20SIXTEEN LETTERN L

BE WATTSMART, BEGIN AT HOME WASHINGTON

> PROGRAM REPORT

Prepared for:

Michael S. Snow, Manager, Regulatory Projects

Barbara Modey, Customer and Community Communications

PacifiCorp

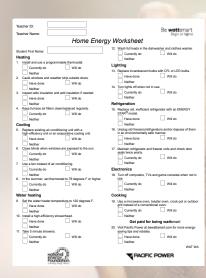
825 NE Multnomah, Suite 800

Portland, OR 97232

Prepared by:

Marilyn Clark

Program Director


National Energy Foundation

4516 South 700 East, Suite 100

Salt Lake City, UT 84107

March 9, 2017

Savings

Home Energy Worksheets

Returned: 2,520 –64.33% –

	Program E		Be wattsmart Begin at home					
Teacher Name:								
School: Sporsor: Pacific								
Be wattsmar Begin at hon	In an effort to improve our program at home. Please take a few minute return the form in the postage-paid Worksheets var collected and the	s to fill out this evo envelope along w	aluation form ith the stude	Upon completion t Home Energy	ert, Begin n, please			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Strongly Agree	Agree	Disagree Stron	gly Disagree			
The materials we	re attractive and easy to use.							
The materials and	d activities were well-received by students.							
The materials we	re clearly written and well-organized.							
Students indicate	d that their parents supported the program.							
Presenters were	able to keep students engaged and attentive	е.	Ш	Ш	Ш			
If you had the op	portunity would you conduct this program a	gain?	Yes	☐ No				
Would you recom	mend this program to other colleagues?		Yes	□ No				
In my opinion, the	thing students liked best about the materia	ils/program was:						
One thing I would	change would be:							
					WAT WA			
	الأستناني							

Teacher Packets

Returned: 112 –77.24% –

Participants

Students

– 3,964 **–**

Teachers

- 146 -

Schools

- 46 -

Table of Contents

Program Overview	I
Program Administration	1
Program Summary	I
Building Collaborations	I
Promotional Materials	I
Program Registration	I
Be wattsmart, Begin at home Presentation	2
Student and Teacher Materials	2
Program Accomplishments – Fall 2016	2
Summary and Attachments	3
ATTACHMENTS	5
Fall 2016 Participating Schools	5
Program Promotions	6
Program Documents	8
Teacher Evaluation	49
Teacher Evaluation Compilation	50
Home Energy Worksheet (English)	55
Home Energy Worksheet (Spanish)	56
Wise Energy Behaviors in Pacific Power Washington Homes	57
Home Energy Worksheet Summary – Pacific Power	58
Sampling of Thanks a "WATT" Cards	59

Program Overview

Program Administration

The National Energy Foundation (NEF) is pleased to report on activities of the Be *watt*smart, Begin at home energy efficiency education program conducted during the 2016 – 2017 school year. Our mission remains constant, to cultivate and promote an energy literate society. The objective is to provide Washington teachers and students with a quality educational experience and materials to support them in teaching and learning this valuable message. NEF acknowledges that through the support of Pacific Power, the Foundation has been able to move the mission forward. Thank you for your commitment to this very important task.

Be wattsmart, Begin at home is administered by the National Energy Foundation, a non-profit organization (established in 1976) dedicated to the development, dissemination, and implementation of supplementary educational materials, programs and services relating primarily to energy, water, natural resources, science, math, technology, conservation, energy efficiency and the environment.

Anne Lowe, Vice President - Operations, oversees program organization. Gary Swan, Vice President - Development, oversees contract accounting. Marilyn Clark, Program Director, is responsible for the implementation of the scope of work and the program reporting. Megan Hirschi, Program Coordinator/Scheduler, is responsible for scheduling presentations and teacher communication. A team of trained and seasoned presenters brought the interactive, hands-on program to Washington schools.

Program Summary

The fall 2016 Be wattsmart, Begin at home program provided quality energy education to schools in the Pacific Power Service territory. The program consisted of a 60-minute assembly given to groups of fourth and fifth grade students and their teachers. Two professional presenters from the National Energy Foundation were involved in the implementation of each interactive program. Important energy concepts learned through these presentations were then communicated to Pacific Power households through the Student Guide and implementation of the Home Energy Worksheet.

Building Collaborations

Washington Office of Superintendent of Public Instruction Learning Standards correlate well to the content of Be wattsmart, Begin at home. Teachers appreciated the collaborative efforts to align program components to their learning standards. Curriculum correlations were provided to teacher participants in their Teacher Materials Folder and also on the program registration website bewattsmart.com/begin.

Promotional Materials

During the month of May 2016 an invitation to register for the fall 2016 program was sent via email to 48 of the 49 schools that had participated in 2015 (Woodland Intermediate School, former participant, is not in Pacific Power's territory). In August Megan Hirschi made phone calls to all unregistered schools.

Be wattmart, Begin at home had 46 schools registered in September. Approval was received from Barbara Modey to count Selah Intermediate and Outlook Elementary as two schools. Both Selah and Outlook had more than 160 students and required a second presentation. Ahtanum Valley Elementary joined this year for the first time.

Program Registration

Registration for the program was online at bewattsmart.com/begin. Registration for the program was followed by a series of email communications with teachers, sent automatically by the program registration website. The website calculated *Home Energy Worksheet* returns as well as earned gift card levels and communicated this information to the participant. Later communications were customized through programming to be sent only to teachers needing a reminder to return their program documents. Automatic email also contained live links to vital program documents such as the *Spanish Home Energy Worksheet* and *Spanish Student Booklet*.

Be wattsmart, Begin at home Presentation

The Be wattsmart, Begin at home presentations were given during the period of October 11 through November 10, 2016. The presentation featured a custom Keynote slideshow that brought energy concepts to the forefront of Washington education. The presentation focused on important concepts, such as natural resources, electrical generation, the energy mix used by Pacific Power to generate electricity and tips for energy efficiency in the home.

The presentation provided interactive activities that involved and engaged the audience. Students participated in making a human electrical circuit, during which they learned key core curriculum concepts such as insulators and conductors of electricity and electrical generation. Student volunteers used props to demonstrate the process of electrical generation for their classmates. All students reviewed material learned with an "Energy Lingo" review activity at designated points throughout the presentation. To help students remember energy efficiency tips, participants watched Slim the Lineman energy efficiency video vignettes. At the end of each short video, students completed a rhyme about Slim's wise energy choice.

The last portion of the presentation communicated the importance of program take home pieces. These documents enabled households to participate in energy education along with students.

Student and Teacher Materials

A Parent Letter was provided to explain the importance of Be wattsmart, Begin at home. In addition, students took home a Student Guide and Home Energy Worksheet to share with their families. Students who returned their worksheet received a special reward, an Energy Star® rated nightlight featuring the Pacific Power Logo.

Educators were also given helpful energy educational materials. Each teacher participant was provided with a custom Be wattsmart, Begin at home folder. It contained a custom Teacher Guide with additional information and activities to supplement and continue energy education in the classroom. Also in the folder were the NEF instructional posters, Renewable Energy and Bright Ways to Save Energy.

A program Implementation Steps Flier assisted teachers in carrying out the program. It also gave simple steps for successfully returning the Home Energy Worksheets, the Program Evaluation, and the sponsor Thanks a "Watt" Card in the postage paid envelope provided in the Teacher Materials Folder. A Rewarding Results Flier gave information concerning the Visa® gift card teacher participants could receive for a return of their student surveys. Educators could receive a \$50 gift card for an 80% return, or a \$25 gift card for a 50-79% return by the December 2, 2016 deadline.

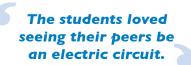
Program Accomplishments - Fall 2016

- 48 Be wattsmart, Begin at home presentations completed at 46 schools (2 of these schools had more than 160 students and were approved for two presentations each as well as counted as 2 schools)
- 4,110 students and families reached
- 146 Washington teachers reached
- 64.33% Home Energy Worksheet survey return
- \$50 Visa gift cards delivered to 69 Washington teachers
- \$25 Visa gift cards delivered to 21 Washington teachers

Summary and Attachments

The National Energy Foundation is pleased to participate with Pacific Power in bringing this informative program to Washington teachers, students and families. The partnership between the organizations has been successful in developing and continually enhancing program deliverables. Be *wattsmart*, Begin at home is now an established part of the Washington educational community culture. It is also an important resource for bringing energy literacy to the forefront of fourth and fifth grade student education. Thank you for your continued commitment to Washington Schools.

- Fall 2016 Participating Schools
- Program Promotions
- Program Documents
 - Keynote Presentation
 - Teacher Implementation Steps Flier
 - Rewarding Results Flier
 - Student Guide
 - Teacher Guide
 - Lingo Card
 - Washington Learning Standards Correlations
 - Parent Letter
- Teacher Evaluation
- Teacher Evaluation Compilation
- Home Energy Worksheet (English)
- Home Energy Worksheet (Spanish)
- Wise Energy Behaviors in Pacific Power Washington Homes
- Home Energy Worksheet Summary Pacific Power
- Sampling of Thanks a "Watt" Cards


ATTACHMENTS

Fall 2016 Participating Schools

School Name	School Address	School City	State
Adams Elementary - Wapato	1309 S. Camas Avenue	Wapato	WA
Adams Elementary - Yakima	723 S. 8th St.	Yakima	WA
Ahtanum Valley Elem School	3006 South Wiley Rd	Yakima	WA
Arthur H. Smith Elementary	205 Fir Avenue	Grandview	WA
Artz-Fox Elementary	805 Washington	Mabton	WA
Barge Lincoln Elementary	219 East I street	Yakima	WA
Blue Rige Elementary	1150 W. Chestnut	Walla Walla	WA
Camas Elementary	1010 S Camas Avenue	Wapato	WA
Chief Kamiakin Elementary	1700 E. Lincoln Ave	Sunnyside	WA
Cottonwood Elementary	1041 S 96th Ave	Yakima	WA
Davis Elementary	31 SE Ash St	College Place	WA
Dayton Elementary	302 E. Park St.	Dayton	WA
Discovery Lab School	2810 Castlevale	Yakima	WA
East Valley Elementary	1951 Beaudry Rd.	Yakima	WA
Edison Elementary	1315 E Alder	Walla Walla	WA
Garfield Elemenary	612 N. 6th ave	Yakima	WA
Garfield Elementary	505 Madison Ave.	Toppenish	WA
Gilbert Elementary	4400 Douglas Drive	Yakima	WA
Green Park Elementary	1105 E Isaacs Street	Walla Walla	WA
Harriet Thompson Elementary	1105 W 2nd St	Grandview	WA
Hoover Elementary	400 West Viola Avenue	Yakima	WA
Lincoln Elementary	309 North Alder Street	Toppenish	WA
Martin Luther King	2000 S 18th Street	Union Gap	WA
McClure	1222 S 22nd Ave	Yakima	WA
McClure Elementary	811 W 2nd	Grandview	WA
McKinlwy Elementary	621 S. 13th Ave.	Yakima	WA
Naches Valley Elementary	151 Bonlow Drive	Naches	WA
Nob Hill Elementary	801 S 34th Ave	Yakima	WA
Oakridge Montessori School	6403 Summitview Ave	Yakima	WA
Outlook Elementary	3800 Van Belle Rd	Outlook	WA
Prospect Point Elementary	55 Reser Road	Walla Walla	WA
Ridgeview Elementary	609 West Washington Ave	Yakima	WA
Riverside Christian School	721 Keys Road	Yakima	WA
Robertson	2707 West Lincoln	Yakima	WA
Rogers Adventist School	200 SW AcademyWay	College Place	WA
Roosevelt Elementary	120 N. 16th Avenue	Yakima	WA
Satus Elementary	910 S Camas Avenue	Wapato	WA
Selah Intermediate School	1401 W. Fremont Avenue	Selah	WA
Sharpstein Elementary	410 S Howard St.	Walla Walla	WA
St. Paul Cathedral School	1214 West Chestnut Ave.	Yakima	WA
Terrace Heights Elementary	101 N. 41st Street	Yakima	WA
Tieton Intermediate School	711 Franklin Road	Tieton	WA
Waitsburg Elementary	184 Academy Street	Waitsburg	WA
Whitney Elementary	4411 W. Nob Hill Blvd.	Yakima	WA
Wide Hollow Elementary	1000 S. 72nd Ave	Yakima	WA
Zillah Intermediate	303 2nd Ave.	Zillah	WA

Be wattsmart, Begin at home is a free energy education program sponsored by Pacific Power that is available to you in the fall of 2016. This program utilizes local presenters to focus on the Washington Office of Superintendent of Public Instruction Standards on electricity while showing students and teachers how wise energy actions make a difference. Here is what local teachers have to say about the program:

This presentation was a perfect connection to our science unit on electricity.

Please join us in this important effort. You may qualify to receive a Visa® gift card of up to \$50 depending upon participation.

What: A 45 - 60 minute educational presentation with FREE wattsmart energy

education posters, activities and student materials

When: October II - November II, 2016

Where: Your school

Who: Your school chooses either fourth or fifth grade, depending upon

placement of learning standards

How: Enroll at bewattsmart.com/begin at your earliest convenience to ensure

a spot! Contact Megan Hirschi at megan@nef1.org.

be**watt**smart.com

© 2016 Rocky Mountain Power wattsmart is registered in the U.S. Patent and Trademark Office

Dear Be wattsmart, Begin at home 2015 program participant:

Thank you for participating in the Be *watt*smart, Begin at home program. Pacific Power will once again be supporting teachers in educating students on required energy standards during the 2016-17 school year.

As a former program participant, you have the opportunity to enroll your fourth- or fifth-grade class in advance for the fall 2016 Be *watt*smart, Begin at home program.

The 45-60 minute school presentations include **FREE** wattsmart energy education posters, activities and student materials. They will be scheduled during the weeks of **October 11 - November 11, 2016.** Teachers may qualify to receive a Visa[®] gift card of up to \$50 depending upon participation.

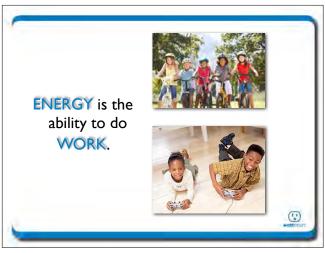
Register soon at <u>bewattsmart.com/begin</u> to ensure your 2016 participation or email megan@nef1.org.

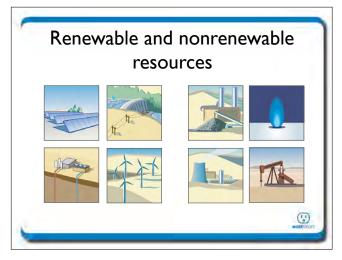
Thank you.

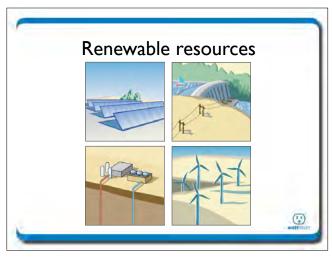
bewattsmart.com

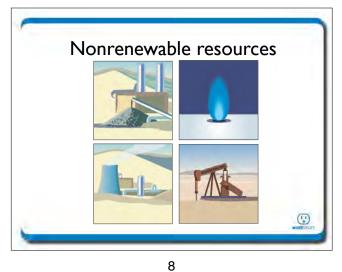
©2016 Pacific Power wattsmart is registered in the U.S. Patent and Trademark Office

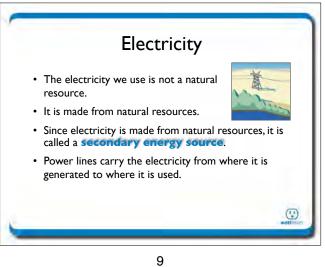
Program Documents

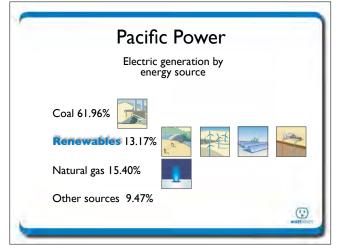

Keynote Presentation

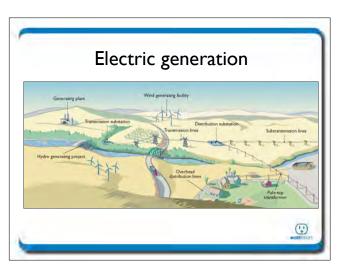

2

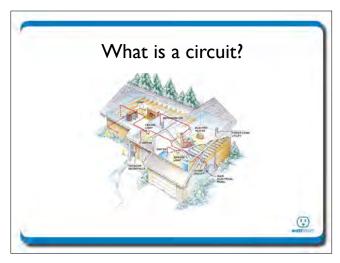


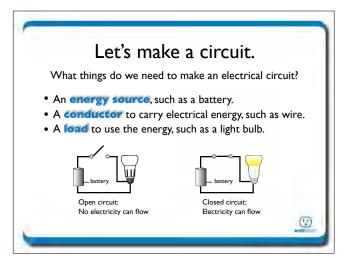


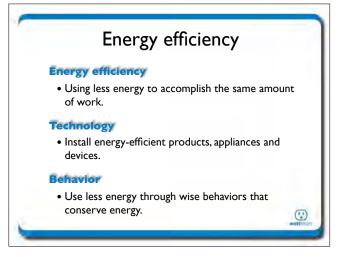

3

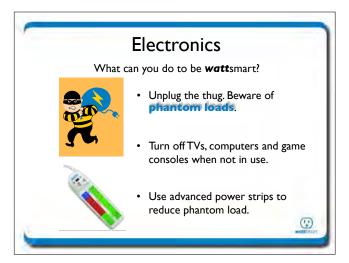


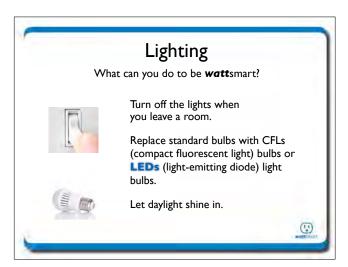



Let's LINGO
Find the words on your LINGO board that match these definitions:

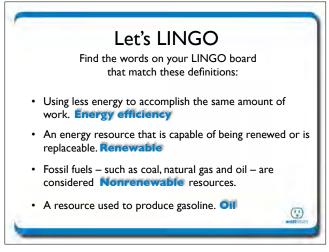

• The ability to do work. Energy
• A resource often found with oil. Natural gas
• A secondary energy source. Electricity
• Something useful from the earth or the sun. Natural resource

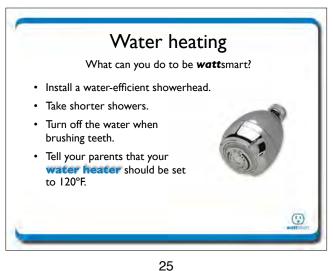

10

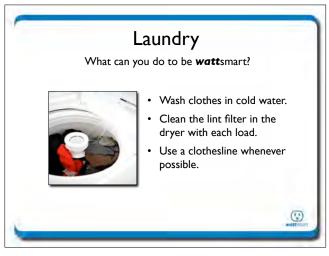

15 16

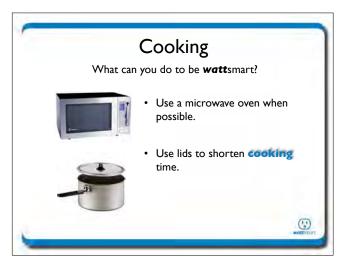


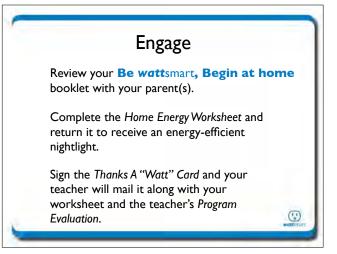
17 18






1 22





27 28

Teacher Program Implementation Steps

- I. Verify that you have received each of the following:
 - Teacher Materials Folder

Your **Be wattsmart, Begin at home** Student Booklet

Your Be wattsmart, Begin at home Teacher Guide

Program Evaluation

Sponsor Thank You Card

Teacher Visa® gift card announcement

Self-addressed postage-paid envelope

Instructional posters

- · Home Energy Worksheets for you and your students
- Be wattsmart, Begin at home student booklets
- Set of Parent Letters
- wattsmart nightlights (student incentive for returning the Home Energy Worksheet)
- 2. Distribute to each student a:
 - Be wattsmart, Begin at home student booklet
 - · Home Energy Worksheet
 - Parent Letter
- 3. Reward each student who returns a completed Home Energy Worksheet with a wattsmart nightlight.
- 4. Complete the Program Evaluation form.
- 5. Have each student sign the Thank You Card to Pacific Power.
- 6. Mail in the self-addressed postage-paid envelope:
 - All completed Home Energy Worksheets
 - The Thank You Card
 - The Program Evaluation form

To thank you for postmarking your envelope by December 2, 2016, you will receive a Visa gift card for classroom use. 80% or greater return of registered students' Home Energy Worksheets = \$50

50 – 79% return of registered students' Home Energy Worksheets = \$25

For questions or additional information, please email Megan Hirschi at megan@nef1.org.

Dear Parent(s):

The **Be wattsmart, Begin at home** program assists teachers and students to learn about energy, discuss important energy topics and engage in energy efficiency actions now. Your child has participated in an assembly addressing natural resources, energy basics and energy efficiency. Your participation in this program will help you be wattsmart, enhance energy efficiency in your home and help save money on your utility bills. Here are three simple ways that you can help:

- Review this **Be wattsmart**, **Begin at home** booklet with your child.
- Assist your child with completing the activities on Page 7.
- Have your child return the **Home Energy Worksheet** to their teacher.

Thank you for being wattsmart and for your participation!

What's inside?

This booklet is divided into three sections that will help you:

- 1. Learn about sources of energy, how they get to your home and why they are important in your life.
- 2. Discuss wattsmart energy efficiency tips that will help you use energy wisely and save money.
- 3. **Engage in energy efficiency** by determining how energy can be saved in your home through a simple audit activity and the *Home Energy Worksheet*.

About Pacific Power

Based in Portland, Oregon, Pacific Power is one of the lowest-cost producers of electricity in the United States, providing more than 700,000 customers in Washington, Oregon and California with safe, reliable, efficient energy. In addition, it is the second-largest rate-regulated utility owner of renewable, wind-generated electricity in the U.S.

About National Energy Foundation

The National Energy Foundation is a unique 501(c)3 nonprofit educational organization dedicated to the development, dissemination and implementation of supplementary educational materials and programs. These resources for education relate primarily to energy, water, natural resources, science, math, technology, conservation, energy efficiency and the environment.

What does it mean to be **watt**smart?

- Being wattsmart is all about taking steps to save energy which in turn can help you save money.
- Pacific Power's wattsmart programs and incentives can help customers become more energy efficient in their homes and businesses and that's good for their wallets and the environment.

The importance of energy:

Energy is the ability to do work or produce change. Virtually everything we do or use at work and home uses energy.

- Heating and cooling systems
- Computers
- Electronic equipment such as gaming and entertainment systems and TVs
- Charging electronic tablets, music players and cell phones
- Appliances
- Lights
- Manufacturing
- Food storage and preparation
- Security systems

Where does energy come from?

Our energy comes from natural resources. There are two general categories of natural resources – nonrenewable and renewable. A nonrenewable resource is not capable of being renewed, replaced or takes a very long time to replace. A renewable resource is capable of being renewed or replaced.

PRIMARY NATURAL RESOURCES are used to convert energy into electricity. They can be either nonrenewable or renewable.

Nonrenewable examples are:

Coal is the most abundant nonrenewable energy source in the world. There is an estimated 129 year supply remaining.

Oil can be both refined and unrefined. Refined oil is transformed into petroleum products and unrefined oil remains as crude oil.

Natural Gas is usually captured alongside oil deposits and is a major source for electrical generation.

Uranium is the fuel most widely used by nuclear plants. Nuclear energy is the energy inside the nucleus (core) of the atom of uranium.

Renewable examples are:

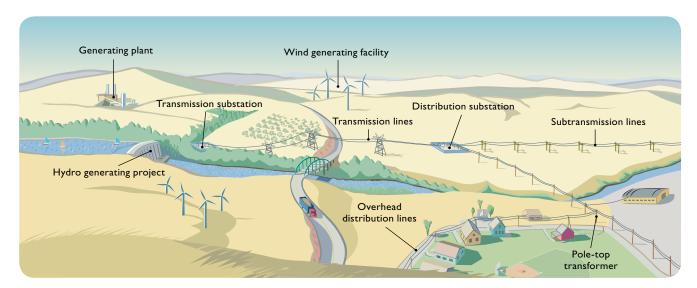
Solar is energy from the sun.

Wind is energy from the wind captured by a group of wind turbines (generators).

Geothermal is energy derived from the heat of the earth.

Hydropower is energy from water that generates electricity.

SECONDARY ENERGY RESOURCES are created by using nonrenewable and renewable resources of energy.


Electricity is the most abundant **secondary energy resource** used. It is the flow of electrical power or charge. It occurs in nature as lightning and static electricity. A generator uses energy resources to create mechanical energy that is then converted into electrical energy.

Energy efficiency

Energy efficiency is using less energy to accomplish the same amount of work – we call it being wattsmart. There are many technologies we can use today that decrease the amount of energy needed to do work. Good examples are ENERGY STAR® products and LED lighting.

You can save even more money if you start thinking about using energy wisely. Try turning off the lights when you leave the room, take shorter showers or turn off your electronics when you are not using them.

Using electricity

For more than 100 years, electricity has made our homes more comfortable and industries more productive. Today electricity is powering a world of electronics.

How is electricity generated? It begins with a fuel that heats water and turns it to steam. The steam drives the turbine that turns the generator motor to produce electricity.

How is electricity transmitted? Once the electricity is produced, the current flows from the generator to the power plant transformer where the voltage is increased to boost the flow of the electric current through the transmission lines. The transmission lines transport the electricity to Pacific Power's substations where the voltage is decreased. Power lines then carry the electricity from the substations to be used in our homes and businesses.

ELECTRICAL GENERATION

Energy	Pacific Power	United States
resource	(2015 basic fuel mix)*	(U.S. EPA, 2013 data)
Coal	61.96%	39%
Natural gas	15.40%	27%
Renewables	13.17%	12%
Hydroelectric	5.18%	7%
Wind	7.10%	4%
Biomass	0.43%	1%
Geothermal	0.38%	
Solar	0.08%	0%
Nuclear Other/misc.	0.00%	19% 3%
Total*	9.47% 100%	100%

*This information is based on Federal Energy Regulatory Commission Form 1 data. The Pacific Power "basic fuel mix" is based on energy production and not resource capability, capacity or delivered energy. All or some of the renewable energy attributes associated with wind, solar, biomass, geothermal and qualifying hydro facilities in Pacific Power's basic fuel mix may be: (a) used in future years to comply with renewable portfolio standards or other regulatory requirements, (b) sold to third parties in the form of renewable energy credits and/or other environmental commodities or (c) excluded from energy purchased. Pacific Power's basic fuel mix includes owned resources and purchases from third parties.

wattsmart tips to lower your energy use and help save money

Saving energy happens in two ways. First, you can use less energy through wise behaviors that conserve energy. Second, you can install energy-efficient products, appliances and devices that use less energy to accomplish the same task. Let's talk about the following areas of your home that have the largest potential to save energy.

Home heating and cooling

- Install a programmable thermostat. Set your thermostat to 78°F or higher in the summer and 68°F or lower in the winter.
- Make sure your house is properly insulated. If you have less than 6 inches of insulation in your attic, you would benefit from adding more.

 You can save 10 percent or more on your energy bill by reducing the air leaks in your home with caulking and weather stripping.

- To help your furnace run more efficiently and cost-effectively, keep your air filters

 class.
- For windows with direct sunlight, close your blinds in the summer to keep the heat out. Open blinds on winter days to let the warmth in.
- Small room fans are an energy-efficient alternative to air conditioning.
- Inspect and replace weather stripping and caulking in your home.
- For information about energy-saving programs and cash incentives, visit **bewattsmart.com**.

Water and water heating

- Check your faucets for leaks that can cost you hundreds of dollars each year.
- Install a water-efficient showerhead and save as much as \$50 a year.
- Set the water heater at 120°F.
- Install faucet aerators to decrease water use.

Lighting

- Let the sun shine in. Use daylight and turn off lights near windows when possible.
- Replace your incandescent bulbs with CFLs (compact fluorescent light) or LEDs (light-emitting diodes) and save \$5 to \$8 per year per bulb. These bulbs use up to 75 percent less energy than incandescent bulbs and last much longer.

- Use lighting controls such as motion detectors and timers.
- Turn off lights when you leave the room.
- Always use the lowest wattage bulb that still gives you the light you need.
- Keep your light bulbs clean. It increases the amount of light from the bulb and reduces the need to turn on more lights.

Safety note: Burned out CFLs, which contain a small amount of mercury, should be disposed of properly. To locate a collection site in your area, or to learn what to do if a CFL breaks, visit **getenergysmart.org**.

Electronics

- Turn off your computer and game consoles when not in use.
- Home electronics are made to turn on and off many times. Always turn them off to save energy.
- Electronics with the ENERGY STAR® label use as much as 60 percent less energy while providing the same performance.
- Beware of phantom loads which continue to draw electricity when they are plugged in but not in use. Examples are telephone chargers, electronic games and television sets.
 Use power strips for household electronics. One button will turn off multiple appliances, which conserves electricity.

Refrigerators and freezers

- When looking to replace your old refrigerator, do so with an ENERGY STAR® model, which requires 40 percent less energy than conventional models and provides energy savings without sacrificing the features you want.
- The coils in the back or bottom of your refrigerator and freezer should be kept as clean as possible.

Dishwashers

- Only run dishwashers when full and use the "air dry" or "no heat dry" settings.
- ENERGY STAR® dishwashers use at least 41 percent less energy than the federal minimum standard for energy consumption.

Laundry

- Buy a moisture-sensitive dryer that automatically shuts off when clothes are dry.
- Use a clothesline whenever possible.

Cooking

- Use a microwave oven, toaster oven or crock pot instead of a conventional oven.
- Use the right-sized pan for the stove top element.
- Cover pans with lids to keep heat from escaping.

Reduce

- Use less.
- Purchase products with little packaging.

Reuse

- Use something again.
- Reuse a box or a grocery bag.

Recycle

- Make something into another new item.
- Participate in the recycling programs in your community.

Parents, be wattsmart and watch the energy savings add up.

An individual with a combined electric and heating fuel bill of \$2,500 per year could save 20 percent or \$42/month by using these and other energy efficiency tips. That is like getting a pay raise without having to work harder or longer.

The cost of lighting your home

Take a walk around your home with your family to learn about your lighting.

- I. Count the types of bulbs in each room and record in Table 1; then total each column.
- Transfer the total for each type of lighting into Column A on Table 2.

	Location	Incandescent	¥	CFL [₹]	LED Ţ
	Bedroom I				
	Bedroom 2				
`	Kitchen				
,	Dining room				
	Living room				
	Hallway				
	Laundry room				
	Family room				
	Front porch				
	Other				
	TOTAL				

TABLE I

- 3. In Table 2, multiply the numbers in Column A by the given amounts in Column B. Place the answers in Column C.
- Add the numbers in Column C to get the total approximate cost of electricity for lighting your home.
- 5. Discover how much money you will save if all the bulbs in your home were CFLs or LEDs. Add the numbers in Column A to get the total number of bulbs in your home. Transfer the total to both rows in Table 3, Column E as indicated by the arrows.
- 6. Multiply the total number of CFLs by the annual cost of electricity for one CFL provided in Column F and put your answer in Column G.
- In the last row of Table 3, multiply the total number of LEDs in Column E by the annual cost of electricity for one LED bulb provided in Column F and put your answer in Column G.

How do the amounts in Column G compare with your current total cost for lighting in Column C above?

TABLE 2										
	Α	В	С							
	Number of bulbs from Table I	Annual cost of electricity for one bulb	Annual cost of electricity for lighting							
Incandescent		× \$3.84								
CFL		× \$0.84								
LED		× \$0.48								
TOTAL										

	TAB	TABLE 3							
	E	F	G						
	↓								
All CFLs		× \$0.84	Annual cost of electricity with only CFLs						
	\								
All LEDs		× \$0.48	Annual cost of electricity with only LEDs						

Cost figures are for an individual bulb (60 Watt incandescent), the lumens equivalent CFL (13 Watts) and LED (7 Watts) each used for 2 hours each day for 30 days. EEI Typical Bills and Rates Report, Winter 2016 (12 months ending 2015).

Be wattsmart - it's up to you

Together with your parent(s), complete the separate *Home Energy Worksheet*. Return it to your classroom teacher and receive your wattsmart nightlight. You may find you are already practicing ways to be energy efficient but there is always room to do more.

Challenge yourself and your family to commit to practice energy efficiency by making wise energy choices and being wattsmart. You will not only help extend the life of our natural resources, but save money, too!

For other energy-saving ideas and incentives, visit **bewattsmart.com**. Congratulations to you and your family for making a difference.

wattsmart is registered in U.S. Patent and Trademark Office.

Be wattsmart Begin at home

TEACHER GUIDE

Welcome to Be **watt**smart, Begin at home

This program teaches the importance of energy and assists students and their families in saving energy in their homes. For teachers, **Be wattsmart**, **Begin at home** reinforces important electrical concepts from your curriculum.

This *Teacher Guide* was designed to supplement program instruction. A variety of tools have been provided to allow you to format **Be wattsmart, Begin at home** to meet your instructional needs. These tools include:

- General guidelines and activity suggestions
- Classroom activities to further the impact of lessons
- Additional fun and interesting activities for students
- Activities containing STEM-related curriculum for your classroom

Table of Contents

STEM Correlations	2
Section One: Energy Efficiency	
Energy Challenge	3
Conservation Cookie	
Pass the Sack	
Energy Tickets	6
The Search for Energy	8
Section Two: Resources You Can Use Efficiently	
Energy Challenge	9
Where Do Fossil Fuels Come From?	10
Energy for Electricity	
Electrical Generation Poster	13
Section Three: Be wattsmart, Begin at home	
Energy Challenge	14
Insulation Tests	15
How Bright Is Your Light?	16
Energy in Math	17
Be wattsmart, Begin at home Poster	19

About Pacific Power

Based in Portland, Oregon, Pacific Power is one of the lowest-cost producers of electricity in the United States, providing more than 700,000 customers in Washington, Oregon and California with safe, reliable, efficient energy. In addition, it is the second-largest rate-regulated utility owner of renewable, wind-generated electricity in the U.S.

About National Energy Foundation

National Energy Foundation is a unique 501(c)(3) nonprofit educational organization dedicated to the development, dissemination and implementation of supplementary educational materials and programs. These resources for education relate primarily to energy, water, natural resources, science, math, technology, conservation, energy efficiency and the environment. NEF recognizes the importance and contribution of natural resources to our economy, to our national security, the environment and our quality of life.

PERMISSION TO REPRINT NEF hereby grants permission to any teacher conducting a course of instruction in a recognized public or private institute of learning to reproduce any portion of this publication for classroom use only. No portion of this publication may be reproduced for purposes of profit or personal gain. © 2016, National Energy Foundation

ALL RIGHTS RESERVED No part of this publication may be reproduced or transmitted, in any form or by any means, without the written permission of NEF. Printed in the United States of America. wattsmart is registered in U.S. Patent and Trademark Office.

STEM Correlations

STEM education is an approach to teaching and learning that integrates the content and skills of science, technology, engineering and mathematics. Some of the skills include: problem-solving, innovation, invention, inquiry, logical reasoning, critical thinking, technological literacy, communication tools, research tools, design and modeling, data analysis and probability, collaboration and real world connection. This chart correlates *Teacher Guide* activities to STEM skills and behaviors.

		Scie	nce			Technology			Engineering				Math				
	Science as Inquiry	Energy Sources, Forms and Transformations	Science and Technology	Personal and Social Perspectives	Productivity Tools	Communication Tools	Research Tools	Problem-solving and Decision-making Tools	Historical Perspective	Design and Modeling	Invention and Innovation	Test Design and Troubleshooting	Use and Maintain	Numbers and Operations	Measurement	Data Analysis and Probability	Connection to the Real World
Activity Conservation Cookie	X			X										X	×	X	×
Pass the Sack	X	×		X													
Energy Ticket	X	X		X				×						X	X	X	X
The Search for Energy	X	X	X	X										X		X	X
Where Do Fossil Fuels Come From?	×	×	×					X						×	×		
Energy for Electricity	X	X	X	X			X										
Insulation Tests	X	X	X	X			X	×		X	X	X	X	X	X	X	X
How Bright Is Your Light?	×	×	×				×		X					×		×	×
Energy in Math														X		X	X

Section One:

Energy Efficiency

Objective: Identify and explain types of natural resources, conservation and energy efficiency.

Vocabulary:

Natural resource: A material source of wealth, such as timber, fresh water or a mineral deposit that occurs in a natural state and has economic value.

Renewable resource: A natural resource that is capable of being renewed or is replaceable such as energy from the sun or wind.

Nonrenewable resource: A natural resource that is not capable of being renewed, replaced or takes a very long time to replace, such as fossil fuels.

Fossil fuel: A combustible material created naturally beneath the earth's surface over a long period of time from the remains of plants and animals. Examples include coal, natural gas and oil. **Conservation:** The protection, preservation, management, or restoration of wildlife and of natural resources such as forests, soil and water.

Energy efficiency: Managing the consumption of energy through the use of technologies and wise behaviors.

Classroom Activities:

- "Conservation Cookie"
- "Pass the Sack"
- · "Energy Tickets"
- "The Search for Energy"

Energy Challenge

Discussion idea: Embodied energy in a glass of milk

Objective: Trace the energy and resources needed to make a common product.

Review the steps that it takes to produce a glass of milk and bring it to the consumer.

- Feeding and raising a cow
- Milking a cow
- Packaging
- Refrigeration
- Transportation of milk (dairy to warehouses to store to home)

Discuss with your class:

- I. What natural resources go into making and transporting a glass of milk?
- 2. The energy used to make and transport a product is called **embodied energy**.

- 3. What embodied energy sources are involved in producing and transporting milk?
- 4. How can understanding embodied energy in our daily lives encourage us to be energy-efficient?

Conservation Cookie

Objective:

To demonstrate the results of conservation of a resource.

Pre-activity discussion:

- What is conservation?
- Why is conservation so important?

Materials:

- Two cookies (or other food item) for each person
- One watch or clock with a second hand for timing
- Computer or graph paper to graph results

STEM Connection

Science

- Science as Inquiry
- Personal and Social Perspectives

Math

- Numbers and Operations
- Measurement
- Data Analysis and Probability
- Connection to the Real World

Procedure:

- I. Tell students that this is the first of two rounds. In each round, they will be eating a cookie, which represents our natural resources. They are to stand at their desk and you say to eat the cookie as they normally would, then when the cookie has been completely swallowed, sit down. The activity will work better if you ask students NOT to put the entire cookie in their mouth at one time, to take at least two bites!
- 2. Give each student a cookie, with instructions not to eat it until you say. Start the watch and tell the students to eat the cookie as they would normally eat it. At 30 second intervals, count the number of students standing and record this data.
- 3. Individually or as a class, graph this data using a line graph.
- 4. Tell students they will now practice conservation with a second cookie. To represent conservation, students will only take a bite from their cookie when you say "BITE." Just as before, they will stand, take bites the same size they took last time, and sit after the entire cookie has been swallowed.

- 5. Pass out a second cookie to each student.
- 6. Start the watch and have everyone take a "BITE" and then wait 30 seconds. Record the number of students standing and again say "BITE." Repeat this procedure until almost everyone has finished his or her second cookie.
- 7. On the same graph used for the first cookie, add a second line graph for the conservation cookie.

Discussion:

- Compare the two graphs. If desired, have students calculate the slope of each graph from 0 to 30 seconds and from 30 seconds to 1 minute. How do the slopes vary over time and between graphs? What does a change in slope represent?
- Discuss the term "conservation" and its effects on our natural resources. Can we control how rapidly we use water or energy by conserving it? Water and energy are some of the most important things we use in our lives. If they are used up quickly, and all at once, we will not have enough left for the future.

Pass the Sack

Objective:

To demonstrate the difference between renewable and nonrenewable resources and the need for conservation of resources.

Materials:

- Two different kinds of candy or other objects students find desirable
- Sack to hold candy, such as a gallon size plastic bag

STEM Connection

Science

- Science as Inquiry
- Energy Sources, Forms and Transformations
- Personal and Social Perspectives

Procedure:

- I. Count out enough candy so that there is one piece per student (some of each type of candy perhaps less of one so it will run out faster). Put it in the sack or bag. Save the remaining candy. If you have a very polite class, count enough candy for half of the class. You want the candy to run out before everyone gets some!
- 2. Tell students you will be demonstrating how resources get used over time by playing "Pass the Sack." Show students the sack and tell them when they get the sack, they should take some energy and pass the sack to the person next to them.
- 3. Before passing the sack to the first student, review renewable and nonrenewable resources. Have students give examples of each as you hand the sack to a student.
- 4. While this discussion is taking place, allow students to pass around the bag of candy without any rules about how many pieces students may take. Occasionally, add four or five pieces of one of the types of candy you are using. (This will be your renewable resource.) The sack will be empty before it reaches all the students.

- 5. Ask students that did not get any candy how they might obtain energy from other students. What if each student represented a country? How do countries obtain resources? Trade? Barter (trade for goods)? Buy (trade for currency)? Invade and take (go to war)? What effect did the availability of candy have on relationships between students? What effect might the availability of natural resources have on the relationship among nations, provinces, states, people, standards of living and quality of life?
- 6. Explain how our resources are like the candy. Which type was nonrenewable? How could you tell? (No more was added to the bag once it was being passed around.) Which type was renewable? How could you tell? (It was added to the bag periodically.)
- 7. Point out that resources have limits just like the candy. Emphasize that many resources, such as fossil fuels, are nonrenewable and are being consumed faster than they are being replaced by nature. Discuss the fact that it would be more difficult for students to eat the candy if they had to search the room to find it instead of just taking it from the sack. Energy companies must seek resource deposits and obtain rights to drill or mine for them; they do not just magically appear. Point out that natural gas, coal and oil companies are looking harder for more resources as supplies dwindle.
- 8. Now plan to pass out the remaining candy. Should rules be established? Do oil, coal and natural gas companies have rules (regulations) that they must follow to find resources? Should there be rules and regulations on how much oil, coal and natural gas people use? How would students get resources if they could not leave their desks? How do the students' social decisions influence the availability of candy?

Energy Tickets

Objective:

See how energy decisions affect our standard of living and our quality of life. This will help students realize how important it is to use energy efficiently.

Materials needed:

- Energy Tickets 25 per student
- Box to collect tickets (toll box)

STEM Connection

Science

- Science as Inquiry
- Energy Sources, Forms and Transformations
- Personal and Social Perspectives

Technology

• Problem-solving and Decision-making Tools

Math

- Numbers and Operations
- Measurement
- Data Analysis and Probability
- Connection to the Real World

Procedure:

- I. Before class begins, copy a page of tickets from the master on page 8 for each student. Alternatively, you may use preprinted tickets available from retail stores.
- 2. Introduce the game to the students by listing several places the students use energy in the school, for example, in the classroom: lights, computers and heaters.
- 3. Provide each student with 25 Energy Tickets, and instruct them to write their name on all of their Energy Tickets.
- 4. Every time a student uses energy, have them write how the Energy Ticket was used on the back and put the ticket in the toll box. If they use heated water, it will cost two tickets, because they are using both energy and water. It also costs two tickets if they waste energy unnecessarily. For example, leaving lights or a computer on when not in use wastes energy.

- 5. Keep a record of how many tickets the students have left each day.
- 6. Optional: look at how the tickets were used and create a graph of tickets used for different categories (sharpening pencils or using computers, for example) out of the tickets deposited in the box.

Discussion:

- What would happen if there was a real energy shortage in the community and families were issued a certain number of Energy Tickets?
- What if after they used them, all of their electricity and gas were shut off?
- What would they do to adjust their use of energy?
- What are other alternate sources of energy?

Language Arts Connection:

- Quick write Describe one thing you could do to reduce your personal energy usage.
- Creative writing Write a story about life after our nonrenewable energy sources are gone.

ENERGYTICKET

This ticket allows one energy use.

student name

ENERGY TICKET

This ticket allows one energy use.

student name

ENERGYTICKET

This ticket allows one energy use.

student name

ENERGY TICKET This ticket allows

one energy use.

This ticket allows one energy use.

ENERGY TICKET

student name

student name

ENERGY TICKET

This ticket allows one energy use.

student name

student name

ENERGY TICKET

ENERGY TICKET

This ticket allows

one energy use.

This ticket allows one energy use.

student name

ENERGY TICKET

This ticket allows one energy use.

student name

ENERGY TICKET

This ticket allows one energy use.

student name

ENERGYTICKET

ENERGY TICKET

This ticket allows

one energy use.

This ticket allows one energy use.

student name

student name

ENERGY TICKET

This ticket allows one energy use. student name

ENERGY TICKET This ticket allows ENERGY TICKET

This ticket allows one energy use.

one energy use.

student name

student name

ENERGY TICKET

ENERGY TICKET

ENERGY TICKET

ENERGY TICKET

This ticket allows

one energy use.

This ticket allows

one energy use.

This ticket allows

one energy use.

This ticket allows one energy use.

student name

ENERGY TICKET

This ticket allows one energy use.

student name

student name

student name

student name

ENERGY TICKET

ENERGY TICKET

ENERGY TICKET

ENERGY TICKET

This ticket allows one energy use.

This ticket allows

one energy use.

This ticket allows

one energy use.

ENERGY TICKET

This ticket allows

This ticket allows

student name

student name

student name

student name

one energy use.

one energy use.

student name

The Search for Energy

Objective:

To learn the difference between renewable and nonrenewable resources.

Materials needed:

- About 1/4 cup seed beads (solar energy)
- Colored beads in the following proportions: 84 percent black beads (about 250 beads) for coal; 16 percent red (about 50 beads) for uranium; 2 percent white (about 7 beads) for natural gas; 1 percent blue (about 4 beads) for oil. These proportions approximately reflect the nonrenewable energy reserves in the U.S.
- Optional: large bed sheet or tarp to place beads on for easy cleanup

STEM Connection

Science

- Science as Inquiry
- Energy Sources, Forms and Transformations
- Science and Technology
- Personal and Social Perspectives

Math

- Numbers and Operations
- Data Analysis and Probability
- Connection to the Real World

Procedure:

- I. Divide the class into five equal groups. Each group will be a company going after a particular resource. The beads represent reserves of the various energy resources. Have students gather in a large circle around the sheet or other area where you will place the beads.
- 2. Scatter the large beads plus a spoonful of "solar" beads on the sheet so they are well spread out. Explain that this exercise shows how the amount of available resources changes over time. You may want to designate certain places as protected areas, where the resources are off limits to protect the environment.
- 3. Tell students you will do several trials, and look to see how the types of available resources change after each trial. Tell each group that they will have 30 seconds to pick up as many beads possible of their color, then you will stop and look at how things are changing. It is NOT a race! After checking for understanding, start timing.

- 4. After 30 seconds, have the groups stop and count the beads they have gathered. Record the results in a data table. If some groups have collected all of their available resource, point out that the resource is now depleted and they are unemployed. You can allow the students to join another group. Collect the beads students picked up in the first trial.
- 5. Scatter another spoonful of solar energy, helping students realize that since solar is a renewable resource, there is the same amount of it each time you look, whereas the fossil fuels are being depleted. Repeat the search period so students can get more beads.
- 6. Stop after 30 seconds and have the group count and record the beads collected again. Note that there are fewer fossil fuels found in the second round. Students have to look harder to find what is left. The solar count is slowly but surely catching up with the fossil fuels. Repeat with additional trials as needed.
- 7. Create a multi-line graph of the number of beads collected each trial. This can be done by individual students or as a class. Note that the nonrenewable resources decrease until they are depleted but the solar increases steadily.

Discussion:

- Why does the solar line differ from the others? Why does it go up rather than down?
- How do improvements in technology affect the extraction of resources from the earth?
- How do improvements in technology affect our usage of renewable resources?
- In the real world, can we extract ALL of one resource? Why do some deposits go unused?

Section Two:

Resources You Can Use Efficiently

Objective:

To discuss and identify various resources students use every day.

Vocabulary:

Electricity: The flow of electric charge used as power.

Green energy: Electricity produced by renewable energy sources that are nonpolluting, or that pollute very little.

Natural gas: A fossil fuel that is a mixture of gases occurring in underground deposits.

Classroom activities:

- "Where Do Fossil Fuels Come From?"
- · "Energy for Electricity"
- "Electrical Generation Poster"

Energy Challenge

Discussion idea:

What natural resources can you save by recycling?

Optional activity:

- I. Have students keep track of each paper product that they use during one day with tally marks.
- 2. Compare amounts of paper used by students in the class. Ask students if they were surprised by the amount of paper they used.
- 3. Based on their usage of paper in one day, have students estimate how much paper they would use in a week, a month and a year.
- 4. Discuss the difference between reducing, reusing and recycling.
 - Reduce using less of something
 - Reuse using something again
 - Recycle making something into another new item
- 5. Brainstorm several ways that paper use can be reduced, that paper can be reused and how paper can be recycled in your community.

- 6. Tell students that recycling I ton of paper saves:
 - Enough energy to power the average American home for six months.
 - 7,000 gallons of water
 - 3.3 cubic yards of landfill space
 - I metric ton of carbon equivalent (MTCE). (EPA, 2014)

Where Do Fossil Fuels Come From?

Objective:

This activity investigates the production of natural gas and oil from ancient life. This activity models this process.

Materials per Student Group:

- A clear container to represent the ocean
- Sand or dirt
- Baking soda "plankton"
- Vinegar (20 percent) and water (80 percent) "ocean" mixture
- Cup or scoop
- Safety goggles

NOTE: You may do this as a demonstration, or have students do it in small groups.

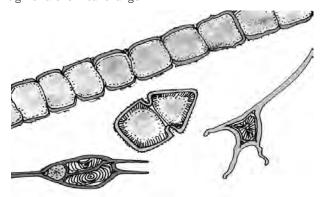
STEM Connection

Science

- Science as Inquiry
- Energy Sources, Forms and Transformations
- Science and Technology

Technology

• Problem-solving and Decision-making Tools


Math

- Numbers and Operations
- Measurement

Procedure:

- I. Explain to students that you will be showing them a model of how oil and natural gas form in the ocean. A very similar process takes place on land with plants to form coal.
- 2. Have students wear safety goggles to avoid splashing vinegar water in their eyes. It is harmless but uncomfortable.
- 3. Have students sprinkle a small amount of sand to cover the bottom of the container. The ocean floor is covered with sediments, and the sand represents these sediments.
- 4. Next, have students sprinkle "plankton" over the sand, liberally covering the bottom of the container. This represents plankton (microscopic life plant and animal-like creatures called protists) that have died and settled down to the bottom of the ocean.

- 5. Explain that over time, sediments are deposited on the ocean floor. Students should completely cover the plankton with sand. (You can gently push the sand around with your hands to simulate the pressure and weight the overlaying sediments have on the plankton.)
- 6. The ocean has water in it, so pour some of the vinegar/ water (ocean mixture) into the container. Bubbles and foam begin to appear. You can see the bubbles bursting and can hear the gas being released to the air. Point out that this is a sign of a chemical change.

Discussion:

- Discuss with students that natural gas in the ocean is produced much in the same way as you have modeled, but that the process takes MANY years. In the ocean the plankton is buried under miles and miles of sediments which caused the weight of those sediments to "cook" the plankton under high temperature and pressure. The heat and pressure changes the plankton into oil and natural gas. Natural gas floats on top of the oil produced.
- Discuss how this model is different from real life. The gas produced in the experiment is carbon dioxide rather than natural gas, and since our container is open, the gas escapes into the air. In the ocean, there are usually impermeable layers that keep natural gas and oil trapped beneath the surface until we drill down and release it.

Energy for Electricity

Objective:

Trace the flow of energy from a natural resource to electricity in our homes.

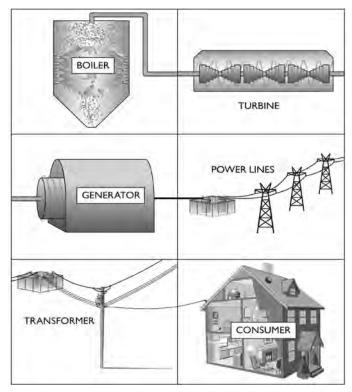
STEM Connection

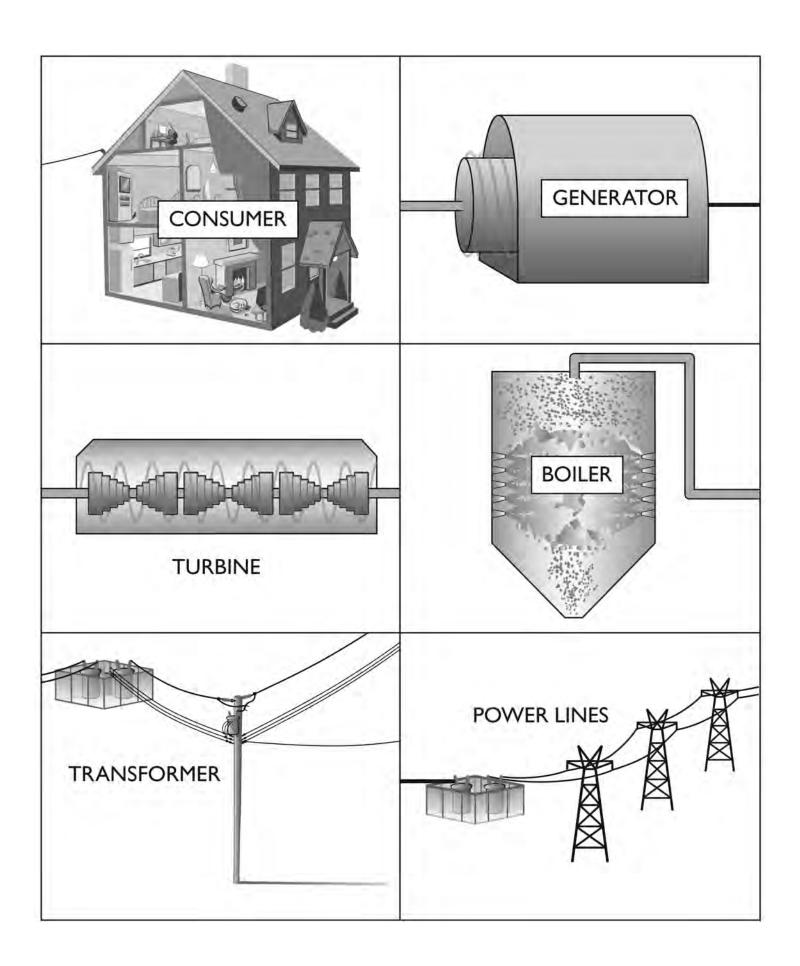
Science

- Science as Inquiry
- Energy Sources, Forms and Transformations
- Science and Technology
- Personal and Social Perspectives

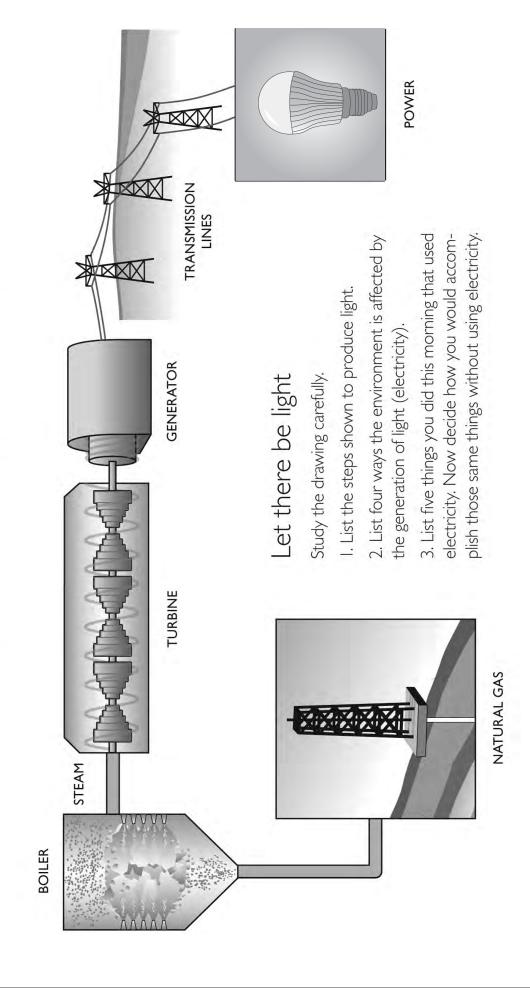
Technology

• Research Tools


Procedure:


34

- I. Ask students how their lives would be different without electricity. Where does electricity come from?
- 2. Pass out a copy of the "Electrical Generation Puzzle" found on the following page. Have students cut each part of the puzzle (transformer, turbine, generator, boiler, power lines and consumer) into separate pieces. Then, have them take


- a few minutes to put the puzzle pieces in order from the first to the last step of the process of electrical generation.
- 3. Go through each puzzle piece, explaining the process of each step:
 - Boiler converts chemical energy from fuel (fossil fuels, biomass, hydrogen) to thermal energy, changing water to steam
 - Turbine turned by steam, converting thermal energy to mechanical energy
 - Generator turned by turbine, rotating coil of wire in a magnetic field, converts mechanical energy to electrical energy
 - Power lines transmit electrical energy at several thousand Volts
 - Transformer step-up transformers along the power lines increase voltage periodically; step-down transformers on poles or in yards reduce the voltage to a safe level for use
 - Consumer converts electrical energy into many forms to run lighting and appliances

Completed puzzle for teacher reference

Electrical Generation

Section Three: Be wattsmart, Begin at home

Objective:

To apply the principles of energy efficiency at home by changing habits.

Vocabulary:

Shell: The floors, windows, doors, walls and roof of a building that form a barrier between the indoor and outdoor environment.

Convection: Heat transfer in a gas or liquid by currents that circulate from one region to another. Convection works because heated fluids or gases expand, and since they are less dense, rise through the cooler materials around them.

Conduction: Heat transfer in a solid or liquid without any motion or flow of matter in the material. Heat is transferred by the motion of molecules and electrons. Higher speed particles from the warmer areas collide with slower ones from the cooler areas, causing a transfer of energy to the slower particles.

Radiation: Heat transfer between objects via electromagnetic waves. Photons traveling at the speed of light transfer the heat energy, so the objects do not have to be in contact with each other for heat to be transferred. Radiation can travel through space.

Insulation: A barrier that minimizes the transfer of heat energy from one material to another by reducing the effects of conduction, convection and/or radiation.

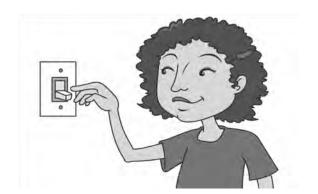
Classroom activities:

- "Insulation Tests"
- "How Bright Is Your Light?"
- · "Energy in Math"
- "Be wattsmart, Begin at home Poster"

Energy Challenge

Discussion:

 What changes does your school need to make to be energy-efficient?


Optional activity:

• Have students tour the school building to fill out the following checklist:

	Yes	No
I. Are outside doors weather stripped?		
2. Are windows caulked to prevent air leaks?		
3. Are lights turned off when no one needs them?		
4. Is electrical equipment turned off when not in use?		
5. Are faucets in bathrooms and kitchen areas free of leaks?		

Discussion idea:

• In which of the five areas does your school need the most improvement? How could students assist in making a change?

Insulation Tests

Objective:

To demonstrate the different types of materials that can be used for insulation.

Materials:

- Thermometer
- Graduated cylinder or measuring cup
- Large jug of water
- Large board or tray
- Baby food jars with lids (one for each material being tested)
- Insulation materials to test: gloves, socks of different materials, other types of clothing, plastic foam, paper, aluminum foil, leaves, etc.

STEM Connection

Science

- Science as Inquiry
- Energy Sources, Forms and Transformations
- Science and Technology
- Personal and Social Perspectives

Technology

- Research Tools
- Problem-solving and Decision-making Tools

Engineering

- Design and Modeling
- Invention and Innovation
- Test Design and Troubleshooting
- Use and Maintain

Math

- Numbers and Operations
- Measurement
- Data Analysis and Probability
- Connection to the Real World

Procedure:

- I. On a piece of paper, list all of the materials being tested.
- 2. Using the jug of water, fill each jar with 120 mL (1/2 cup) of water.
- 3. Measure the temperature of the water in each jar to make sure they are the same, then put on the lids.
- 4. Wrap all but one of the jars with the materials being tested. Label the unwrapped jar "control."
- 5. Place each jar on the large board or tray.
- 6. Carry the board or tray outside and leave it there.
- 7. Create a data table to record the beginning and ending temperature of the water in each jar.
- 8. After a pre-determined amount of time has passed, measure the new temperature of each jar and record the ending temperatures in the data table.
- 9. Calculate the change in temperature for each jar and add it to the data table. Graph the temperature change for each jar in a bar graph.

Discussion:

- What materials made the best/worst insulators?
- Could you use these to keep your home warm in the winter or cool in the summer?
- What materials are used in homes for insulation? (fiberglass, blown-in insulation, polyurethane foam, etc.)
- What do good insulating materials have in common?
 How does insulation work? (They have large pore spaces that block conduction of heat through surfaces.)

Language arts connection:

Quick write – Based on the information in your data table, give recommendations for insulating a tree house.

How Bright Is Your Light?

Objective:

To demonstrate which lighting sources are the most energy efficient.

Materials:

- Various light bulbs (incandescent, CFL and LED)
- Lamp or light socket
- Thermometer

STEM Connection

Science

- Science as Inquiry
- Energy Sources, Forms and Transformations
- Science and Technology

Technology

• Research Tools

Engineering

• Historical Perspective

Math

- Numbers and Operations
- Data Analysis and Probability
- Connection to the Real World

Procedure:

- I. Ask students what electrical item is used most often in any building and can also account for a lot of wasted energy (lights).
- 2. Put each light bulb in the lamp and leave it on for five minutes. Hold a thermometer at a distance from, not touching, the bulbs. Record the temperatures. Which bulb produces the most heat?

3. Not all light sources are created equal. Some are much more energy-efficient than others. The least efficient light bulbs are incandescents. These bulbs were invented by Thomas Edison and have changed very little in the last 100 years. Incandescent bulbs get very hot when they are turned on because about 90 percent of the energy that goes into an incandescent bulb is given off as heat instead of light.

By contrast, the compact fluorescent light, or CFL, uses 75 percent less energy because it gives off less heat. A CFL can last up to 10 times longer. LED bulbs are even more efficient, using 75 – 85 percent less energy than traditional incandescent bulbs and can last 25 times longer.

Discussion:

• Does your family use energy-efficient CFLs or LEDs? How can heat from an incandescent bulb cause further energy waste during the summer?

Energy in Math

STEM Connection

Math

- Numbers and Operations
- Data Analysis and Probability
- Connection to the Real World

١.	Jessie saved more energy than Michael. Michael saved more energy than Maggie. Maggie saved less energy than Jessie. Karen saved more energy than Jessie. List the kids' names in order of how much energy they saved, least to most:
	☐ Jessie, Karen, Maggie, Michael☐ Maggie, Michael, Jessie, Karen☐ Michael, Jessie, Maggie, Karen☐ Maggie, Karen, Michael, Jessie
2.	The Maher family used 57,000 gallons of water a year, costing them \$525 to heat it. Estimate how much money they would save in a year if they cut their hot water use by 30,820 gallons.
	□ \$100 □ \$240 □ \$284 □ \$525
3.	If each person in a house uses a 60 Watt bulb in their bedroom 4 hours a day, and there are three people living there, how many Watts will be used a day to light their room?
	☐ 20 Watts ☐ 240 Watts ☐ 650 Watts ☐ 720 Watts
4.	For every 10 degrees the water heater setting is turned down, you can save 6 percent of the energy used. If Charles turns his water heater down by 15 degrees, about what percent savings in energy will he save? 6% 9% 12% 15%
	5/5

Energy in Math - Answer Key

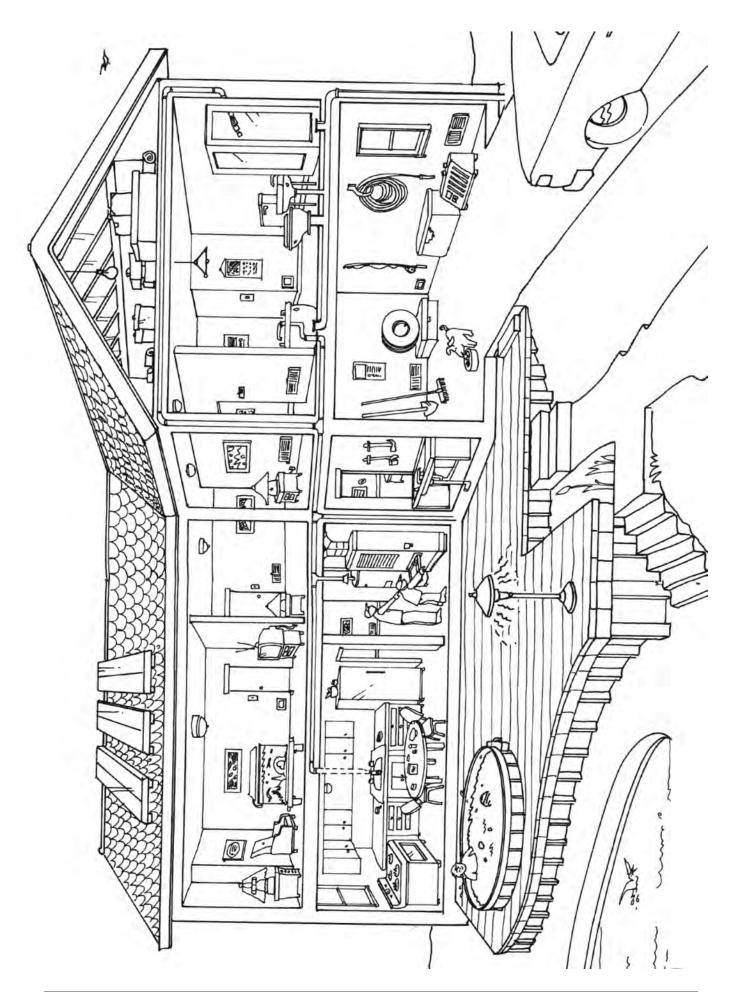
I. Jessie saved more energy than Michael. Michael saved more energy than Maggie. Maggie saved less energy than Jessie. Karen saved more energy than Jessie. List the kids' names in order of how much energy they saved, least to most: ☐ Jessie, Karen, Maggie, Michael ■ Maggie, Michael, Jessie, Karen ☐ Michael, Jessie, Maggie, Karen ☐ Maggie, Karen, Michael, Jessie 2. The Maher family used 57,000 gallons of water a year, costing them \$525 to heat it. Estimate how much money they would save in a year if they cut their hot water use by 30,820 gallons. □ \$100 □ \$240 **\$284** □ \$525 3. If each person in a house uses a 60 Watt bulb in their bedroom 4 hours a day, and there are three people living there, how many Watts will be used a day to light their room? □ 20 Watts □ 240 Watts ☐ 650 Watts ■ 720 Watts 4. For every 10 degrees the water heater setting is turned down, you can save 6 percent of the energy used. If Charles turns his water heater down by 15 degrees, about what percent savings in energy will he save? □ 6% **9**% □ 12% □ 15%

Be wattsmart, Begin at home Poster

Materials:

- House poster found on the following page
- Colored markers or pens

Instructions:


- Add or color the items below. You may want to do different items each day as you cover different topics: electricity, natural gas, water, etc.
- Add a bicycle.
- Add some recycling bins in the garage.
- Add some trees to shade the house.
- Add a ceiling or floor fan to the home for cooling.
- Put a blue star (for ENERGY STAR® products) on the refrigerator, television and furnace.
- Color the energy-efficient shower head.
- Color all items that use electricity, yellow.
- Color the thermostat brown.
- Color the furnace filter that is being changed orange.
- Draw a purple water drop next to all items in the house that use water.

Language Arts Connection:

Quick write – Write a brief description of the things your family has done to improve the energy efficiency of your home. Add items that you will encourage your family to do in the future.

Social Studies Connection:

- Choose one natural resource used for energy and create a T-chart or Venn diagram comparing the positive and negative effects of the use of this resource on the physical environment.
- The more efficient your home is, the smaller your carbon footprint. Your carbon footprint is the total amount of carbon dioxide (CO₂) and other greenhouse gases you generate annually. The lower your footprint, the better!

bewattsmart.com

Lingo Card

L		N	G	0
Water Heater	Natural Gas	Natural Resource	Incandescent	Reduce
Reuse	Reuse Phantom Load		Coal	ENERGY STAR®
Renewable	Energy	Be watt smart Begin at home	Turn It Off!	Uranium
Energy Efficiency	LED	Recycle	68 Degrees	Embodied Energy
Cooking	78 Degrees	Solar	Thermostat	Electricity

http://	print-bingo.	com

L		N	G	0
Coal	Natural Gas Solar		Turn It Off!	Renewable
Water Heater	Nonrenewable Phantom Load Electricity		Electricity	Reuse
Energy	Oil	Be watt smart Begin at home	68 Degrees	Cooking
Thermostat	Incandescent	Recycle	Uranium	Natural Resource
Reduce	78 Degrees	Embodied Energy	LED	Energy Efficiency

http://print-bingo.com

L		N	G	0
Reuse	Natural Gas	Phantom Load	LED	78 Degrees
Cooking	Cooking Electricity		Recycle	68 Degrees
Natural Resource	Water Heater	Be watt smart Begin at home	ENERGY STAR®	Nonrenewable
Embodied Energy	Coal	Energy Efficiency	Heating	Incandescent
Thermostat	Reduce	Oil	Solar	Uranium

http://print-bingo.com

L		N	G	0
Natural Resource	Water Heater	Natural Gas	Thermostat	78 Degrees
Turn It Off!	Reduce	e Oil Embodied Energy		Cooking
Phantom Load	ENERGY STAR®	Be watt smart Begin at home	Uranium	Recycle
Energy	LED	68 Degrees	Energy Efficiency	Heating
Electricity	Renewable	Incandescent	Reuse	Solar

http://print-bingo.com

Be watt smart, Begin at home						T	eacher	Guide Ac	tivitie	S		
Ac Le	sential ademic arning iirements	Washington Grades 4 - 5 Correlations	Grades	Energy Challenge - Embodied Energy	Conservation Cookie	Pass the Sack	Energy Ticket	The Search for Energy	Energy Challenge- Recycling	Where do Fossil Fuels Come From?	Energy for Electricity	Energy Challenge- Energy Efficient Changes
Science		Topic	Gr	р.3	p.4	p.5	p.6	р.8	p.9	p.10	p. l l	p.14
EALR I	Systems (SYS)	Complex Systems	4 5	SYS C	SYS C,D	SYS C,D		SYS C,D			SYS C,D	SYS C,D
EALR 2	Inquiry (INQ)	, and the second	4 5		INQ A-I	INQ A-I	INQ A-I	INQ A-I	INQ A-I	INQ A-I	INQ A-I	INQ A-I
EALR 3	Application (APP)	Different Technologies	4 5	APP A, APP G			APP A, APP G	APP A, APP G			app a, app g	APP A, APP G
EALR 4		Energy, Earth History and Ecosystems	4 5	LS2 B			PS3 A			ES3 B	PS3 A	
Social St	tudies											
EALR I	Civics	Rights and Responsibilities	4 5						1.4.1			
EALR 2	Economics	Needs and Wants	4	2.1.1	2.1.1	2.1.1		2.1.1				
Math												
Common Core		Algebraic Thinking, erations in Base Ten, I Data	4 5		4.OA.A.1, 4.MD.A.2 5.G.A.2		5.G.A.2	4.OA.A.1, 4.NBT.B.4-5, 4.MD.A.2 5.G.A.2				4.MD.A.2 5.G.A.2
Languag	e Arts											
Common Core	Informational Tex Listening, Writing	•	4	SL.4.1	SL.4.1	SL.4.1	SL.4.1, W.4.3 SL.5.1,	SL.4.1	SL.4.1	SL.4.1	SL.4.1, W.4.3 SL.5.1,	SL.4.1
	2.500011116, 77710118		5	SL.5.1	SL.5.1	SL.5.1	W.4.3	SL.5.1	SL.5.1	SL.5.1	W.4.3	SL.5.1

Be watt smart, Begin at home			Teacher Guide Activities				Student	Activities	Posters		
Ac Le	sential ademic arning iirements	Washington Grades 4 - 5 Correlations	Grades	Insulation Tests	How Bright Is Your Light?	Energy in Math	Be watt smart, Begin at home	Presentation Information	Student Booklet	Bright Ways to Save Energy Poster	Electrical Generation Poster
Science		Topic	Gr	p.15	p.16	р. 17	p. 19				
EALR I	Systems (SYS)	Complex Systems	4 5	SYS C,D	SYS C,D		SYS C,D				
EALR 2	Inquiry (INQ)	Investigations	4 5	INQ A-I	INQ A-I		INQ A-I		INQ A-I	INQ A-I	INQ A-I
EALR 3	Application (APP)	Different Technologies	4 5	APP A, APP E-G	APP A, APP G	APP A, APP G	APP A, APP G	APP A, APP G	APP A, APP G	APP A, APP G	APP A, APP G
EALR 4	\ "	Energy, Earth History and Ecosystems	4 5	PS3 A-C	PS3 A-C		PS3 A	PS3 A,E	PS3 A-C	PS3 A	PS3 A
Social St	tudies										
EALR I	Civics	Rights and Responsibilities	4 5								
EALR 2	Economics	Needs and Wants	4					2.1.1	2.1.1	2.1.1	
Math											
Common Core		Algebraic Thinking, erations in Base Ten, d Data	4	4.OA.A.1, 4.MD.A.2 5.G.A.2	4.MD.A.2 5.G.A.2	4.OA.A.3, 4.NBT.B.4-5 5.NBT.B.5			4.NBT.B.5 5.NBT.B.5		
Languag	Language Arts										
1	Informational Tex	•	4	SL.4.1, W.4.3	SL.4.1		W.4.3	RI.4.6	RI.4.6	RI.4.6	RI.4.6
Core	Listening, Writing		5	SL.5.1, W.4.3	SL.5.1		W.4.3	RI.5.6	RI.5.6	RI.5.6	RI.5.6

Dear Parent(s):

Today your child participated in the **Be wattsmart, Begin at home** program sponsored by Pacific Power. In this engaging presentaion, your student learned key concepts of his or her science curriculum as well as important ways to be more efficient with energy use at home.

As part of the **Be wattsmart**, **Begin at home** program, your child received a:

- Be wattsmart, Begin at home booklet
- Home Energy Worksheet

Please take a moment to read through this informative booklet with your student. Then, fill out the *Home Energy Worksheet* and return it to your child's teacher. To thank you, Pacific Power will provide your student with a wattsmart nightlight.

We appreciate your efforts to reinforce important **Be wattsmart**, **Begin at home** energy knowledge and efficiency actions in your home!

bewattsmart.com

© 2016 Pacific Power — wattsmart is registered in U.S. Patent and Trademark Office

Teacher Evaluation

Program Evaluation

Be **watt**smart Begin at home

Teacher Name:			0	
School:				
Sponsor: Pacific Power				
In an effort to improve our program, we at home. Please take a few minutes to return the form in the postage-paid en Worksheets you collected and the specific program of the specific program.	to fill out this eva nvelope along w	aluation form. vith the studer	Upon complet nt <i>Home Ener</i> g	tion, please
Please mark the box that best describes your opinion.	Strongly Agree	Agroo	Diagrae St	rongly Diogram
The materials were attractive and easy to use.	Strongly Agree	Agree	Disagree St	rongly Disagree
The materials were attractive and easy to use. The materials and activities were well-received by students.				
The materials were clearly written and well-organized.				
Students indicated that their parents supported the program.				
Presenters were able to keep students engaged and attentive.				
If you had the opportunity would you conduct this program agai Would you recommend this program to other colleagues?	in?	Yes Yes	☐ No	
In my opinion, the thing students liked best about the materials	/program was:			
One thing I would change would be:				

WAT WA

Teacher Evaluation Compilation

Wattsmart Pacific Power programProgram Evaluation Summary Report

bewattsmart.c@m

Materials were attractive and easy to use.

Response	Frequency	Percent	
Strongly agree	57	77.0%	
Agree	15	20.3%	
Disagree	0	0.0%	
Strongly disagree	0	0.0%	
No response	2	2.7%]
	-	-	20 40 60 80 100

Materials and activities were well received by students.

Response	Frequency	Percent	
Strongly agree	54	73.0%	
Agree	17	23.0%	
Disagree	0	0.0%	
Strongly disagree	0	0.0%	
No response	3	4.1%	
			20 40 60 80 100

Materials were clearly written and well organized.

Response	Frequency	Percent	
Strongly agree	57	77.0%	
Agree	15	20.3%	
Disagree	0	0.0%	
Strongly disagree	0	0.0%	
No response	2	2.7%	
			20 40 60 80 100

Students indicated that their parents supported the program.

Response	Frequency	Percent	
Strongly agree	36	48.6%	
Agree	33	44.6%	
Disagree	1	1.4%	
Strongly disagree	0	0.0%	
No response	4	5.4%	
		-	20 40 60 80 100

Presenters were able to keep students engaged and attentive.

Response	Frequency	Percent	
Strongly agree	54	73.0%	
Agree	18	24.3%	
Disagree	0	0.0%	
Strongly disagree	0	0.0%	
No response	2	2.7%	

*Watt*smart Pacific Power program Program Evaluation Summary Report

bewattsmart.c@m

If you had the opportunity, would you conduct this program again?

Response	Frequency	Percent	
Yes	72	97.3%	
No	0	0.0%	
No response	2	2.7%	
	-	-	' 20 40 60 80 100

Would you recommend this program to other colleagues?

Response	Frequency	Percent	
Yes	72	97.3%	
No	0	0.0%	
No response	2	2.7%	
			' 20 40 60 80 100

In my opinion, the thing the students liked best about the materials/program was:

Activities during presentation; nightlights

Being involved and the interaction with the speakers.

Coming up front and having students be conductors.

Getting to go up i front and demonstrate through the interactive portions of the presentations.

Getting to participate in demonstrations.

Great job!

Hands on activities

lingo

Hands on learning that takes place

I love this presentation... Great segway for our electricity unit. It has gotten better over the years.

Interactive "skit-type" activities that they got to participate in.

Lingo

Lingo and the activities where volunteers went up to the front to participate.

Lingo and the human conductors.

Lingo Game

Love this program. Very visual and hands on. Goes perfect with our unit on Electricity.

Making a complete circuit.

Making the human circuit.

My students enjoyed and liked the human circuit the best. Lighting the solar light. Also the students like the presenters (I agreed!)

My students loved the night and the videos shown during the presentation. They also liked the activities (human circuit) that involved their peers.

Playing Lingo and the interactive activities.

Playing the Lingo game and demonstrating the closed circuit with the light stick.

Presentation kept students attention, they were eager to return paper, and get the nightlight.

Relevant to students. Students were able to work with their parents to explore their home energy impact.

Returning surveys, 89%!

Student engagement and hands on activities.

Students connected with our science program. Students could understand.

Students enjoyed playing Lingo and participating in the open and closed circuit presentation.

The ability to learn about how to transmit different types of electricity. More examples of how wind/solar energy works.

The active involvement.

The activities presenters brought.

The bingo game and the night lights.

The circuit and how electricity works.

The completed circuit using students.

The connection to our science unit.

The great powerpoint and hands on student volunteers.

The hands on activities during the presentation.

The hands on activities that a few of the students were able to participate in.

The hands on activities, but they were quite focused on the slides as well.

The hands on activities, especially the human circuit activity.

The hands on activity, such as the circuit and power line.

The hands on and interactive activities.

The hands on demonstration.

The hands on experiments.

The hands on learning and the interactive lingo.

The hands on portion of the presentation.

The human circuit was awesome. The kids loved it and talked about it the rest of the day. The videos showing examples was talked about by them too.

The interactive activities during the presentation. Pausing throughout the powerpoint in order to enhance content knowledge for students.

The interactive Lingo and student demonstrations. Also after turning in the survey they all wanted the night light.

The interactive presentation. They loved getting involved! The presenters did a job of keeping things going- even with some technical difficulties.

The interactive presentation/engagement.

The Lingo cards were a big hit with my class.

The material and information supported my science program. Everything was in sync.

The night light-or learning that humans are conductors.

In my opinion, the thing the students liked best about the materials/program was:

The opportunities to volunteer and participate in activities in the front of the group,

The presentation and interactive activities.

The students enjoy being able to connect with what they are learning in class. This presentation was right on with our science unit.

The students enjoyed the activities and the power point presentation. They also liked guessing the vocabulary words to answer the quiz questions.

The students enjoyed the hands on activity making the human circuits,

The students enjoyed the human circuit.

The visuals.

They enjoyed the hands on demonstrations the most.

They enjoyed the hands on Lingo and students participation activities.

They enjoyed the opportunity to demonstrate electricity in front of their peers. They also liked the home connection energy worksheet.

They liked the hands on activities.

They liked the presentation and seeing the circuit activity come to life.

They love making the human circuit. They also like the multiple learning modalities. The presentation on the screen, the Lingo and the opportunities to answer.

They loved the presentation-practically the game "lingo"

They think the night light is pretty cool.

They were very interested in the presentation and enjoyed the hands on activities best. Lingo and the groups showing activities were the most fun for them.

When the discovered they could be conductors as well with the toy bar.

In the future, one thing I would change would be:

A little over and hour was a lot for them to sit and be still on the gym floor.

add more...

Could you please include more Spanish parent surveys.

Give a reward for the winners of the bingo game and not by pass it.

Good presentation with good information, maybe a smaller group.

Have a couple of group activities.

Have an actual something to give for getting a LINGO.

Have it in smaller groups.

Having more power sticks and more ways for students to look at different stations, to be more interactive.

Having the presentation closer to our electric circuits science kit.

Home energy worksheet pre-printed with english one side and Spanish on the other,

I cant think of anything, this program is great!

I had students tell me their night light didn't work very well.

I love it. Absolutely a great presentation. Thank you again perhaps have a coloring sheet for the kids to help them remember to conserve, like energy in a can.

I think its great.

I thought it was great.

Include more hands on activities.

Include opportunities for the group as a whole to get up and more-especially toward the end. Maybe have motions to go along with the vocabulary.

Its would be great if we could do the program in individual classrooms with not as many kids. I feel like students would stay more engaged throughout the whole process and learn more of the information.

More "body breaks", possibly have kids take 2 minutes and act out what they'd learned.

More experiments like the circuit experiment.

More hands on opportunities.

More of the above.

More time to explain the benefits more for students and families, in regards to the at home worksheet.

No changes, it was fantastic.

None. I had a student move before the presentation, so I only have 24 surveys.

Nothing I can think of. The presenters were excellent.

Nothing-Great Job.

Nothing!

Nothing. This program is amazing! Our presenters were great (smiths)!

Print your evaluations with Spanish on the back. 95% of my students need the Spanish Home Energy Worksheet.

Provide Spanish materials already copied.

Recognizing the first Lingo winners.

Smaller group presentation so more students could participate in the activities (if thats an option)

Survey in Spanish printed on back of english survey. To not do three classes at one time, too many students in one room.

The group size for the presentation was too big. I would like to keep the presentation to a ratio of 1 teacher to 3 students or a 2 teachers to 60 students.

The length of the surveys.

The length students were getting restless! I enjoyed the program and I know my students learned. thanks!

We had five classrooms together on Halloween. I think engagement would increase with smaller groups if we could have 3 full days at our school we could have a lot better understanding. There would be so many standards hit with wattsmart, we would like our kids to benefit from it.

We need to arrange the presentation at a different time due to lunch preparation in the cafeteria.

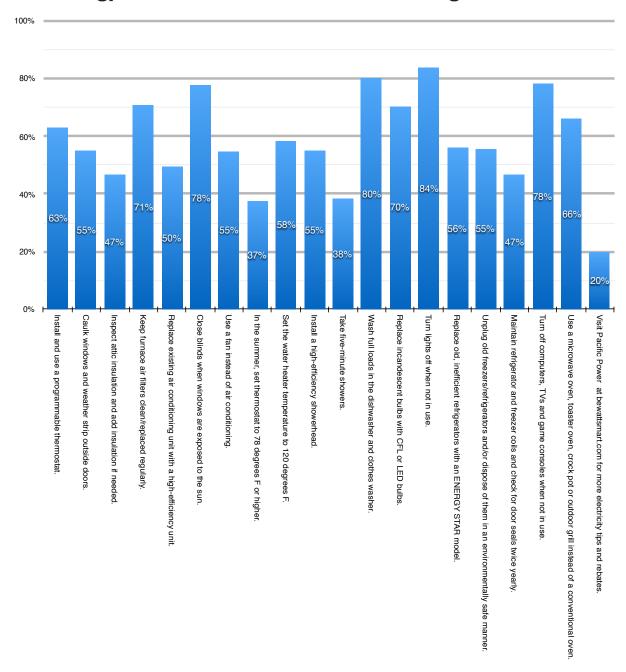
Home Energy Worksheet (English)

Tea	cher ID:				Do wattemant
Tea	cher Name:				Be watt smart Begin at h o me
		Home F	narav M	/orksheet	0 -
		TIOTHE LI	•		
Stud	dent First Name:		12.		ishwasher and clothes washer.
	ating			Currently do	☐ Will do
1.	•	rogrammable thermostat.		Neither	
••	Currently do	Will do	Lig	hting	
	Neither	vviii do	13.	Replace incandescent b	oulbs with CFL or LED bulbs.
2.		d weather strip outside doors.		Have done	Will do
	Have done	Will do		Neither	
	Neither		14.	Turn lights off when not	in use.
3.		ation and add insulation if needed.		Currently do	Will do
•	Have done	Will do		Neither	
	Neither	vviii do	Ref	rigeration	
4.		ilters clean/replaced regularly.		•	refrigerator with an ENEDGY
••	Currently do	Will do	15.	STAR® model.	refrigerator with an ENERGY
	Neither	will do		Have done	Will do
C -				Neither	vviii do
	oling	in a malitic miner conit coits	16		igerators and/or dispose of them
5.		ir conditioning unit with a tor an evaporative cooling unit.		in an environmentally sa	
	Have done	Will do		Have done	Will do
	Neither			Neither	
6.		windows are exposed to the sun.	17.		d freezer coils and check door
•	Currently do	Will do		seals twice yearly.	
	Neither	vviii do		Currently do	Will do
7.	Use a fan instead	of air conditioning.		Neither	
•	Currently do	Will do	Fle	ctronics	
	Neither				s and game consoles when not in
8.		t thermostat to 78 degrees F or hig		use.	s and game consoles when not in
	Currently do	Will do		Currently do	Will do
	Neither	vviii do		Neither	
۱۸/۵	ter heating		Co		
	•	cor temperature to 120 degrees F		oking 	
9.		ter temperature to 120 degrees F.		Use a microwave oven, grill instead of a conven	toaster oven, crock pot or outdoor
	Have done	☐ Will do		Currently do	Will do
10	Neither	anay ahawarhaad		Neither	vviii do
10.	Install a high-effici				
	Have done	☐ Will do		-	r being wattsmart
11	Neither Take 5 minute sho	wore			ewattsmart.com for more energy-
11.				saving tips and rebates.	
	Currently do	Will do		Have done	Will do
	Neither			Neither)A/AT)A/A
					WAT WA
		National		PACIFIC	C POWER
		Foundation.		T	— .

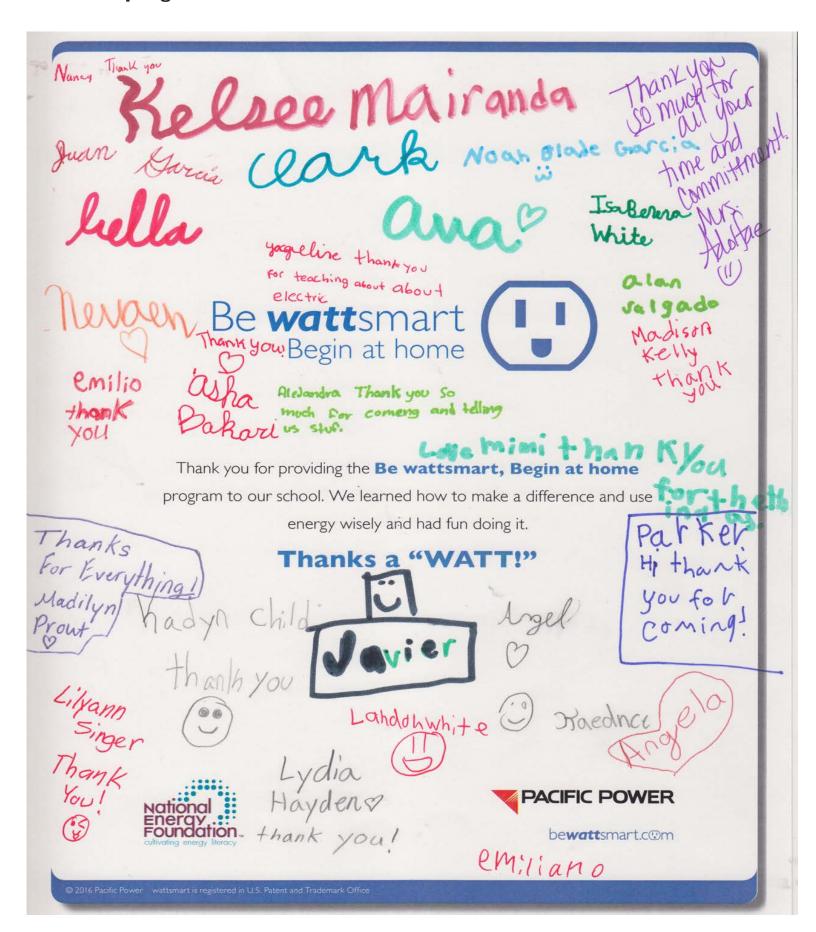
Home Energy Worksheet (Spanish)

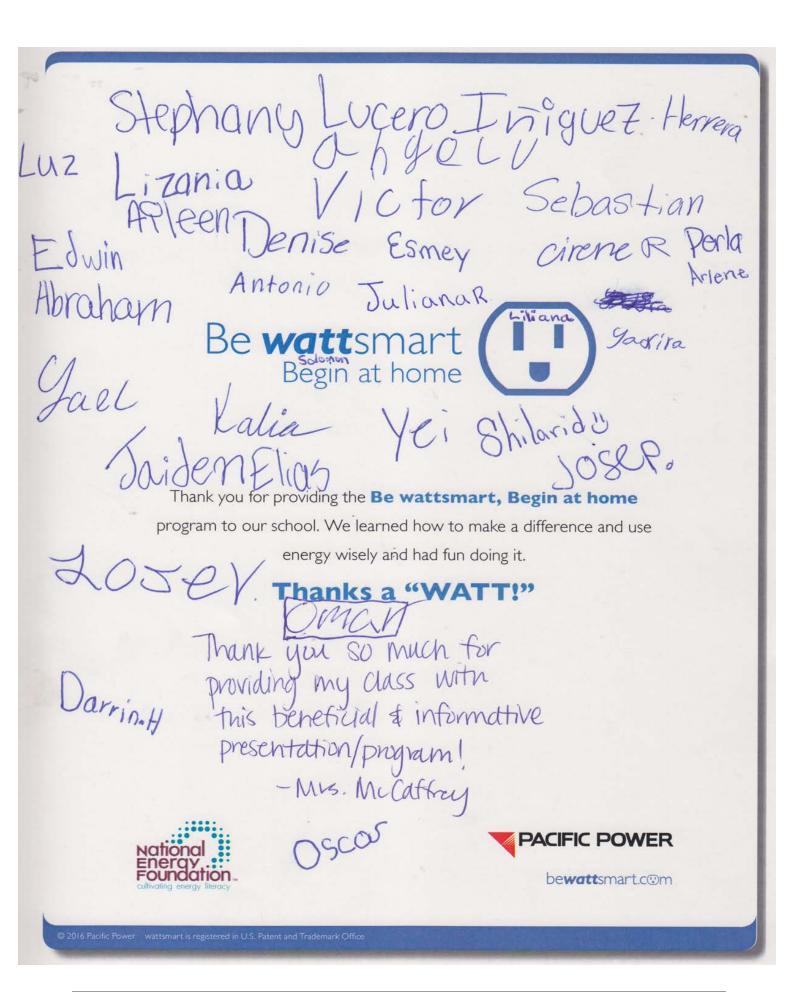
	wat		
U) Empie	za en	casa

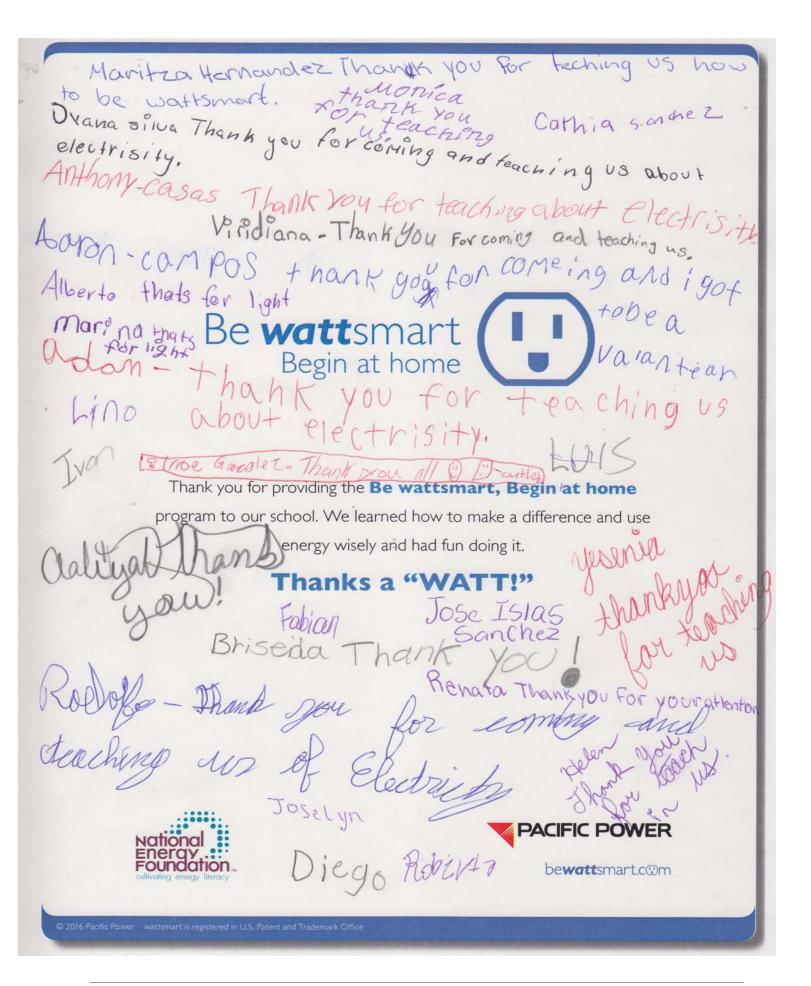
Nombre del Profesor(a):	

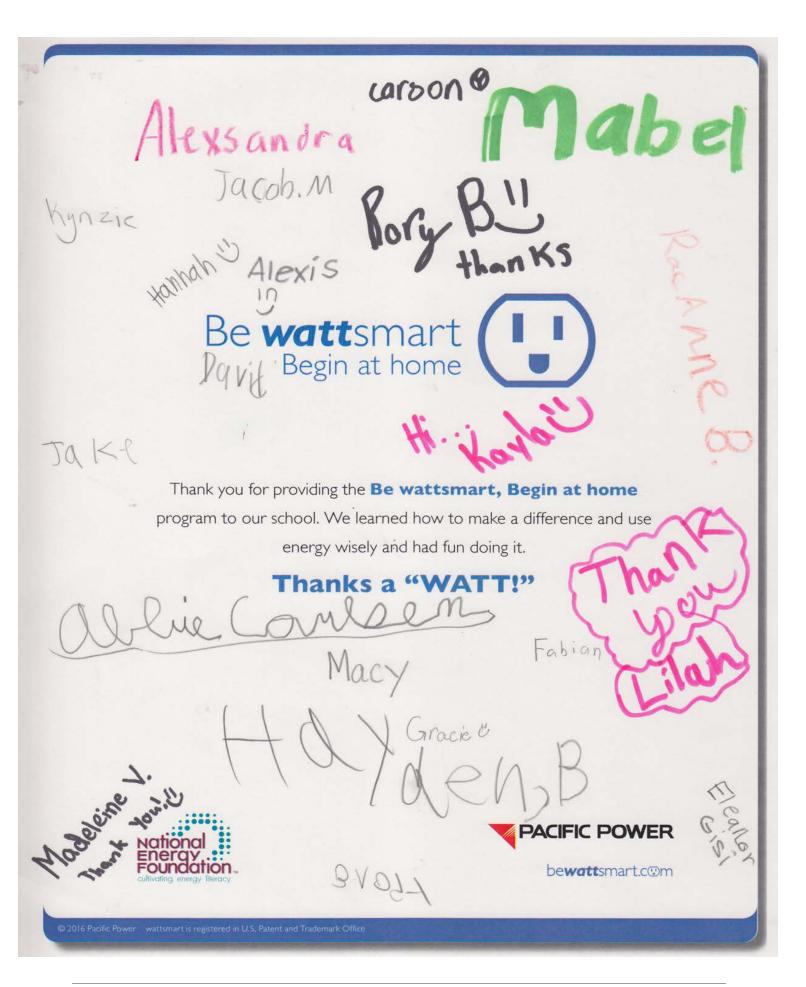

Verificación de la Energía Doméstica

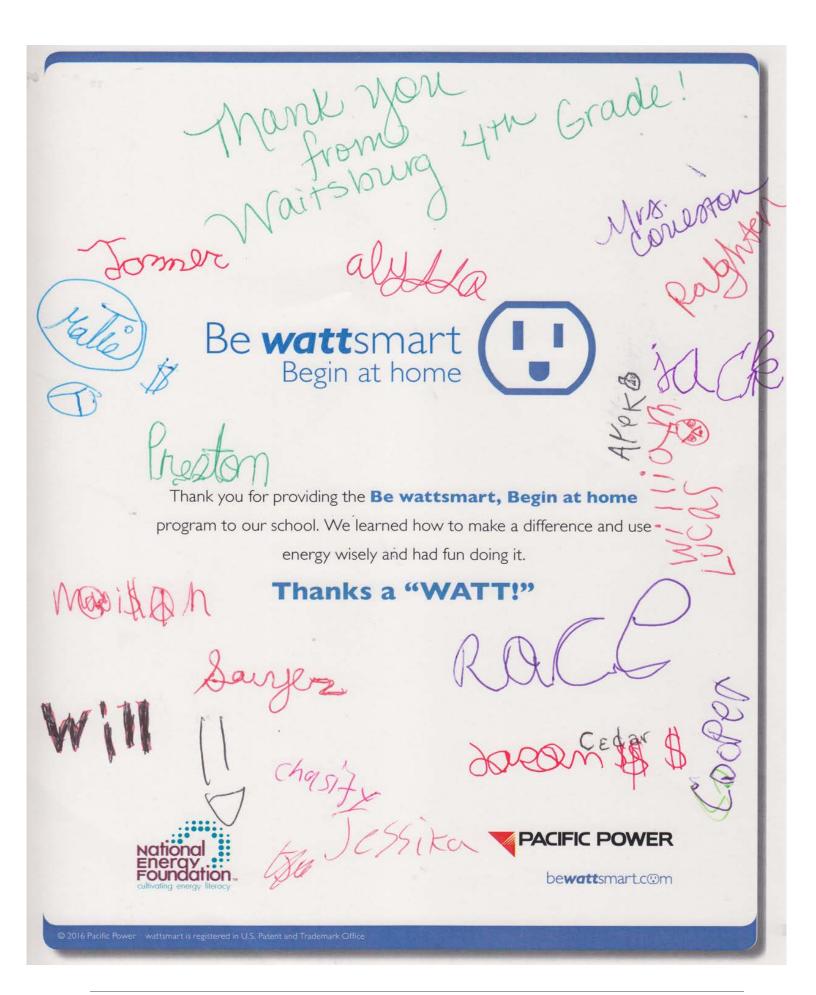
					O		
Nomb	re del Estudiante:			12.	Lavar cargas llenaropa.	as en los lavaplat	os y las lavadoras de
					□ Lo hago	□ Lo haré	□ Ninguno
Calefa	ıcción			llumin	ación		
1.	Instalar y usar un	termostato pro	gramable.	13.	Reemplazar los fo	ocos incandescen	tes con focos CFL o LED
	□ Lo hago	□ Lo haré	□ Ninguno		☐ Lo he hecho	□ Lo haré	□ Ninguno
2.	Calafatear ventar puertas.	as e instalar bur	letes en el exterior de	14.	Apagar las luces	cuando no estér	n en uso.
	☐ Lo he hecho	□ Lo haré	□ Ninguno		□ Lo hago	□ Lo haré	□ Ninguno
3.	Inspeccionar el a	slamiento del át	ico y agregar	Refrig	erador		
 Inspeccionar el aislamiento del ático y agregar aislamiento si es necesario. Lo he hecho Lo haré Ninguno 			15.	Reemplazar refri modelo de ENER	-	e ineficiente con	
	□ Lo ne necho	□ LO Hare			☐ Lo he hecho	□ Lo haré	□ Ninguno
4.	Mantener los filti reemplezados re		calefacción limpios/	16.		_	s/congeladores y/o
	□ Lo hago	□ Lo haré	□ Ninguno		□ Lo he hecho		entalmente segura.
Enfria	miento				□ Lo ne necho	□ Lo haré	□ Ninguno
5.	Reemplazar la un por una unidad d		ndicionado existente	17.	 Mantener las bobinas del refrigerador y del conge inspeccionar el sello de las puertas dos veces al ar 		
	evaporativa.	e alta elicielicia	o un enimador		□ Lo hago	□ Lo haré	□ Ninguno
	□ Lo he hecho	□ Lo haré	□ Ninguno	Electr	ónicos		
6.	Cerrar las persia al sol.	nas cuando las v	entanas están expuestas	18.	Apagar computa cuando no estén		s y consolas de juegos
	□ Lo hago	□ Lo haré	□ Ninguno		□ Lo hago	□ Lo haré	□ Ninguno
7.	Usar un ventilado	or en lugar del ai	ire acondicionado.	Cocin	ar		
	□ Lo hago	□ Lo haré	□ Ninguno	19.	Usar un horno n	nicroonda, un ho	rno eléctrico, un olla de
8.	En el verano, ajus	tar el termostat	o a 78 grados o más.	cocimiento lento o un parrilla de aire libre en horno convencional.		aire libre en lugar del	
	□ Lo hago	□ Lo haré	□ Ninguno		□ Lo hago	□ Lo haré	□ Ninguno
Calen	tadores de agua			Recibo	a paga siendo <i>wo</i>	ittsmart	
9.	Programar el cale	entador de agua	a 120 grados F.				art.com para obtener
	☐ Lo he hecho	□ Lo haré	□ Ninguno	20.	más consejos y r		
10.	Instalar una cabe	zal de ducha de	alta eficiencia.		☐ Lo he hecho	□ Lo haré	□ Ninguno
	\square Lo he hecho	□ Lo haré	□ Ninguno				
11.	Tomar duchas de	5 minutos.					
	□ Lo hago	□ Lo haré	□ Ninguno				




Wise Energy Behaviors in Pacific Power Washington Homes




Home Energy Worksheet Summary - Pacific Power


Energy Efficient Activity	Currently do/ Have done	Will do	Neither
Install and use a programmable thermostat.	63%	15%	22%
Caulk windows and weather strip outside doors.	55%	25%	20%
Inspect attic insulation and add insulation if needed.	47%	20%	33%
Keep furnace air filters clean/replaced regularly.	71%	16%	13%
Replace existing air conditioning unit with a high-efficiency unit.	50%	21%	30%
Close blinds when windows are exposed to the sun.	78%	12%	10%
Use a fan instead of air conditioning.	55%	20%	26%
In the summer, set thermostat to 78 degrees F or higher.	37%	25%	38%
Set the water heater temperature to 120 degrees F.	58%	20%	22%
Install a high-efficiency showerhead.	55%	23%	22%
Take five-minute showers.	38%	31%	31%
Wash full loads in the dishwasher and clothes washer.	80%	9%	11%
Replace incandescent bulbs with CFL or LED bulbs.	70%	20%	9%
Turn lights off when not in use.	84%	13%	3%
Replace old, inefficient refrigerators with an ENERGY STAR model.	56%	23%	21%
Unplug old freezers/refrigerators and/or dispose of them in an environmentally safe manner.	55%	21%	24%
Maintain refrigerator and freezer coils and check for door seals twice yearly.	47%	38%	16%
Turn off computers, TVs and game consoles when not in use.	78%	16%	6%
Use a microwave oven, toaster oven, crock pot or outdoor grill instead of a conventional oven.	66%	18%	16%
Visit Pacific Power at bewattsmart.com for more electricity tips and rebates.	20%	63%	17%

