	2.5	2.5
ESTIMATED PERFORMANCE	1	1			
Base Load Performance @ (Annual Average) Net Plant Output, kW	200,000	200,000	200,000	200,000	200,000
ESTIMATED CAPITAL AND O&M COSTS (Note 6)			1		
Project Capital Costs, 2018 MM\$ (w/o Owner's Costs)	\$228	\$229	\$228	\$228	\$228
Wind Turbine Generators	\$160	\$160	\$160	\$160	\$161
Roads	\$5	\$5	\$5	\$5	\$5
O&M Building	\$2	\$2	\$2	\$2	\$2
Collection System	\$8	\$8	\$8	\$8	\$8
Other BOP, Materials, Labor, Indirects	\$53	\$54	\$53	\$53	\$53
Owner's Costs, 2018 MM\$	\$103	\$103	\$103	\$103	\$103
Project Development (Note 3)	\$22.8	\$22.8	\$22.8	\$22.8	\$22.8
Wind Resource Assessment	\$1.0	\$1.0	\$1.0	\$1.0	\$1.0
Land Control	\$2.4	\$2.4	\$2.4	\$2.4	\$2.4
Permitting and Licensing Fees	\$3.2	\$3.2	\$3.2	\$3.2	\$3.2
Generation Switchyard Transmission Interconnection (Note 7)	\$2.0 \$34.5	\$2.0 \$34.5	\$2.0 \$34.5	\$2.0 \$34.5	\$2.0 \$34.5
Transmission Interconnection Application and Upgrades (Note 8)	\$9.8	\$9.8	\$9.8	\$9.8	\$34.5 \$9.8
Land (Note 4)	\$9.0	\$9.8	\$9.8	\$9.0	\$9.0 \$0.0
Operating Spare Parts	Included in O&M	Included in O&M	Included in O&M	Included in O&M	o.u Included in O&I
Temporary facilities and Construction Utilities	\$12.0	\$12.0	\$12.0	\$12.0	\$12.0
	Included in Project	Included in Project	Included in Project	Included in Project	Included in Proje
Builders Risk Insurance (0.45% of Project Cost)	Costs	Costs	Costs	Costs	Costs
Owner's Contingency	\$15.8	\$15.8	\$15.8	\$15.8	\$15.8
Total Screening Level Project Costs, 2018 MM\$	\$332	\$333	\$332	\$332	\$332
	\$1,140	\$1,150	\$1,140	\$1,140 \$1,660	\$1,140
EPC Project Costs, 2018 \$/kW Fotal Screening Level Project Costs, 2018 \$/kW	\$1,660	\$1,660	\$1,660	\$1,000	\$1,660
Total Screening Level Project Costs, 2018 \$/kW					
Total Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr	\$10.2	\$10.2	\$9.8	\$9.2	\$9.8
Total Screening Level Project Costs, 2018 \$/kW					
Fotal Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity	\$10.2	\$10.2	\$9.8	\$9.2	\$9.8 \$49.0
Fotal Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Add-On Costs	\$10.2 \$51.0 50 MW 100 MWh	\$10.2 \$51.0 50 MW 100 MWh	\$9.8 \$49.0 50 MW 100 MWh	\$9.2 \$46.0 50 MW 100 MWh	\$9.8 \$49.0 50 MW 100 MV
Fotal Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Add-On Costs Capital Costs, 2018 MM\$	\$10.2 \$51.0 50 MW 100 MWh \$33.7	\$10.2 \$51.0 50 MW 100 MWh \$35.9	\$9.8 \$49.0 50 MW 100 MWh \$33.7	\$9.2 \$46.0 50 MW 100 MWh \$33.7	\$9.8 \$49.0 50 MW 100 MV \$35.8
Fotal Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Add-On Costs Capital Costs, 2018 MM\$ Cwner's Costs, 2018 MM\$	\$10.2 \$51.0 50 MW 100 MWh \$33.7 \$2.7	\$10.2 \$51.0 50 MW 100 MWh \$35.9 \$2.8	\$9.8 \$49.0 50 MW 100 MWh \$33.7 \$2.7	\$9.2 \$46.0 50 MW 100 MWh \$33.7 \$2.7	\$9.8 \$49.0 50 MW 100 MV \$35.8 \$2.8
Fotal Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Add-On Costs Capital Costs, 2018 MM\$	\$10.2 \$51.0 50 MW 100 MWh \$33.7	\$10.2 \$51.0 50 MW 100 MWh \$35.9	\$9.8 \$49.0 50 MW 100 MWh \$33.7	\$9.2 \$46.0 50 MW 100 MWh \$33.7	\$9.8 \$49.0 50 MW 100 MW \$35.8
Total Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Add-On Costs Capital Costs, 2018 MM\$ Comer's Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$/Yr Co-Located Energy Storage - 4 hr Capacity	\$10.2 \$51.0 50 MW 100 MWh \$33.7 \$2.7	\$10.2 \$51.0 50 MW 100 MWh \$35.9 \$2.8	\$9.8 \$49.0 50 MW 100 MWh \$33.7 \$2.7	\$9.2 \$46.0 50 MW 100 MWh \$33.7 \$2.7	\$9.8 \$49.0 50 MW 100 MV \$35.8 \$2.8 \$0.77
Total Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Add-On Costs Capital Costs, 2018 MM\$ Owner's Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$/Yr Co-Located Energy Storage - 4 hr Capacity Add-On Costs	\$10.2 \$51.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh	\$10.2 \$51.0 50 MW 100 MWh \$35.9 \$2.8 \$0.77 50 MW 200 MWh	\$9.8 \$49.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh	\$9.2 \$46.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh	\$9.8 \$49.0 50 MW 100 MV \$35.8 \$2.8 \$0.77 50 MW 200 MV
Total Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Add-On Costs Capital Costs, 2018 MM\$ Owner's Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$/Yr Co-Located Energy Storage - 4 hr Capacity Add-On Costs Capital Costs, 2018 MM\$	\$10.2 \$51.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7	\$10.2 \$51.0 50 MW 100 MWh \$35.9 \$2.8 \$0.77 50 MW 200 MWh \$62.6	\$9.8 \$49.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7	\$9.2 \$46.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7	\$9.8 \$49.0 50 MW 100 MW \$35.8 \$2.8 \$0.77 50 MW 200 MW \$62.5
Total Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Add-On Costs Capital Costs, 2018 MM\$ Owner's Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$/Yr Co-Located Energy Storage - 4 hr Capacity Add-On Costs	\$10.2 \$51.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh	\$10.2 \$51.0 50 MW 100 MWh \$35.9 \$2.8 \$0.77 50 MW 200 MWh	\$9.8 \$49.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh	\$9.2 \$46.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh	\$9.8 \$49.0 50 MW 100 MV \$35.8 \$2.8 \$0.77 50 MW 200 MV
Total Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Ad-On Costs Capital Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$/Yr Co-Located Energy Storage - 4 hr Capacity Ad-On Costs Capital Costs, 2018 MM\$ Incremental Costs, 2018 MM\$ Incremental Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$ Cover's Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$ Incrementa	\$10.2 \$51.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0	\$10.2 \$51.0 50 MW 100 MWh \$35.9 \$2.8 \$0.77 50 MW 200 MWh \$62.6 \$4.3	\$9.8 \$49.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0	\$9.2 \$46.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0	\$9.8 \$49.0 50 MW 100 MV \$35.8 \$2.8 \$0.77 50 MW 200 MV \$62.5 \$4.3 \$1.4
Total Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Ad-On Costs Capital Costs, 2018 MM\$ Owner's Costs, 2018 MM\$ Owner's Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$/Yr Co-Located Energy Storage - 4 hr Capacity Add-On Costs Capital Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$/Yr Co-Located Energy Storage - 8 hr Capacity Add-On Costs	\$10.2 \$51.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0 \$1.4 50 MW 400 MWh	\$10.2 \$51.0 50 MW 100 MWh \$35.9 \$2.8 \$0.77 50 MW 200 MWh \$62.6 \$4.3 \$1.4 50 MW 400 MWh	\$9.8 \$49.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0 \$1.4 50 MW 400 MWh	\$9.2 \$46.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0 \$1.4 50 MW 400 MWh	\$9.8 \$49.0 50 MW 100 MV \$35.8 \$2.8 \$0.77 50 MW 200 MV \$62.5 \$4.3 \$1.4 50 MW 400 MV
Total Screening Level Project Costs, 2018 \$/kW D&M Cost, 2018 MM\$/yr D&M Cost, 2018 \$/kW-yr Co-Located Energy Storage - 2 hr Capacity Ad-On Costs Capital Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$/Yr Co-Located Energy Storage - 4 hr Capacity Ad-On Costs Capital Costs, 2018 MM\$ Incremental Costs, 2018 MM\$ Incremental Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$ Cover's Costs, 2018 MM\$ Incremental O&M Cost, 2018 MM\$ Incrementa	\$10.2 \$51.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0 \$1.4	\$10.2 \$51.0 50 MW 100 MWh \$35.9 \$2.8 \$0.77 50 MW 200 MWh \$62.6 \$4.3 \$1.4	\$9.8 \$49.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0 \$1.4	\$9.2 \$46.0 50 MW 100 MWh \$33.7 \$2.7 \$0.77 50 MW 200 MWh \$58.7 \$4.0 \$1.4	\$9.8 \$49.0 50 MW 100 MW \$35.8 \$2.8 \$0.77 50 MW 200 MV \$62.5 \$4.3

APPENDIX B – SOLAR PVSYST MODEL OUTPUT (5MW)

PVSYST V6.35						31/08/18	Page 1/5
	Grid-Conr	nected Syster	m: Simulat	ion param	eters		
		,		·			
Project :	PC18-Grid-I	dahoFallsID-SA	Т				
Geographical Site	Idaho Fa	alls Fanning Field			Country	USA	
Situation Time defined as		Latitude Legal Time Albedo	Time zone l		ongitude_ Altitude		
Meteo data:	Idaho Fa	alls Fanning Field	TMY - NREI	.: TMY3 hour	y DB (199	1-2005)	
Simulation variant :	PC18_Idaho	Falls_Rev3					
		Simulation date	31/08/18 13	h50			
Simulation parameters							
Tracking plane, tilted Ax Rotation Limitations	kis	Axis Tilt Minimum Phi			s Azimuth imum Phi	0° 60°	
Backtracking strategy Inactive band		Tracker Spacing Left	5.50 m 0.20 m	Colle	1.98 m 0.20 m		
Models used		Transposition	Perez		Diffuse	Imported	
Horizon		Free Horizon					
Near Shadings		Linear shadings					
PV Array Characteristics PV module Number of PV modules Total number of PV modu Array global power	Si	Manufacturer Orientation	26 modules 19188	olar Inc. Til I Unit No	t/Azimuth n parallel m. Power ing cond.	738 strings	50°C)
Array operating character Total area	istics (50°C)	U mpp Module area	895 V		I mpp Cell area	6580 A 33931 m ²	00)
Inverter		Model Manufacturer	SMA	0 EV Prelim!			
Characteristics		Operating Voltage			m. Power	2500 kWac	
Inverter pack		Nb. of inverters	2 units	То	tal Power	5000 kWac	
PV Array loss factors							
Array Soiling Losses	Jan. Feb.	Mar. Apr.	May June	July Aug		Oct. Nov	
The word Lange for the	2.5% 2.5%	2.5% 2.5%	2.0% 2.0%	2.5% 2.5%	•	2.5% 2.5%	
Thermal Loss factor Wiring Ohmic Loss		Uc (const) Global array res.			Uv (wind) Fraction	1.2 W/m²K / 1.5 % at ST	
Mining Officie Loss LID - Light Induced Degra Module Quality Loss Module Mismatch Losses		Giobai all'ay les.	2.3 1101111	Loss	Fraction Fraction Fraction Fraction	1.0 % at ST 2.0 % -0.4 % 1.0 % at MF	

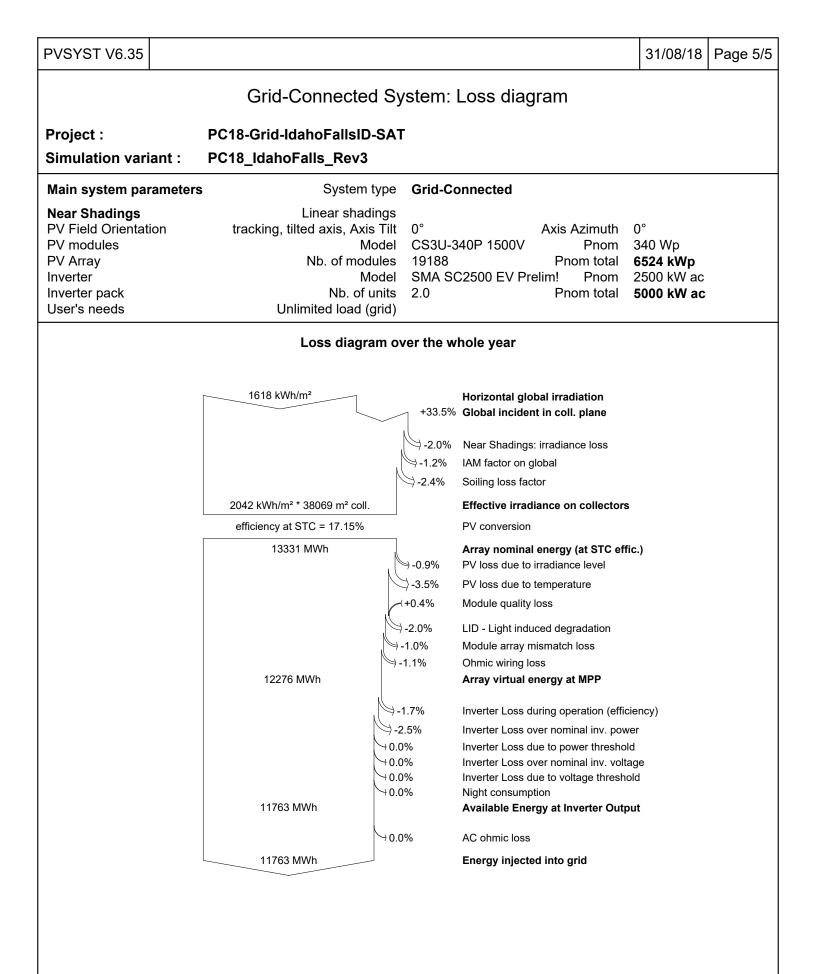
1	PVSYST V6.35									31/08/18	Page 2/5
		Grid-Connect	ted Syst	em: Sin	nulatio	on para	meters	s (conti	inue	d)	
	Incidence effect, u	user defined profile	10°	20°	30°	40°	50°	60°	70°		90°
			1.00	1.00	1.00	0.99	0.99	0.97	0.92	0.76	0.00
	System loss fact Wiring Ohmic Los	I ors SS		Wires	0 m 3	8x0.0 mm²	² Lo	oss Fractio	on 0	.0 % at ST0	2
	User's needs :		Unlimited	load (grid)							

Legends: T Amb

GlobInc

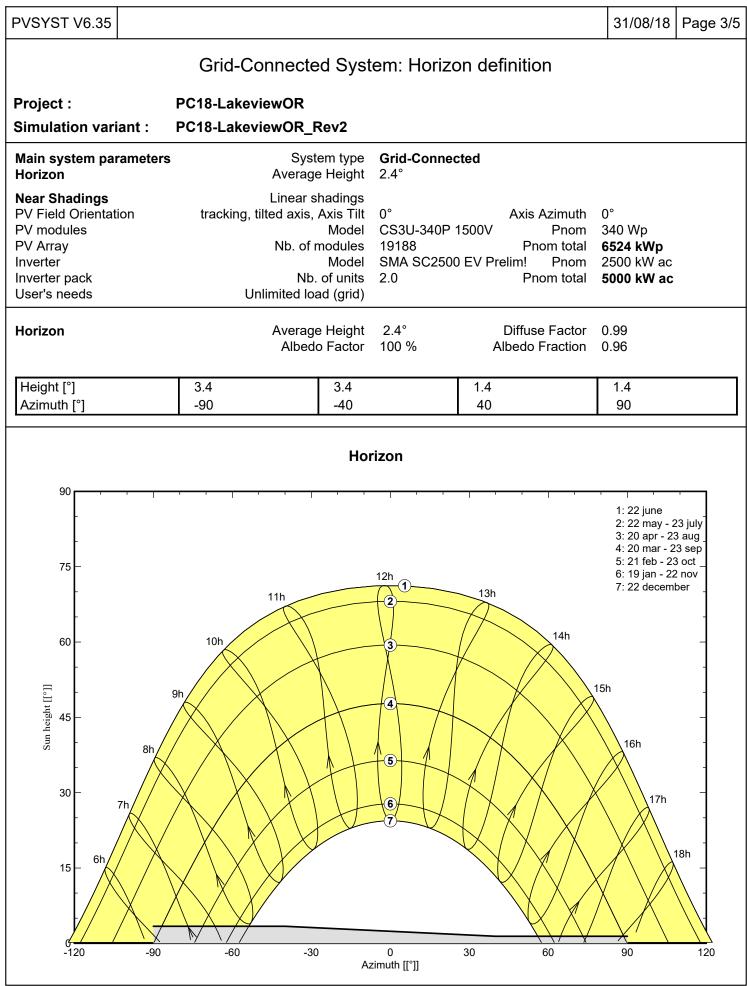
GlobEff

Horizontal global irradiation

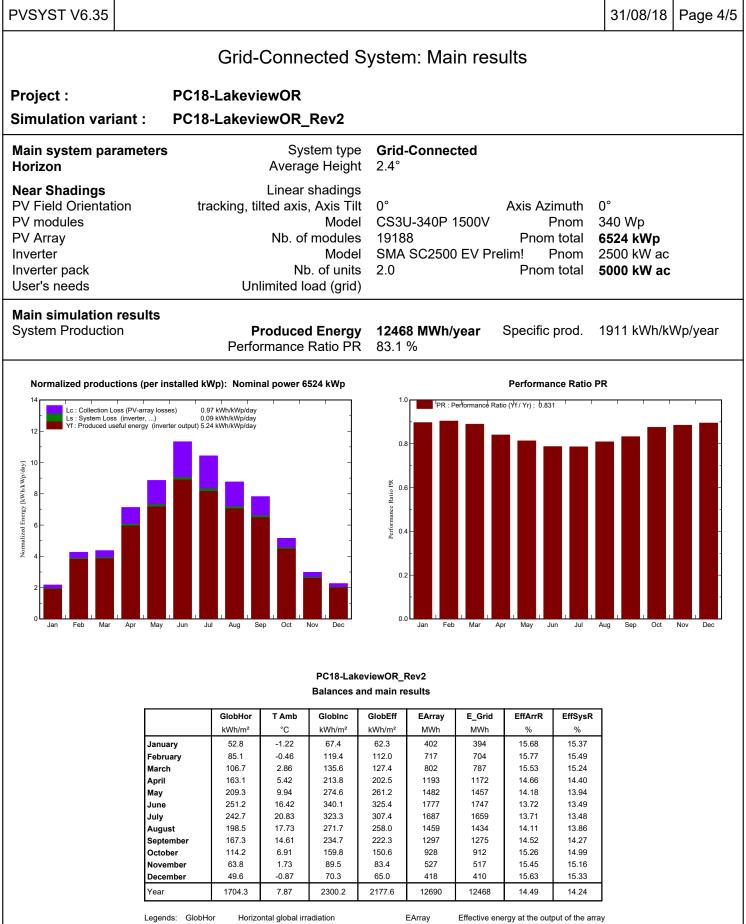

Ambient Temperature Global incident in coll. plane

Effective Global, corr. for IAM and shadings

E Grid EffArrR


EffSysR

Energy injected into grid Effic. Eout array / rough area Effic. Eout system / rough area



PVSYST V6.35					31/08/18 Page 1/5
	Grid-Con	nected Syster	n [.] Simulati	on parameters	
				en parametere	
Project :	PC18-Lake	viewOR			
Geographical Site		Lakeview		Country	United States
Situation Time defined as			42.2°N Time zone U 0.20	T-8 Longitude	
Meteo data:				: TMY3 hourly DB (199	1-2005)
Simulation variant :	PC18-Lakev	viewOR_Rev2			
		Simulation date	31/08/18 14	20	
Simulation parameters					
Tracking plane, tilted Ax Rotation Limitations	dis	Axis Tilt Minimum Phi		Axis Azimuth Maximum Phi	
Backtracking strategy Inactive band		Tracker Spacing Left	5.50 m 0.20 m	Collector width Right	1.98 m 0.20 m
Models used		Transposition	Perez	Diffuse	Imported
Horizon		Average Height	2.4°		
Near Shadings		Linear shadings			
PV Array Characteristics PV module		-poly Model Manufacturer	Canadian So	olar Inc.	008/08
Number of PV modules Total number of PV modul Array global power Array operating characteris Total area		Orientation In series Nb. modules Nominal (STC) U mpp Module area	26 modules	Tilt/Azimuth In parallel Unit Nom. Power At operating cond. I mpp Cell area	
Inverter		Model Manufacturer	SMA	0 EV Prelim!	0500 114
Characteristics		Operating Voltage	850-1425 V	Unit Nom. Power	2500 kWac
Inverter pack		Nb. of inverters	2 units	Total Power	5000 kWac
PV Array loss factors Array Soiling Losses	Jan. Feb.	Mar. Apr.	May June	July Aug. Sep.	Oct. Nov. Dec.
The model is a first	2.0% 2.0%		2.0% 2.0%	2.5% 2.5% 2.5%	2.0% 2.0% 2.0%
Thermal Loss factor Wiring Ohmic Loss		Uc (const) Global array res.	25.0 W/m²K 2.5 mOhm	Uv (wind) Loss Fraction	1.2 W/m²K / m/s 1.6 % at STC
LID - Light Induced Degra Module Quality Loss Module Mismatch Losses		Global array les.	2.3 monim	Loss Fraction Loss Fraction Loss Fraction	2.0 % -0.4 % 1.0 % at MPP

P٧	SYST V6.35									31/08/18	Page 2/5
		Grid-Connect	ted Syst	em: Sin	nulatio	on para	meters	s (conti	nue	d)	
In	cidence effect,	user defined profile	10°	20°	30°	40°	50°	60°	70°	80°	90°
			1.00	1.00	1.00	0.99	0.99	0.97	0.92	0.76	0.00
S) W	rstem loss fac iring Ohmic Los	ss		Wires	0 m 3	x0.0 mm²	Lo	oss Fractio	on 0	.0 % at ST(C
Us	ser's needs :		Unlimited	load (grid)							

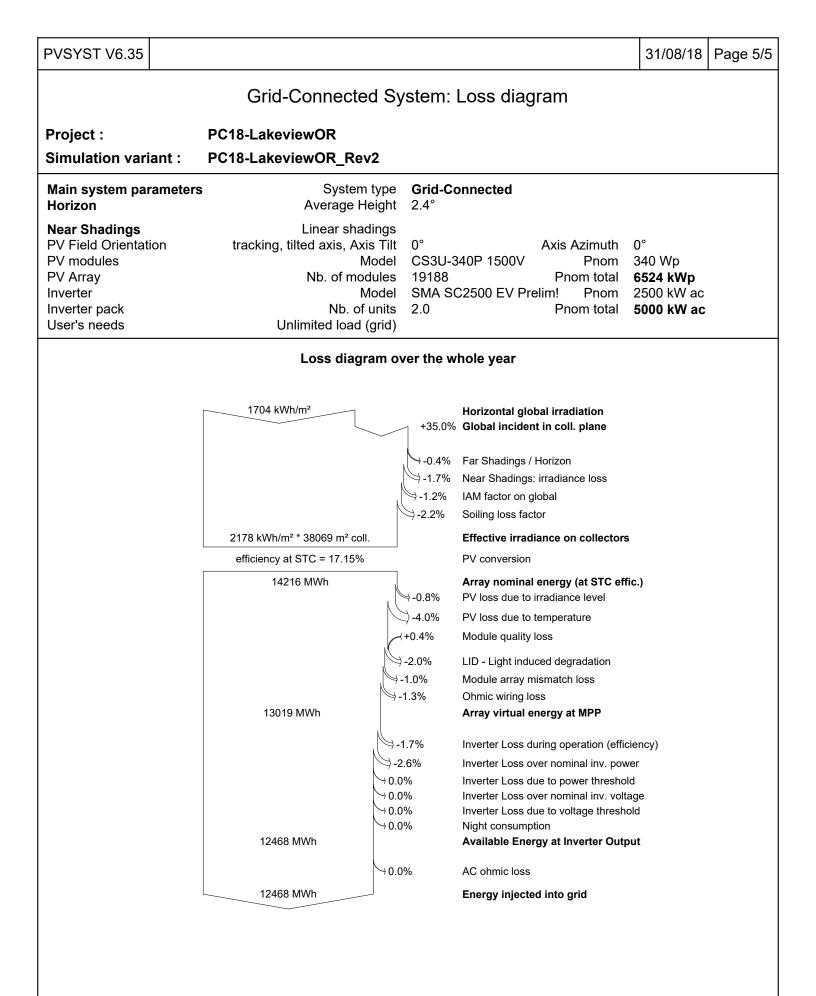
PVsyst Licensed to Burns & McDonnell (USA)

Legends: T Amb GlobInc

GlobEff

Horizontal global irradiation Ambient Temperature

Global incident in coll. plane

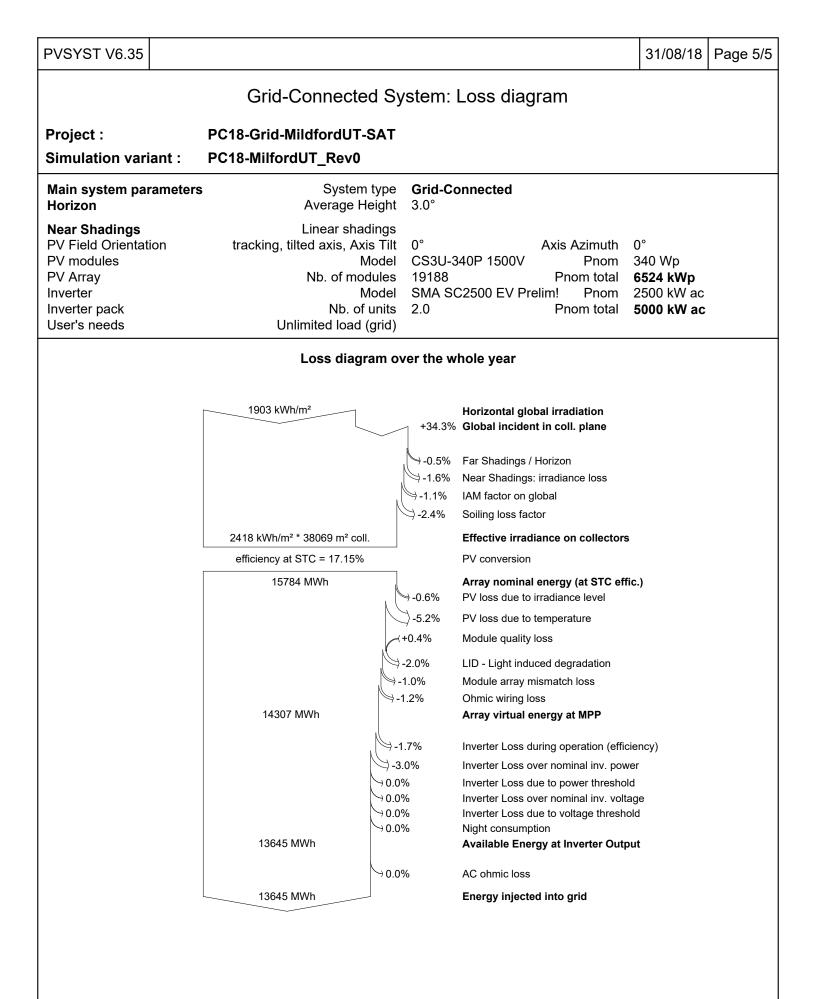

Effective Global, corr. for IAM and shadings

EArray E_Grid

EffArrR

EffSysR

Energy injected into grid Effic. Eout array / rough area Effic. Eout system / rough area

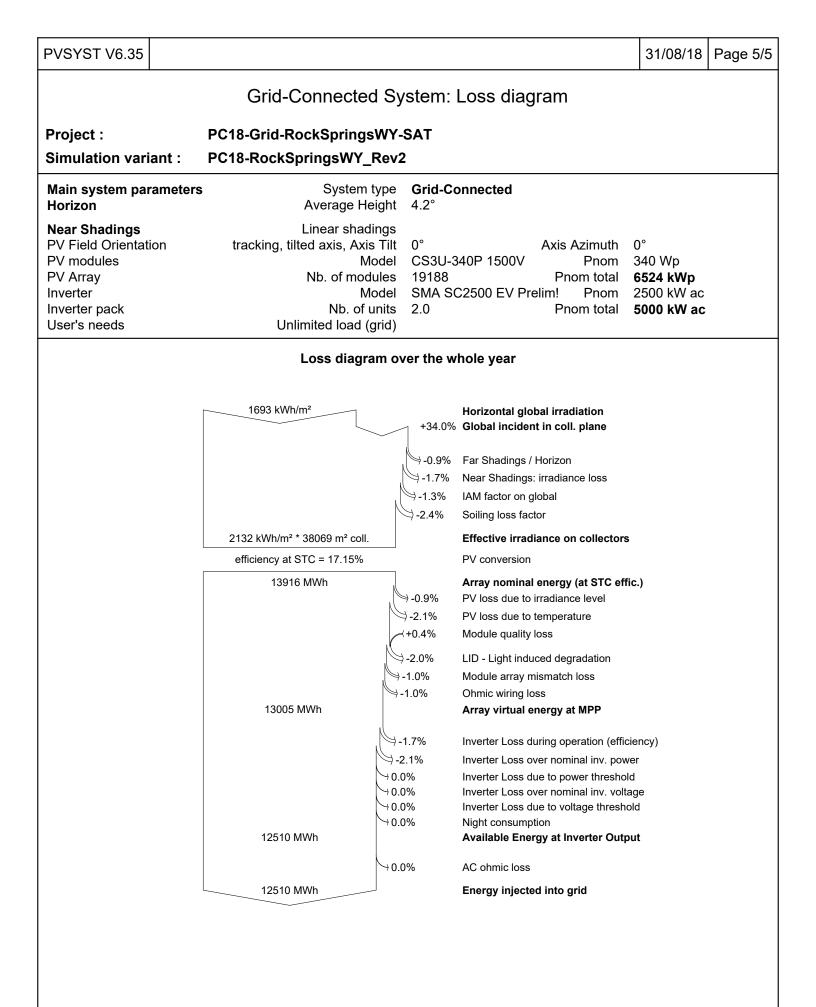


PVSYST V6.35									31/08/18	Page 1/5
	Grid-Cor	nnected S	ysten	n: Si	mulati	on pa	ramet	ers		
Project :	PC18 Grid	-MildfordU1	TAP							
Geographical Site	PCT0-GHu	Milford					C	Country	United Stat	06
Situation			atitude	38.4	°NI			ngitude		63
Time defined as		Lega		Time	e zone U	T-7		Altitude	1563 m	
Meteo data:		MilfordUT_N	SRDB	ТМҮ	′ - NREL	.: TMY3	hourly [DB (199 ⁻	1-2005)	
Simulation variant :	PC18-Milfo	ordUT_Rev0)							
		Simulatio	on date	31/0	8/18 14ł	า47				
Simulation parameters										
Tracking plane, tilted Ax Rotation Limitations	kis		xis Tilt um Phi					zimuth um Phi	0° 60°	
Backtracking strategy		Tracker S	pacina	5.50	m		Collecto	r width	1.98 m	
Inactive band				0.20			-	Right	0.20 m	
Models used		Transp	osition	Pere	Z			Diffuse	Imported	
Horizon		Average	Height	3.0°						
Near Shadings		Linear sh	adings							
PV Array Characteristics	S									
PV module	S	Manufa	Model acturer	Can	U-340P adian Sc					
Number of PV modules			ntation		nodules			zimuth barallel		
Total number of PV modules	les		odules			Un		Power		
Array global power		Nominal			↓ kWp	At o	perating		5890 kWp (50°C)
Array operating characteri Total area	stics (50°C)		U mpp e area	895	∨ 69 m²		Ce	I mpp ell area	6580 A 33931 m²	
		WOdu	e alea	5000	5 111			in alca	55551 m	
Inverter			Model acturer	SM/	SC250	0 EV Pr	elim!			
Characteristics		Operating V			1425 V	Ur	it Nom.	Power	2500 kWac	
Inverter pack		Nb. of inv	verters	2 un	its		Total	Power	5000 kWac	
PV Array loss factors										
Array Soiling Losses		N4-m	A	N4	l	l. d	A	0		
, ,	Jan. Feb. 2.5% 2.5%		Apr. 2.0%	May 2.5%	June 2.5%	July 2.5%	Aug. 2.5%	Sep. 2.5%	Oct. Nov 2.5% 2.5%	
Thermal Loss factor		Uc ((const)	25.0	W/m²K		Uv	(wind)	1.2 W/m²K /	m/s
Wiring Ohmic Loss		Global arra	ay res.	2.3 ı	nOhm		Loss F	raction	1.5 % at ST	С
LID - Light Induced Degra	dation							raction	2.0 %	
Module Quality Loss Module Mismatch Losses								raction	-0.4 %	D
would wismatch Losses							LUSS F	raction	1.0 % at MF	r

PVSYST V6.35									31/08/18	Page 2/5
	Grid-Connect	ted Syst	em: Si	mulatio	on para	meters	s (cont	inuec	d)	
		-					·			
Incidence effect,	user defined profile	10°	20°	30°	40°	50°	60°	70°	80°	90°
		1.00	1.00	1.00	0.99	0.99	0.97	0.92	0.76	0.00
System loss fact Wiring Ohmic Los	tors ss		Wire	s 0 m 3	3x5000.0	mm² Lo	oss Fracti	on 0.	.0 % at ST(C
User's needs :		Unlimited	load (ario	4)						
				-)						

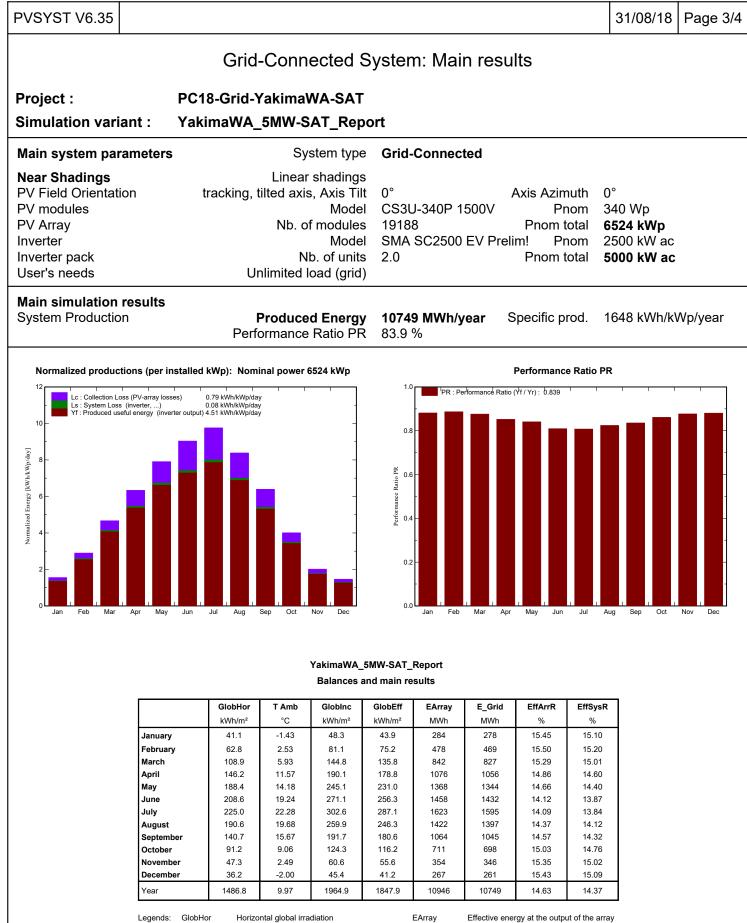
PVSYST V6.35					31/08/18	Page 3/5
	Grid-Connecte	d Syst	tem: Horizo	on definition		
•	PC18-Grid-MildfordU PC18-MilfordUT_Rev					
Main system parameters Horizon		em type e Height	Grid-Connec 3.0°	ted		
Near Shadings PV Field Orientation PV modules PV Array Inverter Inverter pack User's needs		Axis Tilt Model nodules Model of units	0° CS3U-340P 19188 SMA SC2500 2.0	Pnom total	0° 340 Wp 6524 kWp 2500 kW ac 5000 kW ac	
Horizon	Average Albedo	e Height o Factor	3.0° 100 %	Diffuse Factor Albedo Fraction	0.98 0.94	
Height [°] Azimuth [°]	3.4 -90	3.4 -40		2.9 40	1.8 90	
75 - 60 - 1 100 - 100 100 - 100				14h	1: 22 june 2: 22 may - 3: 20 apr - 2 4: 20 mar - 2 5: 21 feb - 2 6: 19 jan - 2 7: 22 decem 5h 16h 17h 18 18	13 aug 23 sep 3 oct_ 2 nov hber _ - - - - - - - - - - - - - - - - - - -

PVSYST V6.35										31/08/18	Page 4/5
	(Grid-	Conne	ected \$	Syste	m: Ma	in resi	ults			
Project :	PC18-0	Grid-M	ildford	UT-SAT							
Simulation variant :	PC18-N	lilford	UT_Re	v0							
Main system parameters Horizon				stem type ge Heigh		I-Conne	cted				
Near Shadings PV Field Orientation PV modules PV Array Inverter Inverter pack User's needs	tracl	-	ted axis Nb. of Nt	shadings , Axis Til Mode modules Mode o. of units pad (grid	t 0° I CS3 5 1918 I SMA 5 2.0	U-340P 38 A SC2500		Pnom	Pnom total Pnom	0° 340 Wp 6524 kWp 2500 kW ac 5000 kW ac	
Main simulation results System Production				d Energy Ratio PR	136 4 81.8	45 MWh / %	year	Specific	prod.	2092 kWh/k\	Np/year
Normalized productions (per in	stalled kWp)): Nomin	al power 6	524 kWp				Performar	nce Ratio F	ŶŔ	
(App)(Ayy(Ay)(Abarg poz) B	Jun Jul	Aug Se	p Oct 1	PC18-Mi Balances a	o G G IfordUT_F		o Mar Aş	or May Ju	ın Jul	Aug Sep Oct	Nov Dec
		GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR	1	
Janua Febru	ary	kWh/m² 83.0 97.2	°C -1.63 0.96	kWh/m² 115.6 132.0	kWh/m² 107.5 123.7	MWh 695 786	MWh 683 772	% 15.80 15.63	% 15.52 15.36	-	
March April	י	158.1 188.5	2.97 7.14	215.8 246.3	204.6 234.0	1227 1339	1206 1315	14.94 14.28	14.68 14.03		
May		233.1	15.67	306.7	290.9	1591	1563	13.63	13.39		
June July		243.9 230.2	19.11 23.97	322.0 301.0	306.2 285.9	1635 1519	1607 1493	13.34 13.26	13.11 13.03		
Augus		207.6	23.16	276.7	262.8	1448	1423	13.75	13.51		
Septe		175.2 132.0	15.35 11.70	240.8 182.9	228.6 172.2	1320 1038	1297 1020	14.40 14.91	14.15 14.65		
Nover		86.8	1.58	121.9	112.2	722	709	15.56	15.28		
Decer	nber	67.8	-1.75	94.9	87.6	566	555	15.66	15.37	4	
Year		1903.4	9.92	2556.6	2417.9	13887	13645	14.27	14.02		
Legend	ds: GlobHor T Amb GlobInc GlobEff	Ambie Global	ntal global irra nt Temperatu incident in co ve Global, co	re	shadings	EArray E_Grid EffArrR EffSysR	Energy injec Effic. Eout a	ergy at the out ted into grid rray / rough ar ystem / rough a	ea	ay	
	2.0261		, ou					,, .ougin			


PVSYST V6.35									31/0	8/18	Page 1
	Grid-C	onnected	d Syster	n: Si	mulati	on pa	ramet	ers			
Project :	PC18-Gr	id-RockSp	orinasWY	-SAT							
Geographical Site		-	rings Arpt				C	Country	United	I State	s
Situation Time defined as			Latitude egal Time Albedo	41.5 Tim	e zone U	T-7	Lor	ngitude Altitude		W	-
Meteo data:		Rock Sp	rings Arpt	TM	Y - NREL	.: TMY3	hourly [DB (199	1-2005)		
Simulation variant :	PC18-Ro	ockSprings	sWY_Rev	2							
		Simu	lation date	31/0)8/18 15h	n16					
Simulation parameters											
Tracking plane, tilted Ax Rotation Limitations	cis	Mi	Axis Tilt nimum Phi					zimuth um Phi	0° 60°		
Backtracking strategy Inactive band		Track	er Spacing Left	5.50 0.20			Collecto	r width Right	1.98 m 0.20 m		
Models used		Tra	Insposition	Pere	ez			Diffuse	Import	ed	
Horizon		Avera	age Height	4.2°							
Near Shadings		Linea	r shadings								
PV Array Characteristics PV module Number of PV modules Total number of PV modu Array global power Array operating character Total area	les	(Nt Nom)	Model Inufacturer Drientation In series 5. modules inal (STC) U mpp odule area	Can #1 26 n 1918 652 895	88 4 kWp	olar Inc. Un	In µ hit Nom. perating	zimuth parallel Power g cond. I mpp ell area	738 sti	p Wp (5 \	0°C)
Inverter			Model Inufacturer	SMA							
Characteristics		•	ng Voltage		-1425 V	Ur	nit Nom.		2500 k		
Inverter pack		Nb. c	of inverters	2 ur	nits		Total	Power	5000 k	Wac	
PV Array loss factors Array Soiling Losses		eb. Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
	2.5% 2.	5% 2.5%	2.5%	2.0%	2.0%	2.5%	2.5%	2.5%	2.5%	2.5%	
Thermal Loss factor Wiring Ohmic Loss			Uc (const) I array res.) W/m²K mOhm			(wind) raction	1.2 W/ 1.5 %		
Mining Online Loss LID - Light Induced Degra Module Quality Loss Module Mismatch Losses		Giuda	i airay ics.	2.0			Loss F Loss F	raction raction raction	1.5 % 2.0 % -0.4 % 1.0 %		

PVSYST V6.35									31/08/18	Page 2/5
	Grid-Connect	ted Syst	em: Si	mulatio	on para	meters	s (cont	inuec	d)	
		-					·			
Incidence effect,	user defined profile	10°	20°	30°	40°	50°	60°	70°	80°	90°
		1.00	1.00	1.00	0.99	0.99	0.97	0.92	0.76	0.00
System loss fact Wiring Ohmic Los	tors ss		Wire	s 0 m 3	3x5000.0	mm² Lo	oss Fracti	on 0.	.0 % at ST(C
User's needs :		Unlimited	load (ario	4)						
				-)						

PVSYST V6.35						31/08/18	Page 3/5
	Grid-Connecte	d Syst	em: Horizo	on definition			
Project : Simulation variant :	PC18-Grid-RockSprin PC18-RockSpringsW	-					
Main system parameters Horizon		em type e Height	Grid-Connec 4.2°	ted			
Near Shadings PV Field Orientation PV modules PV Array Inverter Inverter pack User's needs		Axis Tilt Model nodules Model of units	0° CS3U-340P 19188 SMA SC2500 2.0	Pnom to	om 3 otal 6 om 2	9° 340 Wp 5 524 kWp 2500 kW ac 5000 kW ac	
Horizon		e Height o Factor	4.2° 100 %	Diffuse Fac Albedo Fract).96).83	
Height [°] Azimuth [°]	1.5 -90	1.5 -40		7.0 40		7.0 90	
PVsyst Licensed to Burns & McDonnell (USA)			1 2 3 4 4 5 6 7	13h 14h 14h 30 60	15h	1: 22 june 2: 22 may - 3: 20 apr - 2 4: 20 mar - 2 5: 21 feb - 2 6: 19 jan - 2 7: 22 decem 16h 17h 17h 18 90	3 aug 23 sep 3 oct_ 2 nov iber - - - - - - - - - - - - - - - - - - -


PVsyst Licensed to Burns & McDonnell (USA)

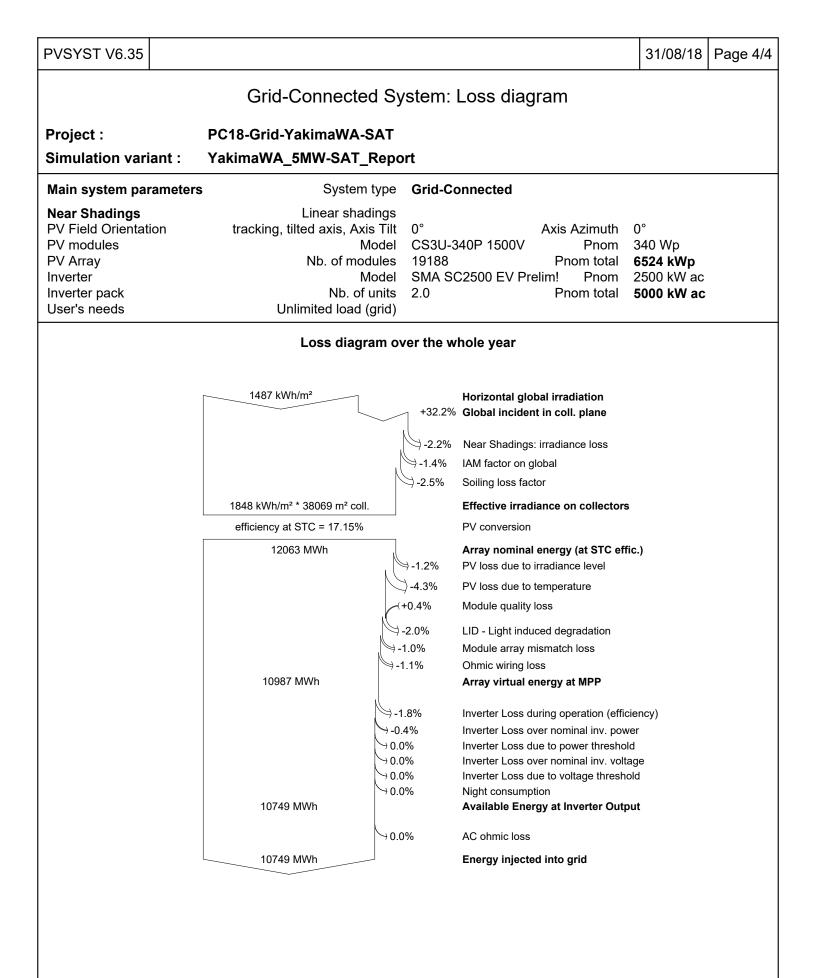
PVSYST V6.35									31/08/18	Page 4
	Gric	l-Conn	ected S	Syste	m: Ma	in res	ults			
Project :	PC18-Grid-	RockSp	ringsWY	'-SAT						
Simulation variant :	PC18-Rock	Springs	WY_Rev	/2						
Main system parameters Horizon			stem type ge Height		-Connee	cted				
Near Shadings PV Field Orientation PV modules PV Array nverter nverter pack Jser's needs	shadings s, Axis Tili Mode f modules Mode b. of units oad (grid)	It 0° Axis Azimuth 0° el CS3U-340P 1500V Pnom 340 Wp es 19188 Pnom total 6524 kV el SMA SC2500 EV Prelim! Pnom 2500 kV es 2.0 Pnom total 5000 kV								
Main simulation results System Production			d Energy Ratio PR		0 MWh/ %	year	Specific	prod.	1918 kWh/k\	Np/year
Normalized productions (per in	stalled kWp): Non	ninal power 6	6524 kWp				Performar	nce Ratio	PR	
(Arb) davyty wy daw i a constraints of the second s	Jun Jul Aug	Sep Oct	Nov Dec		4 - 2 - 0 Jan Fet	o Mar A	pr May Ju	ın Jul	LI LI LI LI	Nov Dec
	GlobHo	T Amb	Balances a	GlobEff	EArray	E_Grid	EffArrR	EffSysR	٦	
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%	4	
Janua Febru	-	-4.70 -3.58	93.6 112.0	85.6 103.5	565 681	555 668	15.86 15.96	15.57 15.67		
March		0.22 4.99	168.6 206.7	157.3 104 1	1001	983	15.59 15.23	15.32 14.96		
April May	156.6 200.6	4.99	206.7 261.8	194.1 248.2	1198 1416	1177 1392	15.23 14.21	14.96 13.96		
June	224.4	17.24	297.0	282.8	1582	1555	14.00	13.76		
July Augu	223.3 st 202.1	19.89 18.73	296.9 270.2	281.4 255.6	1568 1470	1541 1445	13.87 14.29	13.63 14.05		
Septe	mber 158.0	12.84	218.1	204.9	1228	1207	14.79	14.54		
Octob Nove		7.61 -0.85	160.1 97.5	149.2 89.7	921 580	905 570	15.11 15.63	14.84 15.34		
Decer		-0.85 -5.39	97.5 86.8	89.7 79.4	523	570 514	15.84	15.54		
Year	1693.5	6.49	2269.3	2131.7	12734	12510	14.74	14.48		
Legend	T Amb Am GlobInc Glo	izontal global in bient Temperati bal incident in c ective Global, co	ure	shadings	EArray E_Grid EffArrR EffSysR	Energy injeo Effic. Eout a	ergy at the out cted into grid array / rough ar system / rough a	ea	ray	

PVSYST V6.35					31/08/18 Page 1/4
	Grid-Con	nected Syster	n: Simulati	on parameters	
Project :	PC18-Grid-	·YakimaWA-SAT			
Geographical Site		Yakima		Country	United States
Situation Time defined as		Latitude Legal Time Albedo	Time zone U	Longitude IT-8 Altitude	
Meteo data:	Ya	kima Air Terminal	TMY - NREL	.: TMY3 hourly DB (199	1-2005)
Simulation variant :	YakimaWA	_5MW-SAT_Repo	ort		
		Simulation date	31/08/18 15	129	
Simulation parameters					
Tracking plane, tilted A Rotation Limitations	xis	Axis Tilt Minimum Phi		Axis Azimuth Maximum Phi	
Backtracking strategy Inactive band		Tracker Spacing Left	5.50 m 0.20 m	Collector width Right	
Models used		Transposition	Perez	Diffuse	Imported
Horizon		Free Horizon			
Near Shadings		Linear shadings			
PV Array Characteristic PV module Number of PV modules Total number of PV modu Array global power Array operating character Total area	S	Manufacturer Orientation	#1 26 modules 19188 6524 kWp 895 V		738 strings
Inverter		Model Manufacturer		0 EV Prelim!	
Characteristics		Operating Voltage		Unit Nom. Power	2500 kWac
Inverter pack		Nb. of inverters	2 units	Total Power	5000 kWac
PV Array loss factors Array Soiling Losses	Jan. Feb. 2.5% 2.5%	Mar. Apr. 2.5% 2.5%	May June 2.5% 2.5%	July Aug. Sep. 2.5% 2.5% 2.5%	Oct. Nov. Dec. 2.5% 2.5% 2.5%
Thermal Loss factor		Uc (const)	25.0 W/m²K	Uv (wind)	1.2 W/m²K / m/s
Wiring Ohmic Loss LID - Light Induced Degra Module Quality Loss Module Mismatch Losses		Global array res.	2.5 mOhm	Loss Fraction Loss Fraction Loss Fraction Loss Fraction	1.6 % at STC 2.0 % -0.4 % 1.0 % at MPP

PVS	YST V6.35									31/08/18	Page 2/4
		Grid-Connec	ted Syste	em: Sim	ulatic	on para	meters	s (conti	inue	d)	
			-			-		·			
Incid	ence effect,	user defined profile	10°	20°	30°	40°	50°	60°	70°	80°	90°
			1.00	1.00	1.00	0.99	0.99	0.97	0.92	0.76	0.00
Syst Wirir	em loss fac ng Ohmic Lo	ss		Wires	0 m 3	x0.0 mm²	Lc	oss Fracti	on 0	.0 % at ST0	C
User	's needs :		Unlimited	load (grid)							
			ommod	loud (grid)							

T Amb

GlobInc


GlobEff

Ambient Temperature Global incident in coll. plane Effective Global, corr. for IAM and shadings

E Grid EffArrR

EffSysR

Energy injected into grid Effic. Eout array / rough area Effic. Eout system / rough area

APPENDIX C – SOLAR OUTPUT SUMMARY

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment 31-Aug-18

Variant:

VC3

Date:	

Site Information	
City / State:	Idaho Falls, Idaho
Latitude (N):	43.5 °
Longitude (W):	-112 °
Altitude	1441 m
ASHRAE Cooling DB Temp.	32 °C
ASHRAE Extreme Mean Min. Temp.	-25 °C

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	N/A %/yr	

Array Level Information	
Module rating	345 W
# Modules per string	26
Strings in parallel	738
Total number of modules	19188
DC capacity	6620 kW
Inverter rating	5000 kW
DC/AC ratio - Inv Rating	1.324

PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.4 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

Estimated Annual Energy Production		
P50 net production (yr-1)	11597.3 MWh	
AC capacity factor - Inv Rating	26.48%	
AC capacity factor - POI Rating	26.48%	
DC capacity factor	20.00%	
Specific Production	1752 kWh/kWp/yr	
Performance Ratio PR	81.08%	
Night time losses	-21.1 MWh	
Plant Output Limitations	0.00%	

Facility Level Information	
Nameplate Capacity	6.62 MWDC
Number of modules	19188
Nameplate Capacity	5.00 MWAC
Number of arrays	1
Interconnection Limit	5.00 MWAC
Inteconnection Voltage	34.5 kV
DC/AC ratio - POI Rating	1.324

Weather		
Source	TMY3	
GHI	1618.2 kWh/m2	
DHI	kWh/m2	
Global POA	2160.8 kWh/m2	
Average Temp.	6.94 °C	
Average Temp. (Generation)	11.48 °C	
Average Wind	3.84 m/s	
Average Wind (Generation)	4.53 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	0.70%
HV transformer no-load losses	0.00%
HV transformer full load losses	0.00%
HV line	0.00%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC3

Date:	

28-Aug-18

Site Information		
City / State:	Idaho Falls, Idaho	
Latitude (N):	43.5 °	
Longitude (W):	-112 °	
Altitude	1441 m	
ASHRAE Cooling DB Temp.	32 °C	
ASHRAE Extreme Mean Min. Temp.	-25 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	N/A %/yr	

Array Level Information	
Module rating	345 W
# Modules per string	26
Strings in parallel	738
Total number of modules	19188
DC capacity	6620 kW
Inverter rating	5000 kW
DC/AC ratio - Inv Rating	1.324

PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.4 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

P50 net production (yr-1)	122928.5 MWh	
AC capacity factor - Inv Rating	25.51%	
AC capacity factor - POI Rating	28.07%	
DC capacity factor	19.27%	
Specific Production	1688 kWh/kWp/yr	
Performance Ratio PR	78.13%	
Night time losses	-408.8 MWh	
Plant Output Limitations	2.63%	
Escility Loyal Information		

Estimated Annual Energy Production

Facility Level Information		
Nameplate Capacity	72.82 MWDC	
Number of modules	211068	
Nameplate Capacity	55.00 MWAC	
Number of arrays	11	
Interconnection Limit	50.00 MWAC	
Inteconnection Voltage	115 kV	
DC/AC ratio - POI Rating	1.456	

Weather		
Source	TMY3	
GHI	1618.2 kWh/m2	
DHI	kWh/m2	
Global POA	2160.8 kWh/m2	
Average Temp.	6.94 °C	
Average Temp. (Generation)	11.48 °C	
Average Wind	3.84 m/s	
Average Wind (Generation)	4.53 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC3

Date:	

Site Information		
City / State:	Idaho Falls, Idaho	
Latitude (N):	43.5 °	
Longitude (W):	-112 °	
Altitude	1441 m	
ASHRAE Cooling DB Temp.	32 °C	
ASHRAE Extreme Mean Min. Temp.	-25 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	N/A %/yr	

Array Level Information	
Module rating	345 W
# Modules per string	26
Strings in parallel	738
Total number of modules	19188
DC capacity	6620 kW
Inverter rating	5000 kW
DC/AC ratio - Inv Rating	1.324

PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.4 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

Estimated Annual Energy Production		
P50 net production (yr-1)	491714.0 MWh	
AC capacity factor - Inv Rating	25.51%	
AC capacity factor - POI Rating	28.07%	
DC capacity factor	19.27%	
Specific Production	1688 kWh/kWp/yr	
Performance Ratio PR	78.13%	
Night time losses	-1635.2 MWh	
Plant Output Limitations	2.63%	

Facility Level Information	
Nameplate Capacity	291.27 MWDC
Number of modules	844272
Nameplate Capacity	220.00 MWAC
Number of arrays	44
Interconnection Limit	200.00 MWAC
Inteconnection Voltage	230 kV
DC/AC ratio - POI Rating	1.456

Weather		
Source	TMY3	
GHI	1618.2 kWh/m2	
DHI	kWh/m2	
Global POA	2160.8 kWh/m2	
Average Temp.	6.94 °C	
Average Temp. (Generation)	11.48 °C	
Average Wind	3.84 m/s	
Average Wind (Generation)	4.53 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

BURNS MEDONNELL.

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC2

Date:	

Site Information	
City / State:	Lakeview, OR
Latitude (N):	42.2 °
Longitude (W):	-120 °
Altitude	1441 m
ASHRAE Cooling DB Temp.	31 °C
ASHRAE Extreme Mean Min. Temp.	-22 °C

Design Parameters	
System DC Voltage	1500 VDC
GCR	36 %
Row spacing	5.5 m
Mounting	Tracker
Tilt angle or rotation limits	60 °
Azimuth	0 °
Tracking strategy	TRUE
Availability	100.0 %
Degradation	0.5 %/yr

Array Level Information	
Module rating	345 W
# Modules per string	26
Strings in parallel	738
Total number of modules	19188
DC capacity	6620 kW
Inverter rating	5000 kW
DC/AC ratio - Inv Rating	1.324

PVsyst Input Parameters	
Transposition model	Perez
Constant thermal loss factor (Uc)	25.0 W/m2-K
Wind loss factor (Uv)	1.2 W/m2-K/m/s
Soiling losses	2.2 %
Light induced degradation	2.0 %
DC wiring loss	1.5 %
Module quality loss	-0.4 %
Module mismatch loss	1.0 %
DC health loss	1.0 %

Estimated Annual Energy Production		
12291.9 MWh		
28.06%		
28.06%		
21.20%		
1857 kWh/kWp/yr		
80.72%		
-21.2 MWh		
0.00%		

Facility Level Information	
Nameplate Capacity	6.62 MWDC
Number of modules	19188
Nameplate Capacity	5.00 MWAC
Number of arrays	1
Interconnection Limit	5.00 MWAC
Inteconnection Voltage	34.5 kV
DC/AC ratio - POI Rating	1.324

Weather		
Source	TMY3	
GHI	1704.3 kWh/m2	
DHI	kWh/m2	
Global POA	2300.2 kWh/m2	
Average Temp.	7.87 °C	
Average Temp. (Generation)	12.57 °C	
Average Wind	3.33 m/s	
Average Wind (Generation)	3.63 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	0.70%
HV transformer no-load losses	0.00%
HV transformer full load losses	0.00%
HV line	0.00%
Auxiliary	0.01%

BURNS MEDONNELL.

Energy Production Summary Burns & McDonnell, Energy Division

Project Name: Variant:

Pacificorp 2018 Renewables Technology Assessment

VC2

Date	2:

Site Information		
City / State:	Lakeview, OR	
Latitude (N):	42.2 °	
Longitude (W):	-120 °	
Altitude	1441 m	
ASHRAE Cooling DB Temp.	31 °C	
ASHRAE Extreme Mean Min. Temp.	-22 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

Array Level Information		
Module rating	345 W	
# Modules per string	26	
Strings in parallel	738	
Total number of modules	19188	
DC capacity	6620 kW	
Inverter rating	5000 kW	
DC/AC ratio - Inv Rating	1.324	

PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.2 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

Estimated Annual Energy Production	
130139.1 MWh	
27.01%	
29.71%	
20.40%	
1787 kWh/kWp/yr	
77.70%	
-411.2 MWh	
2.75%	

Facility Level Information		
Nameplate Capacity	72.82 MWDC	
Number of modules	211068	
Nameplate Capacity	55.00 MWAC	
Number of arrays	11	
Interconnection Limit	50.00 MWAC	
Inteconnection Voltage	115 kV	
DC/AC ratio - POI Rating	1.456	

Weather		
Source	TMY3	
GHI	1704.3 kWh/m2	
DHI	kWh/m2	
Global POA	2300.2 kWh/m2	
Average Temp.	7.87 °C	
Average Temp. (Generation)	12.57 °C	
Average Wind	3.33 m/s	
Average Wind (Generation)	3.63 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC2

	07
Date:	

Site Information		
City / State:	Lakeview, OR	
Latitude (N):	42.2 °	
Longitude (W):	-120 °	
Altitude	1441 m	
ASHRAE Cooling DB Temp.	31 °C	
ASHRAE Extreme Mean Min. Temp.	-22 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

Array Level Information	
Module rating	345 W
# Modules per string	26
Strings in parallel	738
Total number of modules	19188
DC capacity	6620 kW
Inverter rating	5000 kW
DC/AC ratio - Inv Rating	1.324

PVsyst Input Parameters	
Transposition model	Perez
Constant thermal loss factor (Uc)	25.0 W/m2-K
Wind loss factor (Uv)	1.2 W/m2-K/m/s
Soiling losses	2.2 %
Light induced degradation	2.0 %
DC wiring loss	1.5 %
Module quality loss	-0.4 %
Module mismatch loss	1.0 %
DC health loss	1.0 %

Estimated Annual Energy Production	
P50 net production (yr-1)	520556.4 MWh
AC capacity factor - Inv Rating	27.01%
AC capacity factor - POI Rating	29.71%
DC capacity factor	20.40%
Specific Production	1787 kWh/kWp/yr
Performance Ratio PR	77.70%
Night time losses	-1644.8 MWh
Plant Output Limitations	2.75%

Facility Level Information	
Nameplate Capacity	291.27 MWDC
Number of modules	844272
Nameplate Capacity	220.00 MWAC
Number of arrays	44
Interconnection Limit	200.00 MWAC
Inteconnection Voltage	230 kV
DC/AC ratio - POI Rating	1.456

Weather	
Source	TMY3
GHI	1704.3 kWh/m2
DHI	kWh/m2
Global POA	2300.2 kWh/m2
Average Temp.	7.87 °C
Average Temp. (Generation)	12.57 °C
Average Wind	3.33 m/s
Average Wind (Generation)	3.63 m/s

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

BURNS MEDONNELL

Energy Production Summary Burns & McDonnell, Energy Division

Project Name: Variant:

Pacificorp 2018 Renewables Technology Assessment

VC2

Date:	

Site Information	
City / State:	Milford, UT
Latitude (N):	38.4 °
Longitude (W):	-113 °
Altitude	1534 m
ASHRAE Cooling DB Temp.	34.9 °C
ASHRAE Extreme Mean Min. Temp.	-23.1 °C

Design Parameters	
System DC Voltage	1500 VDC
GCR	36 %
Row spacing	5.5 m
Mounting	Tracker
Tilt angle or rotation limits	60 °
Azimuth	0 °
Tracking strategy	TRUE
Availability	100.0 %
Degradation	0.5 %/yr

Array Level Information	
Module rating	345 W
# Modules per string	26
Strings in parallel	738
Total number of modules	19188
DC capacity	6620 kW
Inverter rating	5000 kW
DC/AC ratio - Inv Rating	1.324

PVsyst Input Parameters	
Transposition model	Perez
Constant thermal loss factor (Uc)	25.0 W/m2-K
Wind loss factor (Uv)	1.2 W/m2-K/m/s
Soiling losses	2.2 %
Light induced degradation	2.0 %
DC wiring loss	1.5 %
Module quality loss	-0.4 %
Module mismatch loss	1.0 %
DC health loss	1.0 %

Estimated Annual Energy Production	
P50 net production (yr-1)	13450.8 MWh
AC capacity factor - Inv Rating	30.71%
AC capacity factor - POI Rating	30.71%
DC capacity factor	23.20%
Specific Production	2032 kWh/kWp/yr
Performance Ratio PR	79.48%
Night time losses	-20.8 MWh
Plant Output Limitations	0.00%

Facility Level Information	
Nameplate Capacity	6.62 MWDC
Number of modules	19188
Nameplate Capacity	5.00 MWAC
Number of arrays	1
Interconnection Limit	5.00 MWAC
Inteconnection Voltage	34.5 kV
DC/AC ratio - POI Rating	1.324

Weather	
Source	NSRDB PSMv3
GHI	1903.4 kWh/m2
DHI	kWh/m2
Global POA	2556.6 kWh/m2
Average Temp.	9.92 °C
Average Temp. (Generation)	14.91 °C
Average Wind	2.11 m/s
Average Wind (Generation)	2.82 m/s

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	0.70%
HV transformer no-load losses	0.00%
HV transformer full load losses	0.00%
HV line	0.00%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC2

-		
	Date:	

Site Information		
City / State:	Milford, UT	
Latitude (N):	38.4 °	
Longitude (W):	-113 °	
Altitude	1534 m	
ASHRAE Cooling DB Temp.	34.9 °C	
ASHRAE Extreme Mean Min. Temp.	-23.1 °C	

Design Parameters	
System DC Voltage	1500 VDC
GCR	36 %
Row spacing	5.5 m
Mounting	Tracker
Tilt angle or rotation limits	60 °
Azimuth	0 °
Tracking strategy	TRUE
Availability	100.0 %
Degradation	0.5 %/yr

Array Level Information	
Module rating	345 W
# Modules per string	26
Strings in parallel	738
Total number of modules	19188
DC capacity	6620 kW
Inverter rating	5000 kW
DC/AC ratio - Inv Rating	1.324

PVsyst Input Parameters	
Transposition model	Perez
Constant thermal loss factor (Uc)	25.0 W/m2-K
Wind loss factor (Uv)	1.2 W/m2-K/m/s
Soiling losses	2.2 %
Light induced degradation	2.0 %
DC wiring loss	1.5 %
Module quality loss	-0.4 %
Module mismatch loss	1.0 %
DC health loss	1.0 %

Estimated Annual Energy Production	
P50 net production (yr-1)	142375.3 MWh
AC capacity factor - Inv Rating	29.55%
AC capacity factor - POI Rating	32.51%
DC capacity factor	22.32%
Specific Production	1955 kWh/kWp/yr
Performance Ratio PR	76.48%
Night time losses	-401.9 MWh
Plant Output Limitations	2.76%

Facility Level Information	
Nameplate Capacity	72.82 MWDC
Number of modules	211068
Nameplate Capacity	55.00 MWAC
Number of arrays	11
Interconnection Limit	50.00 MWAC
Inteconnection Voltage	115 kV
DC/AC ratio - POI Rating	1.456

Weather	
Source	NSRDB PSMv3
GHI	1903.4 kWh/m2
DHI	kWh/m2
Global POA	2556.6 kWh/m2
Average Temp.	9.92 °C
Average Temp. (Generation)	14.91 °C
Average Wind	2.11 m/s
Average Wind (Generation)	2.82 m/s

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC2

Date:	

Site Information		
City / State:	Milford, UT	
Latitude (N):	38.4 °	
Longitude (W):	-113 °	
Altitude	1534 m	
ASHRAE Cooling DB Temp.	34.9 °C	
ASHRAE Extreme Mean Min. Temp.	-23.1 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

Array Level Information		
Module rating	345 W	
# Modules per string	26	
Strings in parallel	738	
Total number of modules	19188	
DC capacity	6620 kW	
Inverter rating	5000 kW	
DC/AC ratio - Inv Rating	1.324	

PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.2 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

Estimated Annual Energy Production		
P50 net production (yr-1)	569501.1 MWh	
AC capacity factor - Inv Rating	29.55%	
AC capacity factor - POI Rating	32.51%	
DC capacity factor	22.32%	
Specific Production	1955 kWh/kWp/yr	
Performance Ratio PR	76.48%	
Night time losses	-1607.7 MWh	
Plant Output Limitations	2.76%	

Facility Level Information		
Nameplate Capacity	291.27 MWDC	
Number of modules	844272	
Nameplate Capacity	220.00 MWAC	
Number of arrays	44	
Interconnection Limit	200.00 MWAC	
Inteconnection Voltage	230 kV	
DC/AC ratio - POI Rating	1.456	

Weather		
Source	NSRDB PSMv3	
GHI	1903.4 kWh/m2	
DHI	kWh/m2	
Global POA	2556.6 kWh/m2	
Average Temp.	9.92 °C	
Average Temp. (Generation)	14.91 °C	
Average Wind	2.11 m/s	
Average Wind (Generation)	2.82 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC2

Date:	

Site Information		
City / State:	Rock Springs, Wyoming	
Latitude (N):	41.6 °	
Longitude (W):	-109 °	
Altitude	2055 m	
ASHRAE Cooling DB Temp.	29.8 °C	
ASHRAE Extreme Mean Min. Temp.	-25.1 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

Array Level Information		
Module rating	345 W	
# Modules per string	26	
Strings in parallel	738	
Total number of modules	19188	
DC capacity	6620 kW	
Inverter rating	5000 kW	
DC/AC ratio - Inv Rating	1.324	

PVsyst Input Parameters			
Transposition model	Perez		
Constant thermal loss factor (Uc)	25.0 W/m2-K		
Wind loss factor (Uv)	1.2 W/m2-K/m/s		
Soiling losses	2.2 %		
Light induced degradation	2.0 %		
DC wiring loss	1.5 %		
Module quality loss	-0.4 %		
Module mismatch loss	1.0 %		
DC health loss	1.0 %		

Estimated Annual Energy Production			
P50 net production (yr-1)	12343.3 MWh		
AC capacity factor - Inv Rating	28.18%		
AC capacity factor - POI Rating	28.18%		
DC capacity factor	21.29%		
Specific Production	1865 kWh/kWp/yr		
Performance Ratio PR	82.17%		
Night time losses	-20.0 MWh		
Plant Output Limitations	0.00%		

Facility Level Information			
Nameplate Capacity	6.62 MWDC		
Number of modules	19188		
Nameplate Capacity	5.00 MWAC		
Number of arrays	1		
Interconnection Limit	5.00 MWAC		
Inteconnection Voltage	34.5 kV		
DC/AC ratio - POI Rating	1.324		

Weather		
Source	TMY3	
GHI	1693.5 kWh/m2	
DHI	kWh/m2	
Global POA	2269.3 kWh/m2	
Average Temp.	6.49 °C	
Average Temp. (Generation)	10.35 °C	
Average Wind	4.81 m/s	
Average Wind (Generation)	5.32 m/s	

AC System Losses		
MV transformer no-load losses	0.07%	
MV transformer full load losses	0.85%	
MV collection system	0.70%	
HV transformer no-load losses	0.00%	
HV transformer full load losses	0.00%	
HV line	0.00%	
Auxiliary	0.01%	

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC2

-	 	 	 07	
		Date:		

Site Information		
City / State:	Rock Springs, Wyoming	
Latitude (N):	41.6 °	
Longitude (W):	-109 °	
Altitude	2055 m	
ASHRAE Cooling DB Temp.	29.8 °C	
ASHRAE Extreme Mean Min. Temp.	-25.1 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

Array Level Information		
Module rating	345 W	
# Modules per string	26	
Strings in parallel	738	
Total number of modules	19188	
DC capacity	6620 kW	
Inverter rating	5000 kW	
DC/AC ratio - Inv Rating	1.324	

PVsyst Input Parameters			
Transposition model	Perez		
Constant thermal loss factor (Uc)	25.0 W/m2-K		
Wind loss factor (Uv)	1.2 W/m2-K/m/s		
Soiling losses	2.2 %		
Light induced degradation	2.0 %		
DC wiring loss	1.5 %		
Module quality loss	-0.4 %		
Module mismatch loss	1.0 %		
DC health loss	1.0 %		

Estimated Annual Energy Production			
P50 net production (yr-1)	131702.0 MWh		
AC capacity factor - Inv Rating	27.34%		
AC capacity factor - POI Rating	30.07%		
DC capacity factor	20.65%		
Specific Production	1809 kWh/kWp/yr		
Performance Ratio PR	79.70%		
Night time losses	-387.3 MWh		
Plant Output Limitations	2.04%		

Facility Level Information		
Nameplate Capacity	72.82 MWDC	
Number of modules	211068	
Nameplate Capacity	55.00 MWAC	
Number of arrays	11	
Interconnection Limit	50.00 MWAC	
Inteconnection Voltage	115 kV	
DC/AC ratio - POI Rating	1.456	

Weather		
Source	TMY3	
GHI	1693.5 kWh/m2	
DHI	kWh/m2	
Global POA	2269.3 kWh/m2	
Average Temp.	6.49 °C	
Average Temp. (Generation)	10.35 °C	
Average Wind	4.81 m/s	
Average Wind (Generation)	5.32 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment 31-Aug-18

Variant:

VC2	Date:	

Site Information		
City / State:	Rock Springs, Wyoming	
Latitude (N):	41.6 °	
Longitude (W):	-109 °	
Altitude	2055 m	
ASHRAE Cooling DB Temp.	29.8 °C	
ASHRAE Extreme Mean Min. Temp.	-25.1 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

Array Level Information		
Module rating	345 W	
# Modules per string	26	
Strings in parallel	738	
Total number of modules	19188	
DC capacity	6620 kW	
Inverter rating	5000 kW	
DC/AC ratio - Inv Rating	1.324	

PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.2 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

Estimated Annual Energy Production		
P50 net production (yr-1)	526808.1 MWh	
AC capacity factor - Inv Rating	27.34%	
AC capacity factor - POI Rating	30.07%	
DC capacity factor	20.65%	
Specific Production	1809 kWh/kWp/yr	
Performance Ratio PR	79.70%	
Night time losses	-1549.3 MWh	
Plant Output Limitations	2.04%	

Facility Level Information		
Nameplate Capacity	291.27 MWDC	
Number of modules	844272	
Nameplate Capacity	220.00 MWAC	
Number of arrays	44	
Interconnection Limit	200.00 MWAC	
Inteconnection Voltage	230 kV	
DC/AC ratio - POI Rating	1.456	

Weather		
Source	TMY3	
GHI	1693.5 kWh/m2	
DHI	kWh/m2	
Global POA	2269.3 kWh/m2	
Average Temp.	6.49 °C	
Average Temp. (Generation)	10.35 °C	
Average Wind	4.81 m/s	
Average Wind (Generation)	5.32 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name: Variant:

Pacificorp 2018 Renewables Technology Assessment

VC3

•		07	
	Date:		

Site Information		
City / State:	Yakima, WA	
Latitude (N):	46.6 °	
Longitude (W):	-120.5 °	
Altitude	324 m	
ASHRAE Cooling DB Temp.	34.1 °C	
ASHRAE Extreme Mean Min. Temp.	-17 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

Array Level Information		
Module rating	345 W	
# Modules per string	26	
Strings in parallel	738	
Total number of modules	19188	
DC capacity	6620 kW	
Inverter rating	5000 kW	
DC/AC ratio - Inv Rating	1.324	

PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.4 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

Estimated Annual Energy Production		
10609.2 MWh		
24.22%		
24.22%		
18.29%		
1603 kWh/kWp/yr		
81.56%		
-20.1 MWh		
0.00%		

Facility Level Information		
Nameplate Capacity	6.62 MWDC	
Number of modules	19188	
Nameplate Capacity	5.00 MWAC	
Number of arrays	1	
Interconnection Limit	5.00 MWAC	
Inteconnection Voltage	34.5 kV	
DC/AC ratio - POI Rating	1.324	

Weather		
Source	TMY3	
GHI	1486.8 kWh/m2	
DHI	kWh/m2	
Global POA	1964.9 kWh/m2	
Average Temp.	9.97 °C	
Average Temp. (Generation)	14.53 °C	
Average Wind	3.17 m/s	
Average Wind (Generation)	3.30 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	0.70%
HV transformer no-load losses	0.00%
HV transformer full load losses	0.00%
HV line	0.00%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC3

•		0,
	Date:	

Site Information		
City / State:	Yakima, WA	
Latitude (N):	46.6 °	
Longitude (W):	-120.5 °	
Altitude	324 m	
ASHRAE Cooling DB Temp.	34.1 °C	
ASHRAE Extreme Mean Min. Temp.	-17 °C	

Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

Array Level Information		
Module rating	345 W	
# Modules per string	26	
Strings in parallel	738	
Total number of modules	19188	
DC capacity	6620 kW	
Inverter rating	5000 kW	
DC/AC ratio - Inv Rating	1.324	

PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.4 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

Estimated Annual Energy Production		
P50 net production (yr-1)	114064.6 MWh	
AC capacity factor - Inv Rating	23.67%	
AC capacity factor - POI Rating	26.04%	
DC capacity factor	17.88%	
Specific Production	1566 kWh/kWp/yr	
Performance Ratio PR	79.72%	
Night time losses	-389.2 MWh	
Plant Output Limitations	1.32%	

Facility Level Information		
Nameplate Capacity	72.82 MWDC	
Number of modules	211068	
Nameplate Capacity	55.00 MWAC	
Number of arrays	11	
Interconnection Limit	50.00 MWAC	
Inteconnection Voltage	115 kV	
DC/AC ratio - POI Rating	1.456	

Weather		
Source	TMY3	
GHI	1486.8 kWh/m2	
DHI	kWh/m2	
Global POA	1964.9 kWh/m2	
Average Temp.	9.97 °C	
Average Temp. (Generation)	14.53 °C	
Average Wind	3.17 m/s	
Average Wind (Generation)	3.30 m/s	

AC System Losses	
MV transformer no-load losses	0.07%
MV transformer full load losses	0.85%
MV collection system	1.30%
HV transformer no-load losses	0.07%
HV transformer full load losses	0.48%
HV line	0.05%
Auxiliary	0.01%

Energy Production Summary Burns & McDonnell, Energy Division

Project Name:

Pacificorp 2018 Renewables Technology Assessment

Variant:

VC3

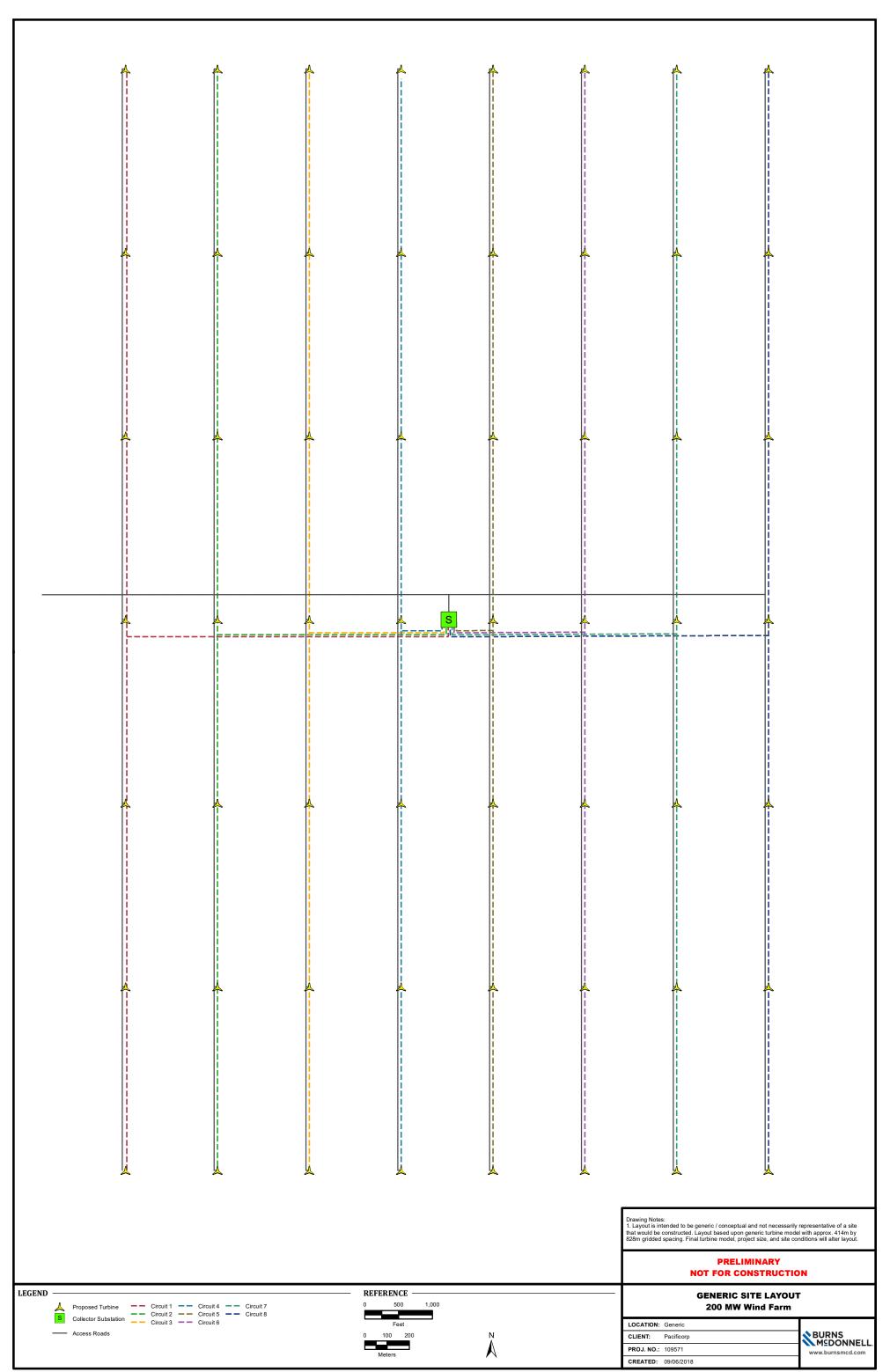
•		07	
	Date:		

Site Information		
City / State:	Yakima, WA	
Latitude (N):	46.6 °	
Longitude (W):	-120.5 °	
Altitude	324 m	
ASHRAE Cooling DB Temp.	34.1 °C	
ASHRAE Extreme Mean Min. Temp.	-17 °C	

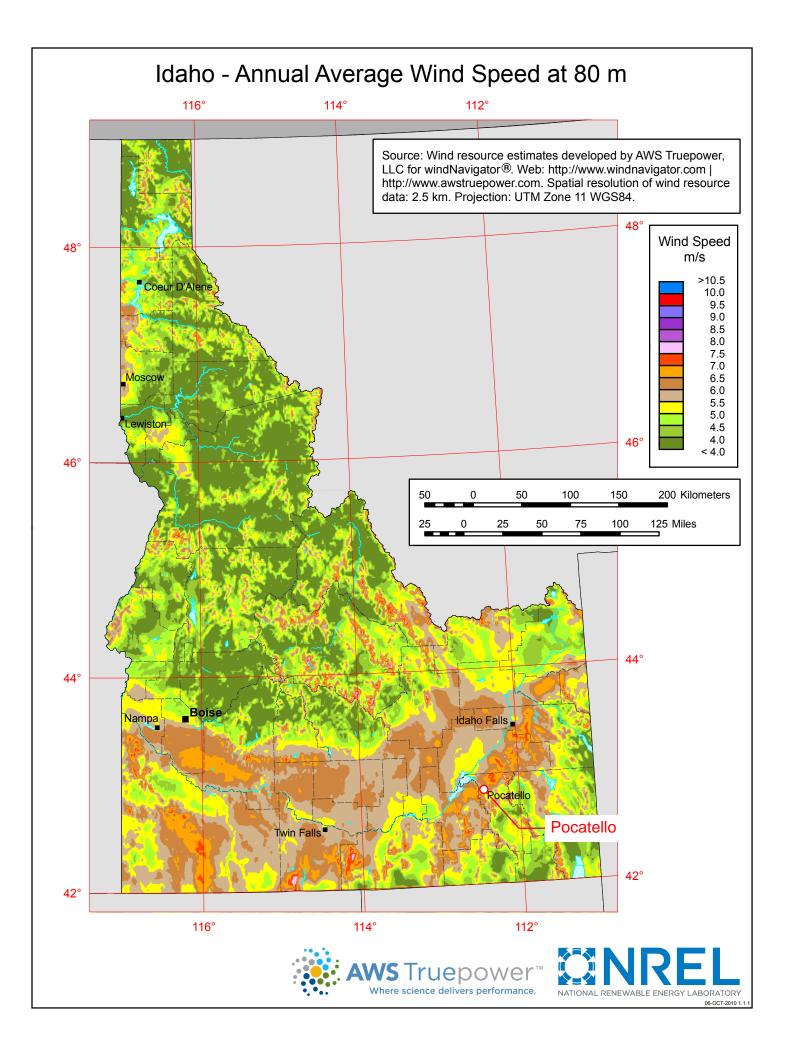
Design Parameters		
System DC Voltage	1500 VDC	
GCR	36 %	
Row spacing	5.5 m	
Mounting	Tracker	
Tilt angle or rotation limits	60 °	
Azimuth	0 °	
Tracking strategy	TRUE	
Availability	100.0 %	
Degradation	0.5 %/yr	

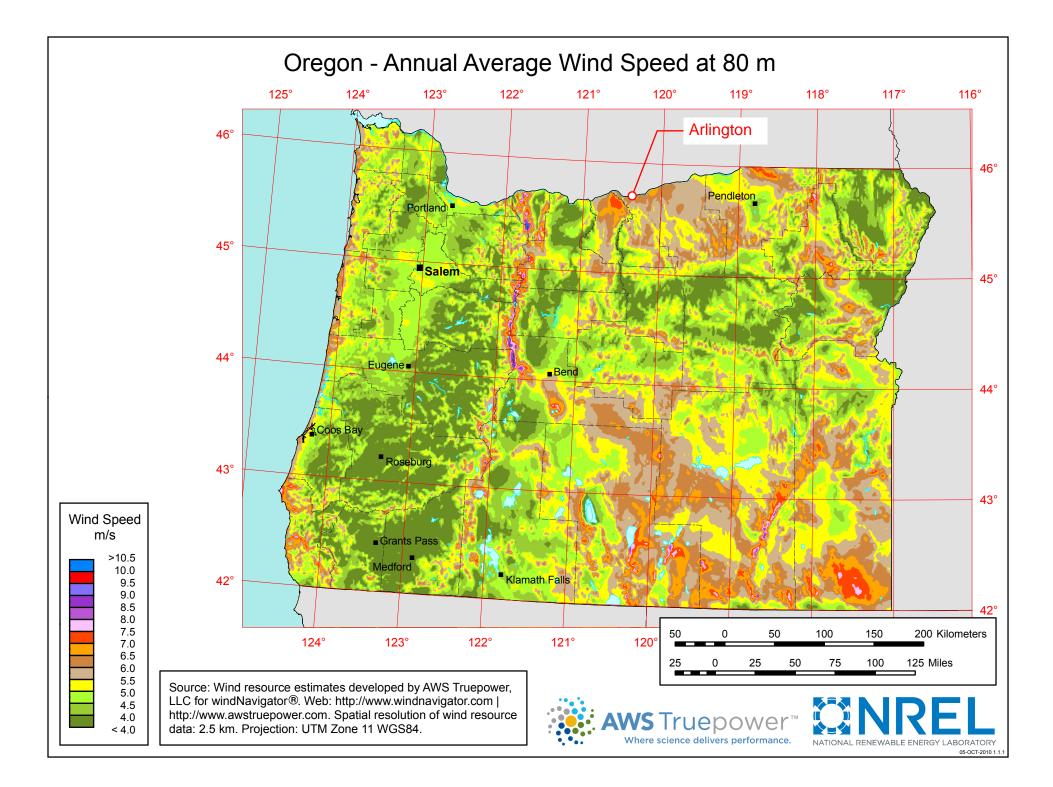
Array Level Information		
Module rating	345 W	
# Modules per string	26	
Strings in parallel	738	
Total number of modules	19188	
DC capacity	6620 kW	
Inverter rating	5000 kW	
DC/AC ratio - Inv Rating	1.324	

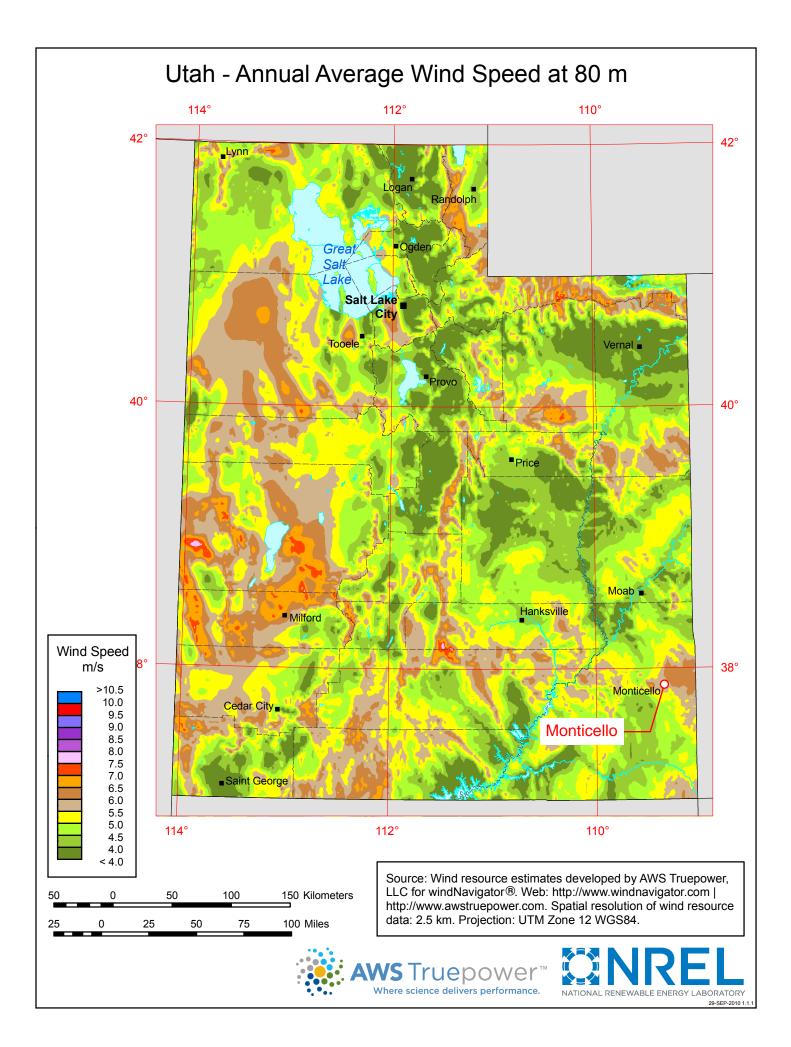
PVsyst Input Parameters		
Transposition model	Perez	
Constant thermal loss factor (Uc)	25.0 W/m2-K	
Wind loss factor (Uv)	1.2 W/m2-K/m/s	
Soiling losses	2.4 %	
Light induced degradation	2.0 %	
DC wiring loss	1.5 %	
Module quality loss	-0.4 %	
Module mismatch loss	1.0 %	
DC health loss	1.0 %	

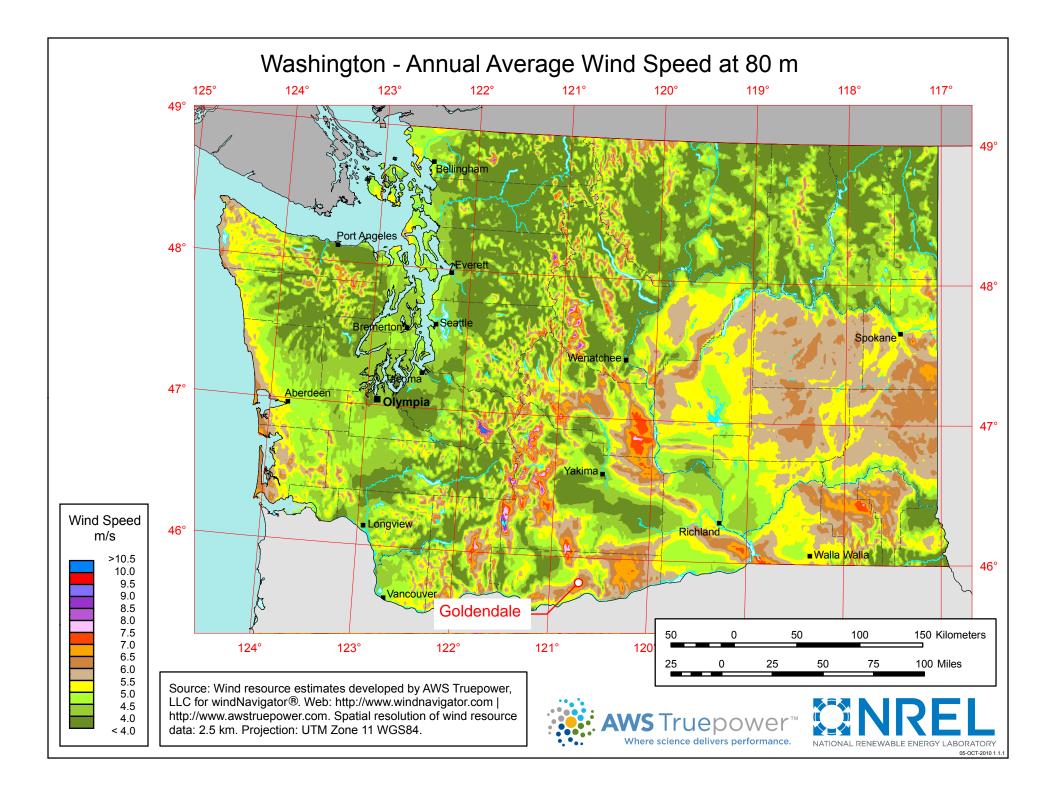

Estimated Annual Energy Production		
P50 net production (yr-1)	456258.5 MWh	
AC capacity factor - Inv Rating	23.67%	
AC capacity factor - POI Rating	26.04%	
DC capacity factor	17.88%	
Specific Production	1566 kWh/kWp/yr	
Performance Ratio PR	79.72%	
Night time losses	-1556.8 MWh	
Plant Output Limitations	1.32%	

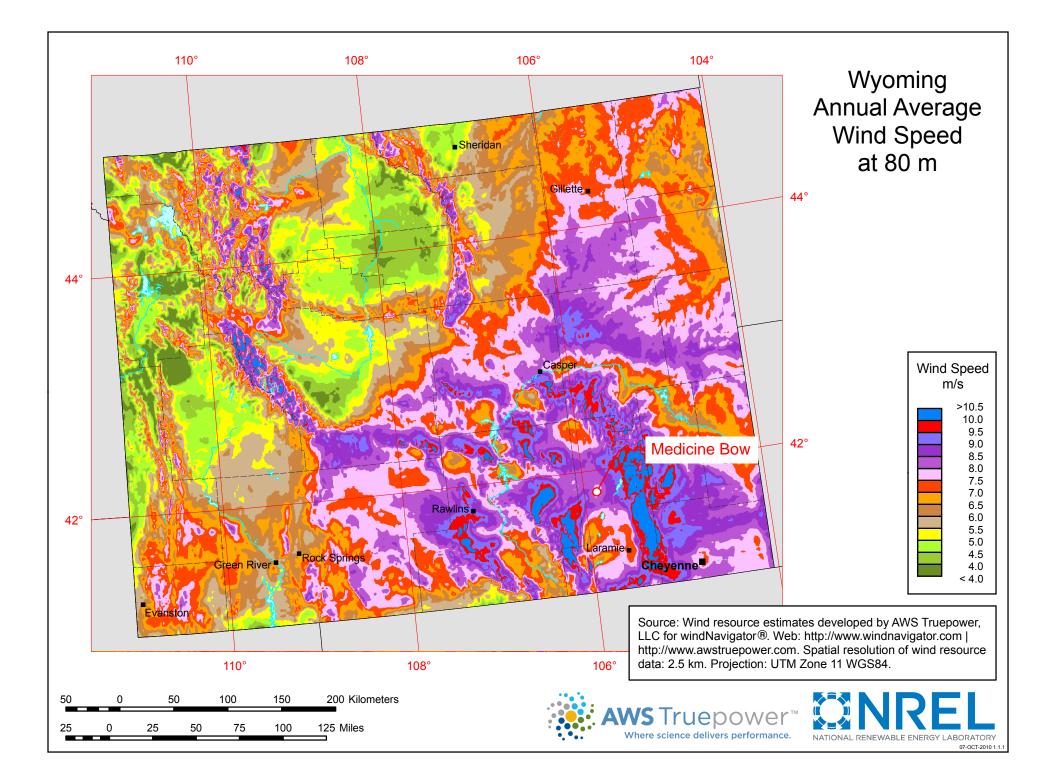
Facility Level Information		
Nameplate Capacity	291.27 MWDC	
Number of modules	844272	
Nameplate Capacity	220.00 MWAC	
Number of arrays	44	
Interconnection Limit	200.00 MWAC	
Inteconnection Voltage	230 kV	
DC/AC ratio - POI Rating	1.456	

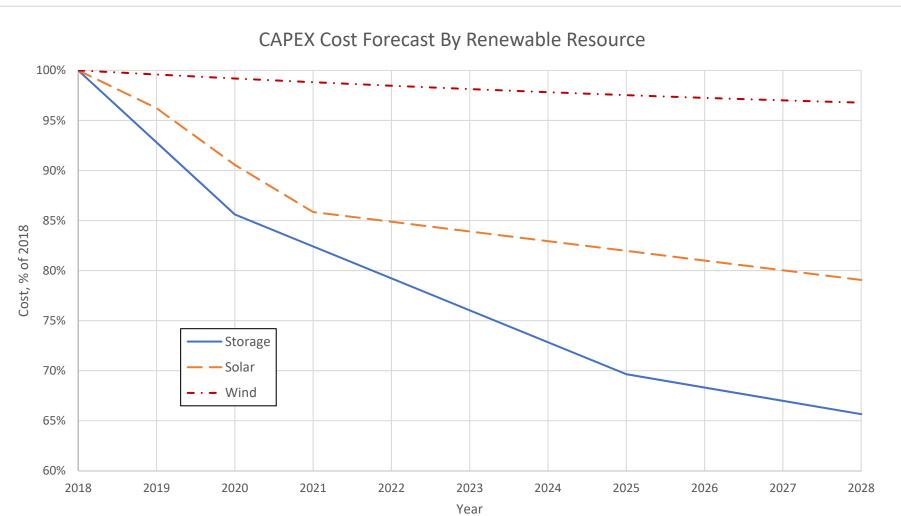

Weather		
Source	TMY3	
GHI	1486.8 kWh/m2	
DHI	kWh/m2	
Global POA	1964.9 kWh/m2	
Average Temp.	9.97 °C	
Average Temp. (Generation)	14.53 °C	
Average Wind	3.17 m/s	
Average Wind (Generation)	3.30 m/s	


AC System Losses		
MV transformer no-load losses	0.07%	
MV transformer full load losses	0.85%	
MV collection system	1.30%	
HV transformer no-load losses	0.07%	
HV transformer full load losses	0.48%	
HV line	0.05%	
Auxiliary	0.01%	


APPENDIX D – WIND PERFORMANCE INFORMATION




COPYRIGHT © 2018 BURNS & McDONNELL ENGINEERING COMPANY, INC.



APPENDIX E – DECLINING COST CURVES

Notes:

1. The declining cost curve for onshore wind was developed using NREL Techno-Resource Group (TRG) mid CAPEX cost inforamtion. The cost for TRG 4 - TRG 8 were averaged which represent the Pacificorp identified sites.

2. The declining cost curve for utility solar photovoltaic was developed using NREL mid CAPEX cost inforamtion. From the inforamation provided, the costs for Seattle, Los Angeles, and Daggett were averaged.

3. The declining cost curve for battery storage was developed using NREL mid CAPEX cost information for an 8-hour storage device with 15-year life and 90% round-trip efficiency. Linear interpolation was used between NREL provided data points.

CREATE AMAZING.

Burns & McDonnell 9785 Maroon Circle, Suite 400 Centennial, CO 80112 O 303-721-9292 F 303-721-0563 www.burnsmcd.com