

# 2025 Integrated Resource Plan Public Input Meeting May 2, 2024





#### Purpose Statement

Multi-State

Approach



#### Transparency

- Assumptions
- Constraints
- Close the gap between planning, implementation, and execution
- ✤ Agnostic to technology
  - Cost driver
  - Reliability driver

- Specific timing for milestones in six states
- Stakeholder feedback is critical to improving the quality of the work product
- Milestones will be delivered based on the most restrictive state timing
- Abide by each state's specific policies if applicable





#### - This meeting will be recorded and made publicly available -

| SCHEDULE*           | ΤΟΡΙϹ                                 |
|---------------------|---------------------------------------|
| 9:00 AM – 9:15 AM   | Introduction                          |
| 9:15 AM – 10:30 AM  | Conservation Potential Update         |
| 10:30 AM – 11:30 AM | Distributed Generation Study Overview |
| 11:30 AM – 12:00 PM | Transmission Modeling Strategy        |
| 12:00 PM – 12:45 PM | Break                                 |
| 12:45 PM – 1:00 PM  | March price curve update              |
| 1:00 PM – 2:00 PM   | 2023 IRP Update Outcomes              |
| 2:00 PM – 2:15 PM   | Stakeholder Feedback                  |
| 2:15 PM – 2:30 PM   | Summary & Next Steps                  |

\* Timing and arrangement are approximate and subject to change.

# Conservation Potential Assessment -Update



#### Schedule and Milestones



Throughout the 2025 CPA development process, we will continue to request feedback from interested parties.

| Timeframe        | Milestone                                      | Public Input Request                  |
|------------------|------------------------------------------------|---------------------------------------|
| January 25, 2024 | Present on Scope of Work                       | Additional input on scope             |
| March 14, 2024   | Share Draft EE & DR Measure List               | Provide feedback on included measures |
| April 8, 2024    | Finalize Measure List                          | Feedback incorporated                 |
| May 2, 2022      | Share Key Drivers of Potential and Assumptions | Review methodology and resources      |
| September 2024   | Present Draft Results and Share Measure Data   | Review materials and provide feedback |
| October 2024     | Present Final Supply Curves                    | Review changes made due to feedback   |
| November 2024    | Draft CPA for Review                           | Provide input on draft report         |
| January 2024     | Publish Final Report                           | With feedback incorporated            |



# **Energy Efficiency Measures**





#### **Baselines & Considerations**

AEG will develop baselines unique to how DSM planning is conducted in each state. Examples include:

- State Building Codes
  - ASHRAE 90.1, IECC or State-Specific (see table below)
- Federal equipment efficiency standards with applicable state-specific adjustments
- Baseline market data for equipment and measure saturation
  - PacifiCorp surveys, project data
  - Regional Technical Forum and California CPUC/eTRM
  - National and census region-specific saturation data

| State      | Residential Energy Code Used                        | Non-Residential Energy Code Used                    |
|------------|-----------------------------------------------------|-----------------------------------------------------|
| California | 2022 Building Energy Efficiency Standards, Title 24 | 2022 Building Energy Efficiency Standards, Title 24 |
| Washington | Washington State Energy Code (WSEC) 2021            | Washington State Energy Code (WSEC) 2021            |
| Idaho      | 2018 IECC with amendments                           | 2018 IECC                                           |
| Utah       | 2021 IECC with amendments                           | 2021 IECC                                           |
| Wyoming    | 2018 IECC with adjustments                          | 2018 IECC with adjustments                          |

#### Baselines & Considerations, Cont. Federal Policy

- Tax incentives introduced on January 1, 2023 for the Inflation Reduction Act (IRA), focused primarily on low- and moderate-income households and disadvantaged communities by supporting upgrades in heating, cooling, weatherization, and comprehensive home improvements.
- In the 2023 IRP, AEG collaborated with PacifiCorp to integrate IRA and IIJA impacts into their study by adopting faster ramp rates for measures targeting specific customer groups.
- This approach updates the 2021 Power Plan's ramp rates to reflect quicker adoption due to federal legislation.

### Baselines & Considerations, Cont. State Code Adoption

- Dynamic State Energy Codes:
  - State energy codes adapt swiftly to changing circumstances.
  - RTF energy code assumptions may lag behind these transformative changes.
  - AEG identifies future code adoptions intervals and incorporates final rulemaking assumptions into technology and building code measure forecasts (i.e. WSEC 2021)



# Drivers of Difference in Forecasted Potential by State





### **CPA Methodology**





### Key Drivers of Differences between States

- Technical Drivers:
  - Distribution of Customers and Sales by Sector Forecasts by Sector
  - Sub-Sector Share of Load
  - Sector-Specific Measures
  - Climate
  - Equipment Saturations
  - Ramp Rates
- Other Drivers:
  - Cost-Effectiveness Requirements by State
  - Measure Sourcing Requirements
  - Stringency of Local Building Codes and Standards





## Baseline Load Considerations and Effects on Potential

#### **Residential Low-Income Segmentation**



- Threshold definitions for base year 2023 (same as Residential Survey year)
  - Three income categories: low, moderate, and regular-income
  - Combination of federal poverty guidelines (FPG) and state median income (SMI), depending on LIHEAP annual income and household size levels

|              |                                                                                               | Threshold Definitions                   |                        |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|--|--|--|--|
| Jurisdiction | Low-Income:<br>≤ 60% SMI<br>≤ 200% FPG<br>≤ 200% FPG<br>≤ 200% FPG<br>≤ 200% FPG<br>≤ 60% SMI | Moderate-Income:<br>Above LI and Below: | Above-Moderate Income: |  |  |  |  |
| CA           | ≤ 60% SMI                                                                                     |                                         |                        |  |  |  |  |
| ID           | ≤ 200% FPG                                                                                    |                                         |                        |  |  |  |  |
| OR           | ≤ 200% FPG                                                                                    |                                         |                        |  |  |  |  |
| UT           | ≤ 200% FPG                                                                                    | ≤ 100% SMI                              | > 100% SMI             |  |  |  |  |
| WA*          | ≤ 60% SMI<br>≤ 200% FPG                                                                       |                                         |                        |  |  |  |  |
| WY           | ≤ 60% SMI                                                                                     |                                         |                        |  |  |  |  |

\*WA low-income was split by household size.

If less than 7 people per household, used 60% of SMI and if greater than 7, used 200% FPG.

### Differences in Consumption by Sector

- State-level consumption by sector drives overall savings opportunities
  - States with higher industrial and irrigation loads tend to have lower savings potential compared to overall load due to fewer opportunities
  - Different measure-level opportunities by sector and sub-sector
- Residential and commercial sectors generally have higher savings potential
  - More measure options
  - Often, more mature programs have more potential in early years due to more advanced ramp rates

#### Drivers of Residential Differences Across States



| Location and Climate                                                                                                                                                                                                                                            | Overall Household<br>Energy Use                                                                                                                                                                                                          | Saturation of<br>Equipment                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Differences in climate and location drive the saturation of cooling equipment and the run time of heating equipment</li> <li>More rural communities have higher saturations of electric heating equipment due to lack of natural gas access</li> </ul> | <ul> <li>Differences in household<br/>usage drives difference in<br/>certain end uses</li> <li>Example: types of existing<br/>heating equipment varies<br/>by home type, which<br/>drives the amount of<br/>heating potential</li> </ul> | <ul> <li>Higher saturations of<br/>electric heating and water<br/>heating equipment<br/>increase overall<br/>household baseline<br/>energy use and present<br/>more savings<br/>opportunities</li> </ul> |

#### Drivers of Commercial Differences Across States



| Building Type                                                                                                                                                                                                                                | Climate and Location                                                                                                                                                                                                     | Data Sourcing                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Certain equipment is<br/>more applicable to certain<br/>building types</li> <li>Example: Compared to<br/>offices, grocery has more<br/>refrigeration<br/>consumption, lodging has<br/>more water heating<br/>consumption</li> </ul> | <ul> <li>Much like residential,<br/>climate can have a large<br/>impact due to varying<br/>runtimes</li> <li>Access to natural gas<br/>service affects saturation<br/>of electric space and<br/>water heating</li> </ul> | <ul> <li>Data sourcing is more of a driver of difference than residential because third-party sources are required for commercial</li> <li>Example: Different sources for RMP and Pacific Power states – CBECS and CBSA</li> </ul> |

#### Drivers of Industrial Differences Across States



| Industry Type                                                                                                                                                                                                                                                               | Applicable Measures                                                                                                                                                                                                                                                                                                                                                                                      | Data Sourcing                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The industry type drives the savings potential</li> <li>Example: Some industrial facilities may look more like a warehouse while others are heavy processing, presenting different savings opportunities due to equipment types and operation schedules</li> </ul> | <ul> <li>Opportunities differ by what<br/>equipment types are present<br/>in the facility. Some<br/>industries have high<br/>compressed air loads, others<br/>may be driven more by<br/>motors or lighting loads.</li> <li>Projects tend to be highly<br/>customized, capital-<br/>intensive, and may require<br/>interruptions to operations,<br/>affecting their technical<br/>feasibility.</li> </ul> | <ul> <li>Data sourcing is more of a driver of difference than residential because third party sources are required for industrial saturations.</li> <li>Example: Different sources for RMP and PAC states – MECS for RMP and NWPCC for Pacific Power</li> </ul> |

*Climate is a much lower driver of difference in industrial than in other sectors* 

#### **Ramp Rates**



- Ramp rates dictate the pace at which the potential is assumed to be achievable, separately for lost opportunity and retrofit measures
  - Lost Opportunity rates indicate the percent of equipment up for replacement in a given year that is assumed to be upgraded
  - Retrofit rates indicate the share of the 20-year potential assumed to be acquired in a given year
- The study uses a set of S-shaped diffusion curves developed by the Northwest Power and Conservation Council
- AEG analyzes PacifiCorp's recent statespecific program history to determine which ramp rate is most appropriate to apply



NWPCC 2021 Plan Retrofit Ramp Rates

#### **Levelized Costs**

Table 2-3



Similar to savings, measure costs vary by jurisdiction.

Assumptions presented from Table 2-3 in 2023 CPA Volume I report:

The table below walks through the adjustments that AEG makes prior to levelizing measure costs for supply curves, which are based on the state-specific costeffectiveness test

| Parameter                                       | WA                                          | CA                                              | WY                      | UT                | ID  |  |
|-------------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------|-------------------|-----|--|
| Cost Test                                       | Total Resource                              | ce Cost (TRC)                                   | Utility Cost Test (UCT) |                   |     |  |
| Initial Capital Cost                            | Included (100%<br>cost, full measur<br>meas | of incremental<br>e cost for retrofit<br>sures) |                         | Utility Incentive |     |  |
| Annual Incremental O&M <sup>19</sup>            | Included                                    | Not Included                                    |                         |                   |     |  |
| Secondary Fuel Impacts <sup>19</sup>            | Included                                    | Not Included                                    |                         |                   |     |  |
| Non-Energy Impacts                              | Included                                    | Not Included                                    |                         |                   |     |  |
| Administrative Costs<br>(% of incremental cost) | 48%                                         | 45% 48% 22%                                     |                         |                   | 40% |  |
| Incentive Costs<br>(% of incremental cost)      | n/                                          | a <sup>20</sup>                                 | 43%                     | 38%               | 39% |  |

Economic Components of Levelized Cost by State

| Field             | Washington        | California | Oregon  | Wyoming     | Utah        | Idaho       |
|-------------------|-------------------|------------|---------|-------------|-------------|-------------|
| CE Test           | TRC,<br>10% adder | TRC        | TRC     | UCT         | UCT         | UCT         |
| Measure Cost      | \$1,000           | \$1,000    | \$1,000 | n/a         | n/a         | n/a         |
| Incentive Paid    | n/a               | n/a        | n/a     | \$430 (43%) | \$380 (38%) | \$390 (39%) |
| Utility Admin %   | 48%               | 45%        | 29%     | 48%         | 22%         | 40%         |
| Admin Spend       | \$480             | \$450      | \$290   | \$480       | \$220       | \$400       |
| Cost for Bundling | \$1,480           | \$1,450    | \$1,290 | \$910       | \$600       | \$790       |

\*\* Administrative costs will be updated during the 2025 study

#### Levelized Cost Inputs by State

| Perspective                       | Total Resource<br>Cost |              | Utility Cost |              | ost          | Included In: |                 |
|-----------------------------------|------------------------|--------------|--------------|--------------|--------------|--------------|-----------------|
|                                   | WA                     | CA           | OR           | ID           | UT           | WY           |                 |
| State/Sector-Specific Line Losses | $\checkmark$           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | Potential Study |
| Customer Cost                     | $\checkmark$           | $\checkmark$ | $\checkmark$ |              |              |              | Potential Study |
| Utility Investment                | $\checkmark$           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | Potential Study |
| Annual Incremental O&M            | $\checkmark$           |              | $\checkmark$ |              |              |              | Potential Study |
| Secondary Fuel Impacts            | $\checkmark$           |              |              |              |              |              | Potential Study |
| Non-Energy Impacts                | $\checkmark$           |              | $\checkmark$ |              |              |              | Potential Study |
| 10% Conservation Credit           | $\checkmark$           |              | $\checkmark$ |              |              |              | IRP Modeling    |
| T&D Deferral Benefits             | $\checkmark$           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | IRP Modeling    |
| Risk Mitigation Benefits          | $\checkmark$           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | IRP Modeling    |

#### **IRP** Credits



The IRP incorporates three credits that reduce the modeled cost of energy efficiency bundles competing with supply-side resources in IRP modeling:



These credits are intended to capture benefits of energy efficiency that would otherwise not be reflected in IRP modeling.

These credits are consistent with industry standards and with the Northwest Power and Conservation Council.

#### IRP Credits, Cont. T&D Deferral Credit

Table 7.8 from Volume I of the 2023 IRP shows the T&D credits used

| State      | Transmission<br>Deferral Value<br>(\$/KW-year) | Distribution<br>Deferral Value<br>(\$/KW-year) | Total   |
|------------|------------------------------------------------|------------------------------------------------|---------|
| California | \$5.09                                         | \$8.38                                         | \$13.47 |
| Oregon     | \$5.09                                         | \$10.46                                        | \$15.55 |
| Washington | \$5.09                                         | \$10.69                                        | \$15.78 |
| Idaho      | \$5.09                                         | \$12.57                                        | \$17.66 |
| Utah       | \$5.09                                         | \$12.90                                        | \$17.99 |
| Wyoming    | \$5.09                                         | \$5.76                                         | \$10.85 |

Transmission & Distribution (T&D) Credit

• The T&D value is applied to each EE cost bundle to convert it to a \$/MWh credit.

 $T\&D Value \times Seasonal PCF \times 1000$ 

EE 1–Year Bundle Hours [between 1 and 8760]

#### • Example:

 $\frac{\$15.55 \times 0.57 \times 1000}{5750} = \$1.54/MWh reduction in the EE cost bundle$ 



### IRP Credits, Cont. Stochastic Risk Reduction Credit

The stochastic risk reduction credit is intended to reflect the value energy efficiency provides in terms of reducing portfolio risk.

This credit is calculated by:

- Determining the difference in present-value revenue requirement (PVRRd) between stochastic studies and deterministic studies with and without energy efficiency.
- Dividing the delta of the two PVRR(d) results by the net present value of the energy efficiency savings (MWh) yields the \$/MWh assumed value of stochastic risk reduction.

The 2023 IRP credit value was \$2.25/MWh, and this will be updated for the 2025 IRP.

#### IRP Credits, Cont. NW Power Act 10% Credit



#### Northwest Power Act 10-Percent Credit

- Oregon & Washington only
- The formula for calculating this \$/MWh credit is:

 $Bundle \ price \ -(1 st \ year \ MWh \ savings \times Market \ Value \times 10\% + 1 st \ year \ MWh \ Savings \times T\&D \ Deferral \times 10\%)$ 

1st year MWh savings





# **Demand Response Resources**





### **Defining Demand Response**

**Demand Response (DR)**: Resources from fully dispatchable or scheduled firm capacity product offerings/programs such as a load control

• Previously Class 1 DSM

**Demand Response Program**: one or more DR technologies which can be called to perform one or more grid services during a utility DR event.

This approach will be used in the 2025 CPA.

- <u>Grid Service Provided</u>: Peak Shaving, Fast DR, etc.
- <u>Control Mechanism</u>: Smart Thermostat, DLC Switch, etc.
- <u>Technology Controlled</u>: Central AC, Irrigation Pumps, HPWH
- Example: HVAC Direct Load Control (Cool Keeper). A central AC with a direct load control switch cycling during a peak event. Program specific to one control mechanism and one technology.

#### **Resource Options**



- The IRP primarily focused on sustained events due to modeling at the hourly level. However, the 2025 CPA will include an analysis of fast events, representing an improvement upon the 2023 CPA.
- Will continue to model third-party program potential with these two categories.

**Sustained Events:** represent an event lasting at least one hour and providing customers either day-ahead or day-of notification in advance.

**Fast Events:** represent an event lasting less than one hour and providing customers advanced notification of fifteen minutes or less with a near-instantaneous response.

#### Resource Options, Cont.

| Program Category                                | Program Bundle                                                  | Mechanism / Description                                                                                                                                                                    | Eligible for Fast<br>Event Potential?* | Current<br>Offering       |
|-------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|
| Direct Load Control<br>(Conventional)           | Electric Vehicle Connected Charger Direct<br>Load Control (DLC) | Automated, level 2 EV chargers that postpone or<br>curtail charging during peak hours. Can<br>potentially be used for energy storage.                                                      | $\checkmark$                           | UT, Planned<br>for OR, WA |
|                                                 | HVAC DLC                                                        | DLC switch installed on customer's heating and/or cooling equipment.                                                                                                                       | $\checkmark$                           | UT                        |
|                                                 | Irrigation Load Control                                         | Automated pump controllers or DLC switch installed on customer's equipment.                                                                                                                | $\checkmark$                           | ID, UT, OR,<br>WA         |
|                                                 | Pool Pump DLC                                                   | DLC switch installed on customer's equipment.                                                                                                                                              | $\checkmark$                           | -                         |
|                                                 | Domestic Hot Water Heater (DHW) DLC                             | DLC switch installed on customer's equipment.                                                                                                                                              | $\checkmark$                           | OR & WA                   |
| Direct Load Control<br>(Smart /<br>Interactive) | DLC of Smart Home                                               | Internet-enabled control of operational cycles of<br>white goods appliances, electronics, and<br>lighting. Controlled by a central smart hub or<br>smart speaker.                          |                                        | -                         |
|                                                 | Grid Interactive Water Heater                                   | CTA-2045 or other integrated communication port. Can also be used for energy storage.                                                                                                      | $\checkmark$                           | OR & WA                   |
|                                                 | Connected Thermostats DLC                                       | Internet-enabled control of thermostat set points.                                                                                                                                         |                                        | OR & WA                   |
| Energy Storage                                  | Battery Energy Storage DLC                                      | Internet-enabled control of battery charging and discharging.                                                                                                                              | $\checkmark$                           | UT, WY, ID<br>(Pilot)     |
| Curtailment                                     | Third-Party (Fast Event)                                        | Customers enact their customized, mandatory<br>curtailment plan. May use stand-by generation.<br>Penalties apply for non-performance. Customers<br>must have EMS for automated compliance. | ✓                                      | UT, OR, WA,<br>ID         |
|                                                 | Third-Party (Sustained Event)                                   | Customers volunteer a specified amount of<br>capacity during a predefined "economic event"<br>called by the utility in return for a financial<br>incentive.                                |                                        | UT, OR, WA,<br>ID         |

#### **Resource Assumptions**

AEG conducts research to develop a comprehensive list of DR measure/program assumptions. PacifiCorp-specific program data is used where available.



#### **Resource Costs**



The following components are typically included within demand response program costs:

- Measure Costs
  - Energy-using technology cost (e.g. ENERGY STAR Connected EV Charger)
  - Enabling technology cost (e.g. DLC Switch, Smart Thermostat, HEMS)
  - "Bring-Your-Own" program designs can lower measure costs substantially and will be considered where possible
- Incentives (annual, per-event, or both)
  - In states utilizing the California DR Cost-Effectiveness Protocol, only a portion of the incentive is counted to estimate the customer's cost to participate (see next slide)
- Utility administrative costs\*
  - Utility staff to manage program (X FTEs at \$Y/yr. allocated across multiple programs)
  - Program development costs (up-front \$ for each new program)
  - Marketing costs (\$/yr.)

\*Can be transitioned to a third-party aggregator in some circumstances

#### **Participant Costs**

- In Pacific Power states, participant costs are estimated to satisfy requirements of Total Resource Cost test.
  - Not applicable to Rocky Mountain Power: participant cost assumptions have no impact on levelized cost from Utility Cost Test perspective
- PacifiCorp uses the California DR Cost-Effectiveness Protocol methodology to estimate participant costs as a percentage of incentives.
  - Lower percentages used to reflect programs that are less intrusive to customers
  - See assumptions from 2025 CPA below:

| Program                             | Participant Cost<br>(% of Incentive) |
|-------------------------------------|--------------------------------------|
| HVAC Direct Load Control (DLC)      | 35%                                  |
| Domestic Hot Water Heater (DHW) DLC | 25%                                  |
| Grid-Interactive Water Heaters      | 25%                                  |
| Connected Thermostat DLC            | 35%                                  |
| Smart Appliances DLC                | 75%                                  |
| DLC of Pool Pumps                   | 75%                                  |
| Electric Vehicle DLC Smart Chargers | 75%                                  |
| Battery Energy Storage DLC          | 75%                                  |
| Third Party Contracts               | 75%                                  |
| Irrigation Load Control             | 75%                                  |

#### **Resource Examples**



The examples of DR program assumptions to the right highlight some of the unique considerations between jurisdictions.

[1] Savings weighted by electric heating and cooling saturations

[2] Assuming bring-your-own program designs; DR model linked to connected thermostat saturations in EE model.

[3] Washington House Bill 1444 set an appliance standard mandating CTA-2045 communication ports on all new water heaters in the state

| Connected Thermostats DLC          | Washington               | Utah                                                              |
|------------------------------------|--------------------------|-------------------------------------------------------------------|
| Summer kW Reduction                | 0.53 kW                  | 0.97 kW                                                           |
| Winter kW Reduction <sup>[1]</sup> | 1.01 kW                  | 0.21 kW                                                           |
| Eligible Market                    | Connected<br>Thermostats | Connected<br>Thermostats<br><u>not enrolled</u> in Cool<br>Keeper |
| Equipment Costs <sup>[2]</sup>     | \$0                      | \$0                                                               |

| Water Heater DLC    | Washington                                               | Utah                                                     |
|---------------------|----------------------------------------------------------|----------------------------------------------------------|
| Summer kW Reduction | 0.58 kW                                                  | 0.58 kW                                                  |
| Winter kW Reduction | 0.58 kW                                                  | 0.58 kW                                                  |
| Eligible Market     | All electric water<br>heaters at turnover <sup>[3]</sup> | Electric water heaters,<br>limited by customer<br>choice |
| Equipment Costs     | \$0                                                      | \$315 switch +<br>installation                           |

#### Demand Response (DR) Credits

The 2023 IRP incorporated two credits that reduced the modeled cost of DR bundles competing with supply-side resources in IRP modeling. These credits are intended to capture benefits that would otherwise not be reflected in IRP modeling.

#### Transmission and Distribution Deferral Credit

• Applied same credit to DR as described in the EE measure section of this presentation.

#### **Operating Reserve Credit**

• In this case, for Contingency and Regulation Reserves

# Distributed Generation Study Overview



- Methodology Overview
- Data Development
- Modeling
- Forecast Scenarios
- Q&A


#### Introduction and Background

- DNV prepared the Long-Term Distributed Generation Resource Assessment for PacifiCorp covering the service territories in Utah, Oregon, Idaho, Wyoming, California, and Washington.
- This study evaluated the expected adoption of behind-the-meter (BTM) technologies including photovoltaic solar, photovoltaic solar coupled with battery storage, small scale wind, small scale hydro, reciprocating engines, and microturbines for a 20-year forecast horizon.
- DNV has provided projections for 3 cases: base, high, and low adoption.
- The distributed generation projections will be used in support of PacifiCorp's 2025 Integrated Resource Plan.
- DNV developed its assumptions, inputs, methodologies, and forecasts independently from prior Distributed Generation Assessments that have been previously performed for PacifiCorp.







#### Approach Overview



#### Data Source Hierarchy – Customer Data

| # | Data Description                                                                                                                                                                                     | Source                                                                                                                                                                                                                   | Details                                                                                                                                                                    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Customer Segments                                                                                                                                                                                    | PacifiCorp billing data                                                                                                                                                                                                  | Additional segmentation compared to 2022 study: Residential (2),<br>Commercial (5), Industrial (1), Irrigation (1)                                                         |
| 2 | Segment-Level Load Shapes                                                                                                                                                                            | Residential: Northwest Energy Efficiency Alliance (NEEA) load shapes &<br>PacifiCorp billing data<br>Commercial: NREL ComStock load shapes & PacifiCorp billing data<br>Industrial & Irrigation: PacifiCorp billing data | Additional customer segmentation provided the opportunity for<br>more granular load shape creation and thus, more accurate billing<br>analysis for individual technologies |
| 3 | Segment-Level Rates                                                                                                                                                                                  | PacifiCorp tariff indexes & price summaries                                                                                                                                                                              | Updated January 2024                                                                                                                                                       |
| 4 | Segment-Level Rate Forecast EIA Annual Energy Outlook (AEO) for energy, demand, and load size rate forecast(s)   PacifiCorp IRP-developed avoided costs for export rates for net-billing states only |                                                                                                                                                                                                                          | Separate AEO forecast cases used for base, high, and low forecast<br>scenarios<br>Avoided cost forecast from IRP used to forecast export rates for<br>non-billing states   |
| 5 | Rate Periods & Seasons                                                                                                                                                                               | PacifiCorp tariff indexes & price summaries                                                                                                                                                                              | By customer segment, used in 8760 billing analysis                                                                                                                         |
| 6 | Historical Adoption Data                                                                                                                                                                             | PacifiCorp customer interconnection data (2000-2023)                                                                                                                                                                     | Used to calibrate Bass diffusion curves by customer segment and technology                                                                                                 |
| 7 | Segment-Level Willingness-to-adopt<br>Parameters                                                                                                                                                     | Various market research reports and internal DNV data                                                                                                                                                                    | Available at total residential, commercial, and industrial levels – applied to relevant sub-segments                                                                       |
| 9 | Segment-Level Customer Forecast                                                                                                                                                                      | PacifiCorp internal forecast                                                                                                                                                                                             | By segment and state, used in characterizing future population of potential adopters, and new construction estimates                                                       |

#### Data Source Hierarchy – Technology Data

| # | Data Description                                   | Source                                                                                                                                                                              | Details                                                                                                                 |
|---|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1 | Technology Performance Data &<br>Generation Shapes | Solar PV & Battery Storage: DNV SolarFarmer & Lightsaber Tools Wind:<br>PNNL Distributed Wind Market Report & data, NREL SAM<br>Hydro: NREL SAM<br>CHP: DOE CHP Fact Sheets         | Generation shapes aligned w/system sizes for each customer segment and location (state)                                 |
| 3 | Technology Cost Data                               | Solar PV & Battery Storage: Wood Mackenzie PV system pricing, NREL ATB<br>Wind: PNNL Distributed Wind Market Report & data, NREL ATB<br>Hydro: NREL ATB<br>CHP: DOE CHP Fact Sheets | Cos data aligned w/system sizes for each customer segment and location (state)                                          |
| 4 | Technology Cost Forecasts                          | NREL Annual Technology Baseline (ATB)                                                                                                                                               | Separate ATB forecast cases used for base, high, and low forecast scenarios                                             |
| 5 | Technology Incentives                              | PacifiCorp tariff indexes & price summaries, and individual state incentive summaries                                                                                               | Conservative scaling to future years based on best available information related to future program funding levels, etc. |
| 6 | Fuel Costs                                         | EIA Annual Energy Outlook (AEO) annual natural gas price forecast                                                                                                                   | By customer segment, used in billing & economic analysis for CHP (natural gas-fueled) technologies                      |

#### **Distributed Generation Technologies**

| Cost & Performance Metric                             | Solar PV                                    | Solar PV + Battery                          | Wind                                             | Hydro                                       | Microturbine                                | Recip. Engine                                    |
|-------------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------|
| Installed Cost – Residential<br>(\$/kW, 2024)         | \$2,802-2,895/kW-DC<br>(depending on state) | \$4,198-4,350/kW-DC<br>(depending on state) | \$7,054/kW-AC                                    | N/A                                         | N/A                                         | N/A                                              |
| Installed Cost – Non-Residential<br>(\$/kW, 2024)     | \$1,953-2,053/kW-DC<br>(depending on state) | \$2,912-4,029/kW-DC<br>(depending on state) | \$2,913-6,015/kW-AC<br>(depending on state)      | \$3,992-5,190/kW-AC<br>(depending on state) | \$3,134-3,742/kW-AC<br>(depending on state) | \$3,125-4,189/kW-AC<br>(depending on state)      |
| Annual Installed Cost Change<br>(%, 2024-2045)        | Scaled from b                               | ase year installed costs usi                | ng NREL Annual Technolog                         | y Baseline (ATB) annual sc                  | aling factors specific to tech              | nology & size                                    |
| Fixed O&M – Residential<br>(\$/kW-yr, Base Year)*     | \$25.4-43.3/kW                              | \$31.8-33.04/kW                             | \$38.0/kW                                        | N/A                                         | N/A                                         | N/A                                              |
| Fixed O&M – Non-Residential<br>(\$/kW-yr, Base Year)* | \$15.6-26.5/kW                              | \$28.0-32.8/kW                              | \$38.0/kW                                        | \$207.6/kW                                  | N/A                                         | N/A                                              |
| Variable O&M<br>(\$/kWh, Base Year)                   | N/A                                         | N/A                                         | N/A                                              | N/A                                         | \$0.016-0.0019/kWh                          | \$0.020-0.028/kWh                                |
| Annual O&M Cost Change<br>(%, 2022-2064)              | Scale                                       | d from base year O&M cost u                 | sing NREL Annual Technology I                    | Baseline (ATB) annual scaling f             | actors specific to technology &             | & size                                           |
| Capacity Factor<br>(%)                                | 14.6-18.5%                                  | 14.6-18.5%                                  | 7.7-10.8% - Residential<br>17.9-42.6% - Non-Res. | 45%                                         | 43% - Commercial<br>51% - Industrial        | 48% - Commercial<br>58% - Industrial             |
| Fuel Cost & Annual Cost Change<br>(\$/MMBtu, %)       | N/A                                         | N/A                                         | N/A                                              | N/A                                         | \$11.6/MMBtu – Com<br>Scaled from AEO 2023  | ., \$6.6/MMBtu – Ind.<br>Pacific Region Forecast |
| Electric Heat Rate<br>(Btu/kWh, HHV)                  | N/A                                         | N/A                                         | N/A                                              | N/A                                         | 11,566-13,648                               | 9,721-11,765                                     |
| DC/AC Derate Factor<br>(%)                            | 76.9-89.5% (based on customer type & size)  | 76.9-89.5% (based on customer type & size)  | N/A                                              | N/A                                         | N/A                                         | N/A                                              |

\*Fixed O&M costs for solar PV and solar PV + Battery are in \$/kW-DC-yr; all other technologies are in \$/kW-AC-yr

#### **Customer Segmentation Approach**

- Compared to the 2022 study: Additional segments provide increased granularity in load shape development, and greater accuracy in the final billing/economic analysis within the adoption model
- Includes both existing and new construction customers

| Sector      | Segment(s)          | Technologies                                                                                                             |  |  |  |
|-------------|---------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Posidontial | Residential non-LMI |                                                                                                                          |  |  |  |
| Residentia  | Residential LMI     |                                                                                                                          |  |  |  |
|             | Commercial Small    | Solar PV (standalone)                                                                                                    |  |  |  |
|             | Commercial Large    | Solar PV + Storage                                                                                                       |  |  |  |
| Commercial  | Commercial School   | Storage (retrofit)<br>Wind                                                                                               |  |  |  |
|             | Commercial Hotel    | Micro-hydro                                                                                                              |  |  |  |
|             | Commercial Other    |                                                                                                                          |  |  |  |
| Irrigation  | Irrigation All      |                                                                                                                          |  |  |  |
| Industrial  | Industrial All      | Solar PV (standalone)<br>Solar PV + Storage<br>Storage (retrofit)<br>Wind<br>Mini-hydro<br>Recip. Engine<br>Microturbine |  |  |  |

### Incentives



#### **Federal Incentives Overview**

| Incentive                     | System Size<br>(kW) | Technology                                         | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 | 2035+ |
|-------------------------------|---------------------|----------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Residential /<br>Business ITC | < 1,000             | PV                                                 | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 26%  | 22%  | 0%    |
|                               | < 1,000             | Energy Storage                                     | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 26%  | 26%  | 0%    |
|                               | < 1,000             | Small Wind                                         | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 26%  | 22%  | 0%    |
|                               | < 1,000             | Microturbines                                      | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 26%  | 22%  | 0%    |
|                               | < 1,000             | Reciprocating Engines                              | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 26%  | 22%  | 0%    |
| Business ITC                  | < 150               | Small Hydro (hydropower dams)                      | 30%  | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%    |
|                               | < 25                | Small Hydro (Hydrokinetic<br>pressurized conduits) | 30%  | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%   | 0%    |
|                               | < 1,000             | Small Hydro                                        | 0%   | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 30%  | 26%  | 22%  | 0%    |

#### **Other Applicable Incentives**

- Modified Accelerated Cost-Recovery System (MACRS)
  - Eligible technologies: Solar Photovoltaics, Wind (All), Wind (Small), Micro turbines
  - Eligible sectors: Commercial, Industrial, Irrigation

#### State Incentives

| State      | Res                                                | idential                                                         | Non-Residential                                                 |
|------------|----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|
| Oregon     | <b>PV-Only:</b><br>\$450/home, \$3,000<br>max/home | <b>Battery Storage:</b><br>\$250/kWh, \$3,000<br>max/home        | <b>PV-Only:</b><br>\$0.15/W (up to 480 kW)                      |
| Utah       | <b>PV-Only:</b><br>None (expired in 2023)          | <b>Non-PV:</b><br>25% of eligible system cost<br>(up to \$2,000) | Up to 10 percent of the eligible system cost or up to \$50,000* |
| Idaho      | Annual maximum of \$5,00<br>years**                | 0, and \$20,000 over four                                        | None                                                            |
| California | None                                               |                                                                  | None                                                            |
| Washington | None                                               |                                                                  | None                                                            |
| Wyoming    | None                                               |                                                                  | None                                                            |

\* Solar PV, wind, geothermal, hydro, biomass or certain renewable thermal technologies

\*\* Mechanism or series of mechanisms using solar radiation, wind or geothermal resource

# Other Programs and Sources of Funding for Distributed Generation

U.S. EPA Solar for All

- \$7 billion Notice of Funding Opportunity in 2023
- 60 grants to states, territories, Tribal governments, municipalities, and nonprofits – create and expand programs that provide financing and technical assistance to bring residential solar to low-income and disadvantaged communities

 Funding availability assumptions incorporated into state-level incentives for solar PV aligned with residential LMI segments

## **Forecasting Model**



#### Technology Adoption Methodologies and Approach

#### • DNV developed a behind-the-meter (BTM) economic perspective including

- Costs to acquire and install each technology net of available incentives
- Benefits of ownership including energy cost savings (8760 billing analysis)
- Calculated payback by year for each technology, state, and customer sector
- Estimated technical feasible applications by technology, state, and customer sector
- Utilized Bass diffusion curves to model annual adoption
  - Adoption trend over time is characterized by three parameters
    - Innovation coefficient External influence (marketing) on customer adoption
    - Imitation coefficient Internal influence (neighbor effect) on customer adoption
    - Ultimate market potential Determine by customer counts and technical suitability
  - We tied ultimate market potential to payback; market interventions shift the diffusion curve
  - Innovation and imitation are calibrated to current penetration for each technology, segment, and state



#### Modeling Approach



#### Forecast Descriptions and Assumptions

| Key Assumptions                                | Base                                                                       | Low                       | High                                                        |
|------------------------------------------------|----------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|
| Technology Cost Forecasts                      | Average of NREL Conservative and Moderate ATB                              | NREL Conservative ATB     | NREL Moderate ATB                                           |
| Retail Electricity Rate<br>Forecasts           | AEO Reference                                                              | AEO High Oil & Gas Supply | AEO Low Oil & Gas Supply                                    |
| Value of Backup Power                          | None                                                                       | Base case assumption      | Included in customer benefits of PV +<br>Battery technology |
| Incentive Levels (starting in model year 2024) | Applicable state and federal<br>incentives based on current<br>legislation | Base case assumption      | Base case assumption                                        |
| Market Barriers (non-<br>monetary)             | Assumptions vary by measure but do not change over time                    | Base case assumption      | Base assumptions for Year 1, then reduced over time         |

#### Value of Backup Power PV + Battery – High Case

To analyze if the ability to provide backup power drives adoption of battery storage, we included a new value stream in the economic analysis for the PV + Battery technology.

- This value stream is intended to reflect the monetized value provided by the battery storage system as a source of backup power to customers in the case of planned or unplanned system outages
- Values were developed by state, sector, and segment

DNV estimated the cost of electric service interruptions using Lawrence Berkeley National Laboratory's Interruption Cost Estimate (ICE) Calculator methodology

 Interruption costs were assigned to specific sectors and states by multiplying the value (in USD) per event for each sector by the number of expected events per year (sourced from SAIFI and SAIDI data reported in PacifiCorp's service territories in EIA-861 data)

Note: The value of backup power was not included in the analysis of Microturbines or Reciprocating Engines. DNV assumes that customers installing these systems for backup power would not enter the system under a net metering interconnection agreement— the systems would be used as standby power.







## Thank you!

WHEN TRUST MATTERS

Teague Douglas – <u>teague.douglas@dnv.com</u>

Nick Posawatz – nicholas.Posawatz@dnv.com

Brielle Bushong – <u>brielle.bushong@dnv.com</u>

Carrie Webber – <u>carrie.webber@dnv.com</u>

#### www.dnv.com

## **Transmission Modeling**





#### **Transmission Overview**

- There are two types of transmission options:
  - Incremental options include transmission capability between topology bubbles, and usually also allows new resources to be added
  - Interconnection options do not add transmission capability but rather add resource build capacity
- Incremental options use transmission *properties* to determine transfer capability
- Both types of options use *constraints* to limit the amount of generation any resource addition is capable of on an hourly basis

#### New for 2025 IRP

- Granularity Adjustments on Transmission lines
  - Just as resources have different values in the LT and ST, so do transmission lines
  - When a line is congested (i.e. full) the LMP will be higher at one end than the other. PLEXOS reports an import margin (for flows in one direction) and export margin (for flows in the other direction)
  - The margin is the difference in LMP from one end and the other, multiplied by the volume in that hour.
- EXAMPLE: Bridger>Borah Populus 2031 (Energy Gateway Segment D3)
  - This line increases the transfer capability from the Jim Bridger to Borah/Populus
  - In the LT congestion on this path results in a margin of \$28/kw-yr in 2037
  - In the ST congestion on this path results in a margin of \$82/kw-yr in 2037
  - The ST is \$54/kw-yr higher than the LT in 2037
  - In the 2025 IRP, a credit of \$54/kw-yr would be applied to D3's fixed costs in 2037 within the LT model to account for its greater ST value
- The granularity adjustment can also impact Interconnection transmission options that don't have flows to other bubbles the interconnection limit is comparable to congestion.

#### Transmission Properties and Constraints



- Properties
  - "Max Flow" sets the maximum allowable flow (in megawatts) on the line between two transmission bubbles, i.e., from A to B
  - "Min Flow" sets the limit on flow in the opposite direction, i.e., from B to A. It can also be zero, if flow is uni-directional.
- Constraints
  - "Export Capacity Coefficient" defines the relationship between the Max Flow and the amount of allowed resource generation
  - For example, if the coefficient is 0.5 (read as 50%) on a line with 100 MW available transfer capability (ATC), then up to 50 MW of resources are able to generate in any given hour due to the upgrade

#### **Transmission Options**

|                             |                             |          |           |       | Date | Date |          |      |
|-----------------------------|-----------------------------|----------|-----------|-------|------|------|----------|------|
| Object                      | Property                    | Value    | Data File | Units | From | То   | Scenario | Memo |
| CON Central OR > TxCON 2027 | Units                       | 0        |           | -     |      |      |          |      |
| CON Central OR > TxCON 2027 | Project Start Date          | 1/1/2027 |           | -     |      |      |          |      |
| CON Central OR > TxCON 2027 | Max Flow                    | 400      |           | MW    |      |      |          |      |
| CON Central OR > TxCON 2027 | Min Flow                    | 0        |           | MW    |      |      |          |      |
| CON Central OR > TxCON 2027 | Export Capacity Coefficient | -1       |           | MW    |      |      |          |      |

- Units = 0
  - This flag tells Plexos that it is a selectable option and not planned or existing
- Project Start Date = 1/1/2027
  - This is the earliest year for the model to choose this option
- Max Flow = 400, Export Capacity Coefficient = -1
  - As an Interconnection option, flow is between Central Oregon and a "faux" topology bubble called "TxCON".
  - Export Capacity Coefficient is used to limit hourly generation from interconnected resources to 400 MW
  - The Company is considering replacing the generic "TxCon" bubble with an individual bubble "Central Oregon Resource" to better capture impacts of the hourly generation limit
- Min Flow
  - This is the capacity in the opposite direction, from TxCON to Central Oregon, not relevant currently.

#### **Transmission Generation Constraints**

| Object                                  | Constraint Name                     | Property                    | Value |
|-----------------------------------------|-------------------------------------|-----------------------------|-------|
| System                                  | TxCON Central OR Max Resource Build | Sense                       | <=    |
| System                                  | TxCON Central OR Max Resource Build | RHS                         | 0     |
| PVPX.CORPV                              | TxCON Central OR Max Resource Build | Generation Coefficient      | 1     |
| WDPX.CORWD                              | TxCON Central OR Max Resource Build | Generation Coefficient      | 1     |
| BAT.PX.CORLithium-ion                   | TxCON Central OR Max Resource Build | Generation Coefficient      | 1     |
| BAT.PX.CORLithium-ion                   | TxCON Central OR Max Resource Build | Load Coefficient            | -1    |
| CON Central OR > TxCON 2028             | TxCON Central OR Max Resource Build | Export Capacity Coefficient | -1    |
| INC Central OR > Willamette Valley 2037 | TxCON Central OR Max Resource Build | Export Capacity Coefficient | -0.44 |

- The Export Capacity coefficient and the amount of hourly generation are balanced in a constraint
- Sense = "<="
  - The hourly generation of resources must be less than or equal to the transmission capacity
- Generation and Load Coefficients
  - Any MW of hourly generation count against the hourly limit
  - Any MW of resource loaded into the battery ADDS to the hourly limit
- Constraint is the same construction for existing sites all items at Bridger must generate within the hourly limit, allowing for surplus resource additions





## March Price Curve Update



#### Price Curve Development Update

- The Company's 2023 IRP Update reflected market prices for electricity and gas from September 2023, based on a range of assumptions for natural gas prices and greenhouse gas costs.
- The figures below provide a comparison to more recent pricing from March 2024, with the same range of no/medium greenhouse gas assumptions used in the 2023 IRP and 2023 IRP Update.
- Power prices are expected to decline over the next few years.
- Higher renewable resource penetration from state mandates is expected to lead to lower average power prices.
- After updating greenhouse gas assumptions (discussed on a later slide) updated market prices will be developed for use in the 2025 IRP, likely in September 2024.



#### CO2 Price Development

- In the 2023 IRP, the CO2 price was developed using a variety of public, external, data points.
  - These various CO2 prices were taken and aggregated
    - Prices were averaged to generate the Medium and High cases
  - Sources included:
    - 3 paid data sources Wood Mackenzie, IHS Markit, Siemens
    - Nevada Power's IRP
    - Idaho Power's IRP
    - California IEPR
    - US Energy Information Association
    - Social Cost of Greenhouse Gases, per Washington statute
- PacifiCorp is open to other sources
- CO2 prices will be finalized this summer for use as inputs to market price scenarios that will be developed in September 2024.

## 2023 IRP Update Outcomes



### Study PVRRs – No Risk Adjustment

| Period  | Case                | PV | RR (\$000) | Del | lta (\$000) | OR 80% 2030 | WARPS | CCUS | Dispatch Price |
|---------|---------------------|----|------------|-----|-------------|-------------|-------|------|----------------|
| 10-YEAR | Preferred Portfolio | \$ | 18,139     | \$  | -           | Y           | Y     | Y    | MM             |
| 10-YEAR | Systemwide          | \$ | 18,238     | \$  | 100         | N           | Ν     | Y    | MM             |
| 10-YEAR | MM Base             | \$ | 18,481     | \$  | 342         | N           | Ν     | Y    | MM             |
| 10-YEAR | No CCUS             | \$ | 18,481     | \$  | 342         | Y           | Y     | Y    | MM             |
| 10-YEAR | OR Compliance       | \$ | 18,629     | \$  | 490         | Y           | Ν     | Y    | MM             |
| 10-YEAR | SC Base             | \$ | 30,124     | \$  | 11,986      | N           | Ν     | Y    | SC             |
| 10-YEAR | WA Compliance CETA  | \$ | 38,643     | \$  | 20,504      | N           | Y     | Y    | SC             |
| 10-YEAR | WA Compliance CAGW  | \$ | 29,953     | \$  | 11,814      | N           | Y     | Y    | SC             |

| Period  | Case                | PV | PVRR (\$000) |    | ta (\$000) | OR 80% 2030 | WARPS | CCUS | <b>Dispatch</b> Price |
|---------|---------------------|----|--------------|----|------------|-------------|-------|------|-----------------------|
| 20-YEAR | Preferred Portfolio | \$ | 32,807       | \$ | -          | Y           | Y     | Y    | MM                    |
| 20-YEAR | Systemwide          | \$ | 32,912       | \$ | 105        | N           | Ν     | Y    | MM                    |
| 20-YEAR | MM Base             | \$ | 33,510       | \$ | 703        | N           | Ν     | Y    | MM                    |
| 20-YEAR | No CCUS             | \$ | 33,553       | \$ | 746        | Y           | Y     | Y    | MM                    |
| 20-YEAR | OR Compliance       | \$ | 34,309       | \$ | 1,502      | Y           | Ν     | Y    | MM                    |
| 20-YEAR | SC Base             | \$ | 47,504       | \$ | 14,697     | N           | Ν     | Y    | SC                    |
| 20-YEAR | WA Compliance CETA  | \$ | 76,941       | \$ | 44,134     | N           | Y     | Y    | SC                    |
| 20-YEAR | WA Compliance CAGW  | \$ | 47,209       | \$ | 14,402     | N           | Y     | Y    | SC                    |

### Study PVRRs – MN, MM, SC

| Period  | Case Under MN       | I  | PVRR (\$000) |    | Delta (\$000) | OR 80%<br>2030 | WA RPS | CCUS | Dispatch<br>Price |
|---------|---------------------|----|--------------|----|---------------|----------------|--------|------|-------------------|
| 20-YEAR | MN Base             | \$ | 29,519       | \$ | 748           | Ν              | Ν      | Y    | MN                |
| 20-YEAR | Preferred Portfolio | \$ | 28,823       | \$ | 52            | Y              | Y      | Y    | MN                |
| 20-YEAR | Systemwide          | \$ | 28,771       | \$ | -             | Ν              | Ν      | Y    | MN                |
| 20-YEAR | No CCUS             | \$ | 29,245       | \$ | 474           | Y              | Y      | Ν    | MN                |
| 20-YEAR | No Nuclear          | \$ | 29,252       | \$ | 480           | Y              | Y      | Y    | MN                |
| 20-YEAR | Bridger 3 & 4 GC    | \$ | 29,321       | \$ | 550           | Y              | Ν      | Y    | MN                |

| Period  | Case Under MM       | PVRR (\$000) |        | Delta (\$000) |     | OR 80%<br>2030 | R 80%<br>2030 WA RPS |   | Dispatch<br>Price |
|---------|---------------------|--------------|--------|---------------|-----|----------------|----------------------|---|-------------------|
| 20-YEAR | MM Base             | \$           | 33,510 | \$            | 703 | Ν              | Ν                    | Y | MM                |
| 20-YEAR | Preferred Portfolio | \$           | 32,807 | \$            | -   | Y              | Y                    | Y | MM                |
| 20-YEAR | Systemwide          | \$           | 32,912 | \$            | 105 | Ν              | Ν                    | Y | MM                |
| 20-YEAR | No CCUS             | \$           | 33,553 | \$            | 746 | Y              | Y                    | Ν | MM                |
| 20-YEAR | No Nuclear          | \$           | 33,464 | \$            | 657 | Y              | Y                    | Y | MM                |
| 20-YEAR | Bridger 3 & 4 GC    | \$           | 33,506 | \$            | 700 | Y              | Ν                    | Y | MM                |

| Period  | Case Under SC-GHG   | J  | PVRR (\$000) | Delta (\$000) | OR 80%<br>2030 | WA RPS | CCUS | Dispatch<br>Price |
|---------|---------------------|----|--------------|---------------|----------------|--------|------|-------------------|
| 20-YEAR | SC Base             | \$ | 47,504       | \$<br>350     | Ν              | Ν      | Y    | SC                |
| 20-YEAR | Preferred Portfolio | \$ | 47,153       | \$<br>-       | Y              | Y      | Y    | SC                |
| 20-YEAR | Systemwide          | \$ | 47,730       | \$<br>576     | Ν              | Ν      | Y    | SC                |
| 20-YEAR | No CCUS             | \$ | 48,031       | \$<br>877     | Y              | Y      | Ν    | SC                |
| 20-YEAR | No Nuclear          | \$ | 48,493       | \$<br>1,340   | Y              | Y      | Y    | SC                |
| 20-YEAR | Bridger 3 & 4 GC    | \$ | 47,965       | \$<br>812     | Y              | Ν      | Y    | SC                |

#### Study PVRRs – LN, HH

| Period  | Case Under LN       | PVRR (\$000) |        | Delta (\$000) |       | OR 80%<br>2030 | WA RPS | CCUS | Dispatch<br>Price |  |
|---------|---------------------|--------------|--------|---------------|-------|----------------|--------|------|-------------------|--|
| 20-YEAR | LN Base             | \$           | 29,241 | \$            | 1,447 | Ν              | Ν      | Y    | LN                |  |
| 20-YEAR | Preferred Portfolio | \$           | 28,042 | \$            | 249   | Y              | Y      | Y    | LN                |  |
| 20-YEAR | Systemwide          | \$           | 27,794 | \$            | -     | Ν              | Ν      | Y    | LN                |  |
| 20-YEAR | No CCUS             | \$           | 28,441 | \$            | 647   | Y              | Y      | N    | LN                |  |
| 20-YEAR | No Nuclear          | \$           | 28,212 | \$            | 418   | Y              | Y      | Y    | LN                |  |
| 20-YEAR | Bridger 3 & 4 GC    | \$           | 28,357 | \$            | 563   | Y              | Ν      | Y    | LN                |  |

| Period  | Case Under HH       | PVRR (\$000) |        | Delta (\$000) |       | OR 80%<br>2030 | WA RPS | CCUS | Dispatch<br>Price |  |
|---------|---------------------|--------------|--------|---------------|-------|----------------|--------|------|-------------------|--|
| 20-YEAR | HH Base             | \$           | 41,622 | \$            | -     | Ν              | Ν      | Y    | HH                |  |
| 20-YEAR | Preferred Portfolio | \$           | 41,658 | \$            | 36    | Y              | Y      | Y    | HH                |  |
| 20-YEAR | Systemwide          | \$           | 42,252 | \$            | 630   | Ν              | Ν      | Y    | HH                |  |
| 20-YEAR | No CCUS             | \$           | 43,005 | \$            | 1,384 | Y              | Y      | N    | HH                |  |
| 20-YEAR | No Nuclear          | \$           | 43,047 | \$            | 1,425 | Y              | Y      | Y    | HH                |  |
| 20-YEAR | Bridger 3 & 4 GC    | \$           | 43,013 | \$            | 1,392 | Y              | Ν      | Y    | HH                |  |



#### **Preferred Portfolio Integration**

### **Preferred Portfolio Integration Plan**



### Integration Outcome through 2032



#### Integration Outcome 2029-2042



#### Preferred Portfolio Resource Integrations (Installed Capacity, MW)

| Situs/Partial Share Resources | Oregon | Washington | OR and WA | WA and Sys | OR and Sys | No OR/WA |      |      |      |      |      |      |      |      |
|-------------------------------|--------|------------|-----------|------------|------------|----------|------|------|------|------|------|------|------|------|
| Category                      | 2029   | 2030       | 2031      | 2032       | 2033       | 2034     | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 |
| Natural Gas                   | 395    | -          | -         | -          | -          | -        | 1    | -    | -    | 836  | -    | 3122 | 749  | -    |
| NonEmitting Peaker            | -      | 224        | -         | -          | -          | -        | -    | -    | 59   | -    | -    | -    | -    | -    |
| Utility Scale Wind            | -      | 443        | -         | 1580       | 15         | -        | 1    | -    | -    | 1    | -    | -    | -    | -    |
| Small Scale Wind              | -      | -          | -         | 67         | 172        | -        | -    | -    | -    | -    | -    | -    | -    | -    |
| Utility Scale Solar           | -      | -          | -         | -          | 449        | 93       | -    | -    | 1009 | -    | -    | -    | -    | -    |
| Small Scale Solar             | -      | 369        | 5         | -          | -          | -        | -    | -    | 109  | -    | -    | -    | -    | -    |
| Clean Baseload                | -      | -          | -         | -          | -          | -        | -    | -    | -    | -    | -    | -    | -    | -    |
| 4hr Battery                   | 134    | -          | 11        | 8          | -          | 3        | -    | -    | 78   | -    | -    | 17   | 9    | -    |
| Storage (Long Duration)       | -      | -          | -         | -          | -          | -        | -    | -    | -    | -    | -    | -    | -    | -    |
| Total                         | 529    | 1036       | 16        | 1655       | 636        | 96       | 0    | 0    | 1255 | 836  | 0    | 3139 | 758  | 0    |
### Oregon vs. Systemwide 2029-2034

| ~~~~ |
|------|
|      |
|      |

| Resource                  | 2029  | 2030 | 2031 | 2032    | 2033  | 2034  |
|---------------------------|-------|------|------|---------|-------|-------|
| Expansion Options         |       |      |      |         |       |       |
| Gas - Peaking             | (466) | -    | -    | _       | -     | -     |
| NonEmitting Peaker        | _     | 224  | -    | _       | -     | -     |
| DSM - Energy Efficiency   | 25    | 29   | 38   | 23      | 26    | 30    |
| DSM - Demand Response     | (29)  | (12) | (5)  | (36)    | 13    | (38)  |
| Renewable - Wind          | _     | -    | 111  | (1,625) | 1,297 | 2,629 |
| Renewable - Utility Solar | -     | 369  | 5    | _       | (599) | (124) |
| Renewable - Geothermal    | -     | -    | -    | _       | -     | -     |
| Renewable - Battery       | 535   | _    | (44) | -       | _     | -     |

### Washington vs. Systemwide 2029-2034



| Resource                  | 2029  | 2030 | 2031 | 2032  | 2033    | 2034  |
|---------------------------|-------|------|------|-------|---------|-------|
| Expansion Options         |       |      |      |       |         |       |
| Gas - CCCT                | 500   | _    | -    | _     | -       | _     |
| Gas - Peaking             | (635) | _    | -    | _     | -       | _     |
| NonEmitting Peaker        | -     | _    | -    | _     | -       | _     |
| DSM - Energy Efficiency   | (2)   | 2    | (25) | 3     | (5)     | (6)   |
| DSM - Demand Response     | 92    | (8)  | 11   | (16)  | 13      | (16)  |
| Renewable - Wind          | -     | _    | 346  | 2,444 | (1,842) | _     |
| Renewable - Utility Solar | -     | _    | -    | 41    | 1,127   | (124) |
| Renewable - Geothermal    | -     | _    | -    | _     | _       | -     |
| Renewable - Battery       | 21    | -    | (68) | 528   | -       | 66    |



### 2023 IRP Update Preferred Portfolio

# Cumulative Capacity Compare: 2023 IRP Update and 2023 IRP



# Incremental Capacity Compare: 2023 IRP Update and 2023 IRP



# Incremental Capacity Compare and Delta: 2023 IRP Update and 2023 IRP



POWERING YOUR GREATNESS

#### Tr

| rancmiccin                         | n Sol            | actions                      |               |                 |
|------------------------------------|------------------|------------------------------|---------------|-----------------|
| a11311113310                       |                  |                              |               |                 |
|                                    |                  |                              |               |                 |
|                                    |                  |                              |               |                 |
|                                    | 1st Year Build % | Years Built                  | Total % Built | Total Cost (MM) |
|                                    | 100%             | 2025                         | 100%          | 2.605.52        |
| Asset Transfer                     | 32%              | 2026. 2027                   | 100%          | -               |
|                                    | 0%               | 2026. 2027                   | 68%           | 894.56          |
| m Load                             | 0%               | 2026, 2027                   | 68%           | 144.27          |
| grossed up PTP rate)               | 32%              | 2026, 2027                   | 100%          | 282.77          |
| - Borah                            | 14%              | 2027                         | 14%           | 1.91            |
| Utah North                         | 2%               | 2027, 2029, 2037, 2040, 2042 | 94%           | 35.11           |
| llamette Valley                    | 10%              | 2027                         | 18%           | 5.01            |
| ) - Yakima                         | 25%              | 2027                         | 25%           | 6.51            |
| Walla Walla                        | 7%               | 2028, 2031, 2032             | 100%          | 21.49           |
| - Central Oregon                   | 4%               | 2029, 2030, 2031, 2032       | 100%          | 38.85           |
| and substation - Yakima            | 68%              | 2030, 2031, 2033, 2040       | 100%          | 28.80           |
| 345 kV lines plus reinforcement    | 10%              | 2030                         | 10%           | 103.67          |
| - Goshen                           | 44%              | 2031, 2032                   | 100%          | 56.00           |
| line and project intergration      | 70%              | 2032, 2042                   | 72%           | 255.97          |
| regon 500kV                        | 48%              | 2033, 2037                   | 57%           | 1,032.21        |
| er-Populus & D3                    | 7%               | 2037                         | 7%            | 3.79            |
| nd 115 kV reinforcement            | 5%               | 2037                         | 5%            | 4.99            |
| .2                                 | 7%               | 2037                         | 7%            | 78.46           |
| D3                                 | 7%               | 2037                         | 7%            | 132.22          |
| jects (west)                       | 7%               | 2037                         | 7%            | -               |
| jects (east)                       | 7%               | 2037                         | 7%            | 3.67            |
| nsion option)                      | 7%               | 2037                         | 7%            | 197.28          |
| -Dixonville, S. Lebanon 500-230    | 19%              | 2037                         | 19%           | 61.65           |
| ille, Dbl-Ckt Fry-S.Lebanon 230 kV | 19%              | 2037                         | 19%           | 137.85          |
|                                    | 1                |                              | 1             |                 |

| GWS                                                                       | 100% | 2025                         | 100% | 2,605.52 |
|---------------------------------------------------------------------------|------|------------------------------|------|----------|
| B2H - Idaho Power Asset Transfer                                          | 32%  | 2026, 2027                   | 100% | -        |
| В2Н                                                                       | 0%   | 2026, 2027                   | 68%  | 894.56   |
| B2H - Longhorn Load                                                       | 0%   | 2026, 2027                   | 68%  | 144.27   |
| B2H - IPC PTP Eastbound (grossed up PTP rate)                             | 32%  | 2026, 2027                   | 100% | 282.77   |
| Cluster 2 Area 5 - Borah                                                  | 14%  | 2027                         | 14%  | 1.91     |
| Cluster 2 Area 8 - Utah North                                             | 2%   | 2027, 2029, 2037, 2040, 2042 | 94%  | 35.11    |
| Cluster 2 Area 23 - Willamette Valley                                     | 10%  | 2027                         | 18%  | 5.01     |
| Cluster 1 Area 10 - Yakima                                                | 25%  | 2027                         | 25%  | 6.51     |
| Cluster 2 Area 15 - Walla Walla                                           | 7%   | 2028, 2031, 2032             | 100% | 21.49    |
| Transition Cluster Area 8 - Central Oregon                                | 4%   | 2029, 2030, 2031, 2032       | 100% | 38.85    |
| Union Gap-Midway 230 kV Line and substation - Yakima                      | 68%  | 2030, 2031, 2033, 2040       | 100% | 28.80    |
| Antelope-Borah and Populus Terminal 345 kV lines plus reinforcement       | 10%  | 2030                         | 10%  | 103.67   |
| Cluster 2 Area 6 - Goshen                                                 | 44%  | 2031, 2032                   | 100% | 56.00    |
| Walla Walla - Wine Country 230 kV line and project intergration           | 70%  | 2032, 2042                   | 72%  | 255.97   |
| Del Norte-Central Oregon 500kV                                            | 48%  | 2033, 2037                   | 57%  | 1,032.21 |
| Cluster 2 Area 4 - Bridger-Populus & D3                                   | 7%   | 2037                         | 7%   | 3.79     |
| Birdsdale 230-115 kV and Portland 115 kV reinforcement                    | 5%   | 2037                         | 5%   | 4.99     |
| D2.2/D1.2                                                                 | 7%   | 2037                         | 7%   | 78.46    |
| Segment D3                                                                | 7%   | 2037                         | 7%   | 132.22   |
| D3 supporting projects (west)                                             | 7%   | 2037                         | 7%   | -        |
| D3 supporting projects (east)                                             | 7%   | 2037                         | 7%   | 3.67     |
| GWS2+ (future expansion option)                                           | 7%   | 2037                         | 7%   | 197.28   |
| 500-230 kV Birdsdale. 500 kV Birdsdale-Dixonville, S. Lebanon 500-230     | 19%  | 2037                         | 19%  | 61.65    |
| S. Lebanon 500-230 kV, 500 kV to Dixonville, Dbl-Ckt Fry-S.Lebanon 230 kV | 19%  | 2037                         | 19%  | 137.85   |
| Cluster 2 Area 16 - Yakima                                                | 2%   | 2040, 2041, 2042             | 43%  | 94.87    |
| B2H.2+ (future expansion option)                                          | 18%  | 2040                         | 18%  | 404.68   |
| Segment E                                                                 | 32%  | 2040                         | 32%  | 663.64   |
| Goshen-Populus 345 kV line and reinforcement                              | 4%   | 2041                         | 4%   | 39.28    |

Line Name

## Coal Retirements: 2023 IRP Update and 2023 IRP

| Coal            |                                         |                                                |                              |  |  |
|-----------------|-----------------------------------------|------------------------------------------------|------------------------------|--|--|
| Unit            | 2023 IRP<br>Retirement<br>Year (12/31/) | 2023 IRP Update<br>Retirement<br>Year (12/31/) | Delta to 2023<br>IRP (Years) |  |  |
| Colstrin 3      | 2025                                    | 2025                                           | _                            |  |  |
| Colstrip 4      | 2023                                    | 2029                                           |                              |  |  |
| Craig 1         | 2025                                    | 2025                                           |                              |  |  |
| Craig 2         | 2023                                    | 2023                                           |                              |  |  |
| Dave Johnston 1 | 2028                                    | 2028                                           | -                            |  |  |
| DaveJohnston 2  | 2028                                    | 2028                                           | -                            |  |  |
| DaveJohnston 3  | 2027                                    | 2027                                           | _                            |  |  |
| DaveJohnston 4  | 2039                                    | 2039                                           | -                            |  |  |
| Hayden 1        | 2028                                    | 2028                                           | -                            |  |  |
| Hayden 2        | 2027                                    | 2027                                           | -                            |  |  |
| Hunter 1        | 2031                                    | 2042                                           | 11                           |  |  |
| Hunter 2        | 2032                                    | 2042                                           | 10                           |  |  |
| Hunter 3        | 2032                                    | 2042                                           | 10                           |  |  |
| Huntington 1    | 2032                                    | 2036                                           | 4                            |  |  |
| Huntington 2    | 2032                                    | 2036                                           | 4                            |  |  |
| JimBridger 1    | 2037                                    | 2037                                           | -                            |  |  |
| JimBridger 2    | 2037                                    | 2037                                           | -                            |  |  |
| JimBridger 3    | 2037                                    | 2039                                           | 2                            |  |  |
| JimBridger 4    | 2037                                    | 2039                                           | 2                            |  |  |
| Naughton 1      | 2036                                    | 2036                                           | -                            |  |  |
| Naughton 2      | 2036                                    | 2036                                           | -                            |  |  |
| Wyodak          | 2039                                    | 2039                                           | -                            |  |  |



#### CO2e Emissions: 2023 IRP Update and 2023 IRP



POWERING YOUR GREATNESS

#### **CO2e Emissions Trajectory**



## Stakeholder Feedback



#### Feedback Form Update





- Two feedback forms submitted to date, the second of which is new from Western Resource Advocates.
- Feedback forms and responses can be located at: IRP Stakeholder Feedback (pacificpower.net)
- Depending on the type and complexity of the feedback, responses may be provided in a variety of ways including, but not limited to, a written response, a follow-up conversation, or incorporation into subsequent public-input meeting material
  - Generally, written responses are provided with the feedback form and posted online at the link above

### Next Steps



#### 2025 IRP Public Input Meeting Schedule

| 2025 IRP Upcoming Meeting Dates and Milestones |  |
|------------------------------------------------|--|
| Calendar Year 2024 <sup>1,2</sup>              |  |

Wed-Thurs June 26-27, 2024 – General Public Input Meeting 4

Wed-Thurs August 14-15, 2024 – General Public Input Meeting 5

Wed-Thurs September 25-26, 2024 – General Public Input Meeting 6

September timeframe – Assumptions are locked down for November and December model runs

Wed-Thurs November 6-7, 2024 – General Public Input Meeting 7

Wed-Thurs December 18-19, 2024 – General Public Input Meeting 8

Calendar Year 2025

January 1, 2025 - Distribution of the 2025 Draft IRP

Wed-Thurs January 22-23, 2025 – General Public Input Meeting 9

Wed-Thurs February 26-27, 2025 – General Public Input Meeting 10

➤ March 31, 2025 – Filing of the 2025 IRP

<sup>1.</sup> Washington law accelerates the IRP draft and final filing by 3 months. Alignment for Washington has been achieved through approved parts of a waiver request. The CEIP schedule remains out-of-sync.

<sup>2.</sup> The Public Input Meeting schedule has been reviewed to reasonably avoid conflicts with State Commission schedules and known events affecting stakeholders.

#### **Additional Information**

- 2025 IRP Upcoming Public Input Meetings:
  May 2, 2024 (Thursday)
- Public Input Meeting and Workshop Presentation and Materials:

<u>Public Input Process (pacificorp.com)</u>

• 2025 IRP Feedback Forms:

o IRP Stakeholder Feedback (pacificpower.net)

• IRP Email / Distribution List Contact Information:

o IRP@PacifiCorp.com

• IRP Support and Studies:

o IRP Support & Studies (pacificorp.com)